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Abstract: To mitigate the risk of structural failure in coastal engineering caused by soft marine soil
creep, this study presents a coupled macroscopic and mesoscopic creep model of soft marine soil
to predict long-term deformation behavior of the soil. First, the mesoscopic characteristics of soft
marine soil (e.g., pore, particle, and morphological characteristics) under different external pressures
were obtained using a scanning electron microscope. Then, both the mesoscopic and macroscopic
characteristics of soil were quantified using directional probability entropy and then used as inputs
to develop the model. The model predictions agree with the experimental data. In addition, the
experimental results indicate linear negative correlations between porosity and pore ratio with
stress—the relationships between the fractal dimension of pore distribution and probability entropy
of particle orientation under stress are generally nonlinear. Further, results of sensitivity analysis
indicate that the probability entropy of particle orientation is one of the most critical parameters
governing long-term creep deformation behavior of soft marine soil.

Keywords: creep; soft marine soil; macroscopic; mesoscopic; directional probability entropy

1. Introduction

Soft marine soil is a complex multiphase mixture with unique grain composition,
organic matter content, and mechanical properties. Soft marine soil has high water con-
tent [1], relatively low shear compressive strength, high pore ratio [2,3], and rheological
characteristics [4]. At present, the construction of large engineering structures (e.g., offshore
platforms [5], soft ground [6], artificial islands) faces great challenges when soft soil is
encountered. In particular, the strain on soft soil increases with time under condition of
constant stress (i.e., “creep”) [7]. Soft marine soil creep could potentially threaten the safety
of engineering structures. Thus, understanding the mechanical behavior of soft marine soil
is of critical importance for the safety of engineering structures [8,9].

The macroscale mechanical properties of soft marine soil are largely determined
by the unique mesoscopic characteristics of soil [10]. Currently, mesoscopic structure
of soft marine soil is mainly characterized using mesoscopic techniques (e.g., scanning
electron microscope and optical microscopy techniques) employing both qualitative and
quantitative analysis [11,12]. For example, soil particle orientation and arrangement can
be characterized using a scanning electron microscope combined with computer image
processing [13].

The study of the creep of soft soil can also be extended to mesoscopic scale [14]. By
introducing a meso-structure model of soft marine soil and the multifractal characteristics
of pores into fractal theory, the relationship between the characteristics of soft marine soil
meso-structure and external load on the multifractal spectrum can be established. Theoreti-
cal approaches to modeling creep behavior of soft soil to understand the characteristics of
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its mesoscopic structure can be classified as empirical and semiempirical [15–17]. How-
ever, current theoretical models remain limited in ability to reproduce the experimentally
observed creep deformation behavior of soft marine soil, as they do not take into account
the evolution in mesoscopic structure.

At present, some studies on the creep or soft soil use the entropy method [18]. In this
study, the meso-structure of soft marine soil under creep conditions is obtained through the
evolution process of directional probability entropy, distribution dimension, porosity, and
pore ratio under stress. Then, a theoretical creep model based on the directional probability
entropy is established to describe the macroscopic mechanical behavior of soft marine soil
as a result of meso-structure evolution over time. The model couples macroscopic and
mesoscopic creep of soft marine soil based on directional probability entropy. Finally, the
model is compared with the experimental data to determine its reliability.

2. Materials and Methods
2.1. Macroscopic and Mesoscopic Creep Model for Soft Marine Soil

The macroscopic engineering of soft marine soil is greatly influenced and controlled by
its meso-structure, and the complex physical and mechanical properties of soft marine soil
control its meso-structural characteristics. Soft marine soil creep is the external reflection of
change in soil structure, so understanding the mesoscopic structure of the soft marine soil
is important to elucidate its creep behavior.

