
Journal of

Marine Science 
and Engineering

Article

Cost-Effective Design of Port Approaches Using Simulation
Methods Based on the Example of a Modernized Port in
the Ustka

Kinga Łazuga 1,* , Nguyễn Minh Quý 2 and Lucjan Gucma 1

����������
�������

Citation: Łazuga, K.; Quý, N.M.;

Gucma, L. Cost-Effective Design of

Port Approaches Using Simulation

Methods Based on the Example of a

Modernized Port in the Ustka. J. Mar.

Sci. Eng. 2021, 9, 211. https://

doi.org/10.3390/jmse9020211

Academic Editor: Jakub Montewka

Received: 18 January 2021

Accepted: 12 February 2021

Published: 18 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Navigation, Maritime University of Szczecin, 70-500 Szczecin, Poland; l.gucma@am.szczecin.pl
2 Faculty of Hydraulic Engineering, National University of Civil Engineering (NUCE), Giai Phong 55,

Hanoi 100000, Vietnam; quynm@nuce.edu.vn
* Correspondence: k.lazuga@am.szczecin.pl

Abstract: Port design and approaches are usually carried out using real-time computer simulation
methods for ship manoeuvring. So-called ship real-time simulation methods are relatively expensive,
especially in terms of survey time. Several real-time simulation scenarios carried out by masters
and pilots are usually performed, with several simulation attempts in each scenario. Each such
attempt can last up to one hour, which, with a large number of scenarios, prolongs the research and
increases its cost. Particularly time-consuming is the repetition of many scenarios with alternative
solutions for infrastructure development and in various hydrometeorological conditions. To reduce
the time-consuming of the tests, a new two-stage method was used to design the target approach on
the modernized Port of Ustka. In the first stage, the simulations were carried out with significantly
reduced floating navigation marking, and in the second stage with the target marking. Moreover,
the so-called “Soft-Bank” method was introduced, i.e., the effects of a collision with the seabed and
infrastructure were excluded. Such a solution leads to significant time benefits in conducting research
and at the same time does not reduce confidence in the results obtained.

Keywords: ship manoeuvring; design of ports; real-time ship manoeuvring simulations; naviga-
tion safety

1. Introduction

The major aim of a case study [1] which is the illustration to presented Soft-Bank
method was to design the new approach and breakwater solution for a general cargo
ship of the following parameters: L = 133 m, B = 20 m, T = 7.9 m utilizing real-time ship
manoeuvring simulation methods for the modernized Ustka Port located in the middle of
the Polish coast. Additionally, the conditions of safe operation of port for the maximal vessel
will be established. The main aim of the Ustka Port case study that was concerned with:

1. Determination of:

• average ship dimensions and its characteristics like the power of the main engine,
rudder type and its area or power of bow thruster,

• safety waterway parameters needed for the safe operation of maximal ships,
• turning place diameter concerning its shape.

2. Determination of safety conditions of port operation for:

• admissible meteorological conditions for a given kind of ships and manoeuvres,
• other navigational conditions and limitations like the presence of other ships on

berths, use of position fixing systems on the approach, navigational markings,
and vessel traffic service.

3. Determination of manoeuvring procedures during the entrance, berthing, un-berthing,
exit port, and turning for different kinds of ships and propulsion systems.
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4. Determining the conditions of ship mooring inside the port.

The above objectives are the objectives of the Ustka Port design case study that was
the example of Soft-Bank method. The main objective of the paper is to present that method
as the part of optimal port design strategy.

The major problem with designing the simulation experiment is the number of simu-
lation trials (one trial is defined as one simulation run in given conditions), which have to
be done within experiments. Each simulation trial is realized in real-time and it sometimes
lasts more than half an hour in the presented case study.

The simulation trials are performed in groups (series) in the same controllable envi-
ronmental condition but with different captains/navigators performing the simulation to
achieve statistical variability of human (navigator) influence. The whole study must cover
selected wind and current conditions. In single simulation series usually, 15 simulation tri-
als are performed, which causes the design process is highly time-consuming. For example,
in the Ustka case study, the 6 series are foreseen every 15 trials which make 90 simulation
runs, each lasting more than 30 min in total which makes in total more than 60 simulation
hours. When the infrastructure does not exist (like in the presented study) sometimes it
needs to perform simulation in different infrastructure layouts, which again multiply the
simulation time by the number of infrastructure solutions (proposed layouts).

In such cases, the simulation method is one of the most suitable to solve this research
task. Several unsolved problems when ships outgrow the capacity of port infrastructure
have been identified by Perkovic et al. [2]. The guidelines [3–6] also address the design
issue. In parallel, the national and regional policy was identified [7]. Ports are also the
subject of strategic risk assessments [8–11]. From the other side dedicated systems are
used for met-ocean conditions monitoring near the ports and specialized quays [12]. The
general rules of designing the ports and waterways for ships are presented in [13–15].
Methods applied in this study could be used also for other aspects of navigational safety
like designing port regulations [16].

The methodology design of real-time simulations for waterway and port design
purposes are presented in the latest PIANC guidelines