The evolution law of soft marine soil structure and stress was studied by extracting
the meso-structure parameters of soft marine soil during the creep. The quantitative rela-
tionships between porosity, porosity ratio, pore distribution, directional probability entropy
with pore stress distribution were also determined. A schematic diagram describing the
coupled macroscopic and mesoscopic creep model for soft marine soil is shown in Figure 1.
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Figure 1. Schematic diagram describing the developed coupled macroscopic and mesoscopic creep
model for soft marine soil.

2.1.1. Modeling Mesoscopic Structure of Soft Marine Soil

The characteristics of pore, particle, and morphology can be used to describe the
mesoscopic structure of soft marine soil [11]. Pore characteristics can in turn be described
by pore ratio, porosity, number of pores, and average area of pores. Porosity, which reflects
the degree of looseness in the soil structure, can be obtained from a mesoscopic structure
image and calculated using the ratio between the total pore area and the total image area.
Particle characteristic parameters include particle number and average area of particles.
The average area of particles can be defined as the ratio of the total particle area to the
number of particles, and reflects the size of the solid particle area inside the soil.

The characteristics of mesoscopic morphology are determined by shape factor, direc-
tional probability entropy, and fractal dimension distribution. The shape factor, which
represents the deviation of the particle shapes from a standard shape, depends on flatness,
shape coefficient, and roundness. The shape coefficient F can be expressed by C/S, where C
is the circumference equal to the area of the particles or pores and S is the circumference of
the particles or pores. With increase in the value of shape coefficient, the shape of a particle
or pore approaches a circle.
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In the study of soft marine soil meso-morphological characteristics, a change in the
distribution intensity of a unit in a certain direction, is given by the directional distribution
frequency Pi(α) of the unit of location i in location n within the range of 0~180◦:

pi(α) =
mi
M
× 100%, (1)

where mi is the long-axis direction of the elliptic element in location i, M is the number of
units or pores, and α is the direction range, the value ranges from 0◦ to 180◦.

Therefore, directional probability entropy (Hm) can be used to represent the order of
mesoscopic structural elements in soft marine soil:

Hm = −
n

∑
i=1

pi(α) logn pi(α). (2)

Directional probability entropy reflects the degree of particle arrangement. A low
directional probability entropy value indicates good alignment of the particles in the ar-
rangement. The directional probability entropy is closely related to some other mesoscopic
parameters of soft marine soil.

In addition to the above mesoscale expression methods, the following mesoscale pa-
rameters are also common in mesoscale studies. The capacity dimension is used to describe
the distribution of the particle or pore fractal dimension in geotechnical engineering [19].
In a mesoscopic soil image, multiple particles along a square image with side length a are
segmented into dimensions (L/a) × (L/a) along an orthogonal grid, and the grid contains
particles (or parts of particles) of a total of N(a). Thus, a should be changed within a
certain range to obtain corresponding sequence values, such as N(a1), N(a2), N(a3) . . .
N(an). Therefore, the fractal dimension (Dd) of the soil particle or pore distribution can be
expressed as:

Dd = −lim
a→0

ln N(a)
ln a

= −k, (3)

where k is the edge length and the slope of the linear part of the logarithm function of the
sequence value.

Fractal dimension of distribution can comprehensively reflect the proportion and
distribution of pores or particles. Generally, a small fractal dimension indicates the particles
are more chaotic and loosely distributed in the soil.

2.1.2. Modeling Macroscopic Creep Deformation of Soft Marine Soil

In this study, the creep deformation behavior of soft marine soil resulting from the
interaction of elasticity, viscosity, and plasticity was modeled using the Nishihara model.
The Nishihara model is a typical viscoelastic plastic model developed based on the Kelvin
model and Bingham model [20].

The Kelvin model is composed of spring elements and sticky pot elements in parallel [20].
Under one-dimensional condition, creep strain can be expressed as:

ε =
σ

E1

(
1− e−

E1
ϕ1

t
)

, (4)

where σ and ε are the stress and strain, respectively, at a point in the soil, E1 is Kelvin
modulus of elasticity, ϕ1 is the Kelvin coefficient of viscosity, and t is time.

Based on the Kelvin model, the creep strain initially increases rapidly and then
gradually decreases to zero (i.e., creep strain remains constant).

The Bingham model is a typical viscoelastic plastic model composed of springs, Saint-
Venant bodies, and clay pots [20]. Under a one-dimensional condition, creep strain can be
described as:

ε =
σ

E0
+

〈
σ− σ0〉

ϕ2
t, (5)
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where, E0 is the modulus of elasticity, ϕ2 is the Bingham viscosity coefficient, and σ0 is the
critical stress.

Equation (5) indicates that, initially, the soil undergoes elastic deformation when the
stress level is relatively low. With increase in strain over time, the viscoplastic deformation
behavior can be seen.

Under a one-dimensional condition, the Nishihara model can be described as:

ε =
σ

E0
+

σ

E1

(
1− e−

E1
ϕ1

t
)
+

〈
σ− σ0〉

ϕ2
t, (6)

such that, when σ < σ0, only the first two terms are retained on the right side of the equation.
Of course, the model can also be simplified by making a = σ/E0, b = σ/E1, c = E1/ϕ1, and
d = (σ − σ0)/ϕ2.

2.1.3. Developing Coupled Macroscopic and Mesoscopic Creep Model of Soft Marine Soil

If directional probability entropy is used as the bridge between macroscopic param-
eters and mesoscopic parameters, the relationship between each parameter value in the
model and directional probability entropy can be obtained by fitting the experimental
data. According to these relations and experimental results, the coupled macroscopic and
mesoscopic creep model of soft marine soil can be obtained.

Using the Nishihara model (Equation (6)), the relationship between elastic modulus
and viscosity coefficient with directional probability entropy can be established; that
is, E0 = f 0(Hm), E1 = f 1(Hm), ϕ1 = f 2(Hm), and ϕ2 = f 3(Hm). In this way, macroscopic
parameters and mesoscopic parameters can be combined to form a coupled macroscopic
and mesoscopic creep model of soft marine soil (when σ < σ0, it can be expressed as
Equation (7); when σ > σ0, it can be expressed as Equation (8)):

ε =
σ

E0(Hm)
+

σ

E1(Hm)

(
1− e

− E1(Hm)
ϕ1(Hm)

t
)

, (7)

ε =
σ

E0(Hm)
+

σ

E1(Hm)

(
1− e

− E1(Hm)
ϕ1(Hm)

t
)
+

σ− σo

ϕ2(Hm)
t. (8)

Thus, a coupled macroscopic and mesoscopic creep model of soft marine soil is
obtained. The contents that remain to be determined in this model include E0 = f 0(Hm),
E1 = f 1(Hm), ϕ1 = f 2(Hm), and ϕ2 = f 3(Hm). Firstly, macro and meso parameters of soft
marine soil creep are obtained from experiments, then these functions can be obtained
through sorting.

2.2. Experimental Study
2.2.1. Preparing the Specimens

The sampling place was the Pearl River Estuary. The soil of the sampling site is
soft marine soil. A total of 11 samples were taken according to standard of geotechnical
test methods (GB/T 50123-1999). As shown in Figure 2a, the samples taken were gray-
black saturated soft muddy clay, with a height of 20 mm and a diameter of 61.8 mm for
each sample. They were then tested at the Geotechnical Engineering and Information
Technology Research Centre, Sun Yat-sen University. The experimental results indicate that
the density of the specimen is 1.74 g/cm3, the moisture content is 42.8%, the porosity ratio
is 1.175, the saturation is 97%, the liquid limit is 35.8%, and the plastic limit is 21.6%.
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2.2.2. Measuring Macroscopic Creep Deformation of Soft Marine Soil

A prepared soil sample was firstly cut with a ring knife to remove excess soil, then
wetted with water and covered with the filter paper on both sides of the sample before
being weighed. The soil sample was put into the consolidation apparatus with permeable
stones placed above and below the soil. As shown in Figure 2c, soft marine soil creep was
tested using a consolidation apparatus. Creep deformation of soil samples was studied
under 0, 30, 50, 100, 150, 200, 250, 300, 350, 400, and 450 kPa compressive loads, respectively.
The macroscopic parameters required for sample determination are ε, E0, E1, ϕ1, and ϕ2,
and these parameters are all obtained by creep experiment.

2.2.3. Measuring Mesoscopic Structure of Soft Marine Soil Samples

The sample used for soft marine soil mesoscopic structure tests is thin section. After
the creep test (the next section), about 2 g of soil sample was cut from the middle of the
soil sample. The mesoscopic soil samples were freeze-dried in a vacuum and placed in the
EVO-MA10(W) scanning electron microscope (SEM, Figure 2b) of the Instrumental Anal-
ysis and Research Center of Sun Yat-sen University. The appropriate magnification was
selected to obtain the meso-structural images. Then, the image is processed by gray scale
and binarization, and the binarization image is obtained (for the processing of grayscale
and binarization, refer to References [21,22]). The Photoshop software was used to mea-
sure the number, diameter and area of particles and pores, and calculate the area and
perimeter of each particle to get the corresponding particle shape coefficient value. Fi-
nally, fractal dimension and directional probability entropy were calculated according to
Equations (1)–(3).

3. Results and Discussion
3.1. Mesoscopic Structure of Soft Marine Soil
3.1.1. Extracting Mesoscopic Parameters during Soft Marine Soil Creep

To eliminate the influence of uneven brightness on an image, the image needs to be
firstly treated before processing. Then, mesoscopic structural parameters were measured
from soft marine soil images through image binarization, which converts greyscale images
into black and white images with white particles and black pores. An image of the soil
meso-structure before and after binarization is shown in Figure 3.
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Figure 3. Image of mesoscopic parameter extraction: (a) 20,000× image before binarization; (b) 20,000×
image after binarization; (c) 3000× image before binarization; (d) 3000× image after binarization.

3.1.2. Measuring Change in Pore Characteristics of Soft Marine Soil

The pore characteristic parameters were extracted from the processed images. Figure 4
indicates the porosity, pore ratio, pore number, and average area of pores under different
stresses, with corresponding standard deviations of 5.4316, 0.1975, 68.5165, and 6.9404,
respectively. The figure shows that with the increase in stress, the pore number generally
increased whereas the average area of pores decreased. This result is due to the occupation
of large pores by soil particles under high stress.
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3.1.3. Measuring Change in Particle Characteristics of Soft Marine Soil

Particle characteristic parameters were extracted from the processed images. The
graph of particle number and average area of particles with stress is shown in Figure 5, and
was used to analyze the change in particle characteristic parameters with increasing stress.

It can be seen that the number of particles increased with increasing stress, which is
similar to the trend in the number of pores, while the average area of particles decreased
with increasing stress. These results are due to the fact that, under the action of stress,
particles break into several smaller particles. Although the area occupied by the particles
per unit area increased, the average area of particles decreased. When stress on the soil
is greater than 300 kPa, the number of particles increased steadily as stress increased. A
similar relationship between the average area of particles and stress is also seen. The
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average area of particles increased with stress, which reflects the small particles in the soil
tending to aggregate and form large particles. The decrease in average area of particles
with the increase in stress demonstrated that large particles are crushed and become small
particles. Therefore, under a relatively low stress level, particle breakage was not obvious
while the small particles were compressed together into large particles. In contrast, under
a relatively high stress level, large particles were crushed and became small particles, and
therefore the number of particles increased steadily with stress.
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3.1.4. Directional Probability Entropy of Mesoscopic Soil Characteristics

Based on the morphological parameters obtained from image processing, Figure 6a
indicates the stress-dependent average particle shape coefficient and fractal dimension of
pore distribution. Figure 6b indicates the fractal dimension of particle distribution and
probability entropy of particle orientation under different stresses.
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The study of the change in average particle shape coefficient and fractal dimension of
pore distribution under the stress showed that with increase in stress, the fractal dimension
of the pore distribution decreased and gradually tended to stabilize with increases in
average particle shape coefficient. This indicates that the density of the pore distribution in
the soil gradually decreased, the porosity in the soil decreased, and the compactness of the
soil gradually increased during the creep process. Under the action of stress, soil particles
were squeezed into the pore space with time, leading to a less dense distribution of pores.

In addition, the study of the particle orientation angle distribution (Figure 7) and ori-
entation probability entropy shows that undisturbed soil particles were initially not clearly
systematically arranged. However, under a high stress level, the angular distribution of
particles mainly concentrated toward the directions of 0~30◦ and 170~180◦, indicating that
the particle arrangement changed when the long axes of the particles became perpendicular
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to the direction of the applied stress. The entropy of the orientation probability of the
structural units in the original state of the soil sample was the highest, suggesting that
the orientation and arrangement of soil sample particles in the original state were most
variable. With the increase in stress, directional probability entropy of particles decreased
and gradually stabilized, and fractal dimension of particle distribution increased. This
result indicates that during soft marine soil creep, particle orientations transition from
being chaotic to orderly, reflecting a more regular particle arrangement.
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3.1.5. Mesoscopic Structure-Stress Evolution Model of the Soft Marine Soil Creep Process

The purpose of this section is to quantify the relationship between mesoscopic parameters
and stress (Figure 8). The reason these groups of data were selected for fitting is that the data
points have obvious regularity. There is a strong negative linear relationship between porosity
and stress (R2 = 0.9800) as well as between pore ratio and stress (R2 = 0.9584). In addition, there
is a nonlinear relationship between fractal dimension of the pore distribution and stress (fitted
equation: Dd = 8.335 × 10−7σ2 − 6.54 × 10−4σ + 1.8803) as well as probability entropy of
particle orientation and stress (fitted equation: Hm = 8.03 × 10−7σ2 − 5.20 × 10−4σ + 0.9603).
The results show that the creep of soft marine soil is caused by directional redistribution
of particles under stress, which includes crushing, moving and rotating of particles under
stress. The porosity ratio and porosity represent the number of pores in the soil and reflect
the consolidation of the soft marine soil structure. Directional probability entropy reflects
the degree of ordering in the particle arrangement. The fractal dimension of the distribution
is a comprehensive reflection of the proportion and distribution of pores or particles.
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Based on the results in Figure 8, the nonlinear relationship between the fractal di-
mension of the pore distribution (Dd) and stress, as well as probability entropy of particle
orientation (Hm) and stress, can be described as:

Hm = m1σ2 + m2σ + m3, (9)
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Dd = d1σ2 + d2σ + d3, (10)

where m1, m2, m3, d1, d2, and d3 are fitted constants.
Of course, the above equations can also be obtained by the relationship between

porosity or pore ratio and stress, which will not be studied in this study.
The porosity and pore ratio can reflect the microstructure of soft marine soil. However,

the directional probability entropy of particles is a comprehensive parameter that reflects
the distribution of particles, which reflects not only the degree of particle arrangement but
also the creep mechanism of soft marine soil from a mesoscopic point of view. The effects of
stress on porosity, porosity ratio, fractal dimension distribution, and directional probability
entropy can be quantified. To summarize, in this section the directional probability entropy
expression of soft marine soil was obtained according to the mesoscopic parameters.

3.2. Macroscopic Parameters of Soft Marine Soil

Figure 9 indicates the results of some representative creep experiments (the curve for
vertical loads greater than 200 kPa is consistent with the trend of 200 kPa). The values of
parameters a, b, c, and d can be firstly obtained by fitting experimental data. The fitted
results are shown in Table 1. The values of the elastic modulus, Kelvin elastic modulus,
Kelvin viscosity coefficient, and Bingham viscosity coefficient under different stresses
obtained for the soft marine soil creep model are shown in Table 2, using the relationship
in Equation (6).
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Table 1. Parameters of the fitting equation at each stress level.

Stress/kPa a/×10−2 b/×10−2 c/×10−2 d/×10−2 R2

30 0.1812 0.3947 8.073 / 0.9463
50 0.7351 0.5004 5.667 / 0.9276

100 1.3030 0.6177 5.150 / 0.9735
150 4.3240 0.8801 1.910 0.0340 0.9922
200 5.1160 2.4720 6.734 0.5749 0.9957

Table 2. Soft marine soil creep model parameters at each stress level.

Stress/kPa E0/× kPa E1/× kPa ϕ1/× kPa ϕ2/× kPa

30 16,556.29 7600.71 1004.26 /
50 6801.80 9992.01 1763.19 /

100 7674.60 16,189.09 3143.51 /
150 3469.01 17,043.52 8923.31 23,564.07
200 3909.30 8090.61 1201.46 21,742.91

3.3. Coupled Macroscopic and Mesoscopic Creep Model for Soft Marine Soil

Using the data in Table 2 and Equations (6) (a = σ/E0, b = σ/E1 and c = E1/ϕ1) and (9),
and combination to quadratic formula, the corresponding equations to describe the elastic
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modulus, Kelvin elastic modulus, Kelvin viscosity coefficient, Bingham viscosity coefficient,
and directional probability entropy in the soft marine soil creep model were obtained:

E0(Hm) = h11H2
m + h12Hm + h13, (11)

E1(Hm) = h21Hm
2 + h22Hm + h23, (12)

ϕ1(Hm) = h31Hm
2 + h32Hm + h33. (13)

According to Table 1, Table 2, and Equation (9), the above parameters were obtained:
h11 = 0.0102, h12 = −3.0044, h13 = 244.16; and h21 = −0.0150, h22 = −3.5590, h23 = −34.44;
and h31 = −0.0237, h32 = 5.5168, h33 = −168.42.

Finally, obtained values of the parameters were substituted into Equation (7) (these
functions can be substituted into Equation (8) for a similar result) to obtain a coupled
macroscopic and mesoscopic creep model for soft marine soil based on directional proba-
bility entropy; that is, Equation (14) to predict the creep curves of soft marine soil under
different stress levels:

ε =
σ

h11H2
m + h12Hm + h13

+
σ

h21Hm2 + h22Hm + h23

(
1− e

− h21 Hm2+h22 Hm+h23
h31 Hm2+h32 Hm+h33

t
)

, (14)

where, Hm = 8.03 × 10−7σ2 − 5.20 × 10−4σ + 0.9603. The innovation of these equations is
that the relationship between macroscopic creep and mesoscopic structure is established
by using the direction probability, and a coupled macro-meso creep model of soft marine
soil is obtained.

Combined with the above research on the mesoscopic structure and macroscopic
parameters of soft marine soil, some parameters of soft marine soil (h11, h12, h13, Hm, etc.)
were obtained and substituted into Equation (14) to obtain a creep model of soft marine
soil. The model was then compared with the actual experiment. Here, Equation (14) is
a coupled macro- and meso-creep model established according to the variable Hm. Of
course, the model can also be established according to Dd; the steps are consistent with
those described in this study, which will not be repeated here.

Taking the settlement data of soft marine soil subgrade of an expressway near the
Pearl River Estuary in South China as an example, the developed coupled macroscopic
and mesoscopic creep model for soft marine soil was verified.

3.4. Verification and Sensitivity Analysis of Coupled Macroscopic and Mesoscopic Creep Model

Figure 10a compares the time-dependent settlement predicted by the developed
coupled macroscopic and mesoscopic creep model and measured data. The settlement data
on the stratum surface at the center of the subgrade was used to validate the model. The
stress of soft marine soil at the center of the subgrade is about 300 kPa under normal service
conditions, which is used in Equation (14) to calculate the strain value of the creep model.
The relative errors between the settlement from the creep model and the measured data are
shown in Table 3. The table shows that model predictions agree with the settlement data
reasonably well.

After validation, the developed model was implemented to predict the long-term
deformation behavior of the soft marine soil under a stress of 200 kPa, as shown in
Figure 10b. The results show that the settlement of soft marine soil took a very short period
of time to reach to equilibrium, and the results were consistent with that in Figure 9. They
also show that the creep effect of the new model is very close to that of the actual soft
marine soil.
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Table 3. Relative errors between the measured and modeled settlement.

Serial Number Error (%) Serial Number Error (%) Serial Number Error (%)

1 0.00 10 0.00 19 6.89
2 10.08 11 1.88 20 8.65
3 3.46 12 6.26 21 8.70
4 0.00 13 13.56 22 2.44
5 8.69 14 4.63 23 1.78
6 12.49 15 1.51 24 3.15
7 7.48 16 4.70 25 3.44
8 10.07 17 5.16 Average Error 5.37
9 5.53 18 3.74

In order to understand the sensitivity of the creep model to macro and meso pa-
rameters, partial derivatives of Equation (14) with respect to σ and Hm were obtained
as follows: 

∂ε
∂Hm

= − σ·E0(Hm)′

E0(Hm)2 −
σ·E1(Hm)′

E1(Hm)2

(
1− e

− E1(Hm)
ϕ1(Hm)

t
)

+ σ
E1(Hm)

e
− E1(Hm)

ϕ1(Hm)
t · E1(Hm)′ ·ϕ1(Hm)−E1(Hm)·ϕ1(Hm)′

ϕ1(Hm)2 t

∂ε
∂σ = 1

E0(Hm)
+ 1

E1(Hm)

(
1− e

− E1(Hm)
ϕ1(Hm)

t
) . (15)

The absolute value of the partial derivative was calculated according to Equation (15),
as shown in Figure 11 (the curves in the figure were calculated based on t being 5 and 10,
respectively; when t takes on other values, the relationship between the curves was similar
to that in Figure 11). The absolute value of ∂ε

∂Hm
is always greater than the absolute value

of ∂ε
∂σ ; thus, it can be seen that the sensitivity of the creep model to Hm is greater than its

sensitivity to σ. It can also be seen that the sensitivity of the creep model to mesoscopic
parameters is greater than its sensitivity to macroscopic parameters.
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4. Conclusions

In the present study, a coupled macroscopic and mesoscopic creep model of soft
marine soil was established, and its reliability verified by experimental data. Finally, the
model was applied to predict the long-term deformation characteristics of soft marine soil.
The following discusses some of the major findings.

(1) With the increase in stress, pore numbers generally increase whereas the average area
of the pores decreases. There is a strong negative linear relationship between porosity
and pore ratio with stress, whereas the relationships between fractal dimension
of pore distribution and probability entropy of particle orientation with stress are
generally nonlinear. In addition, the relationship between macroscopic parameters
and directional probability entropy conforms to that of a quadratic equation.

(2) A coupled macroscopic and mesoscopic creep model of soft marine soil based on
directional probability entropy was established. The soft marine soil model can
reproduce the experimental observations and predict long-term creep behavior of
soil, and its sensitivity to mesoscopic parameters was greater than its sensitivity to
macroscopic parameters.

(3) The results of this study illustrate the influence of creep of soft marine soil on subgrade
damage from macroscopic and mesoscopic perspectives. This provides a theoretical
basis of the design and construction parameters determination and optimization of
similar coastal engineering involving soft marine soil subgrade. The research results
are also helpful to determine the long-term deformation of similar subgrade.
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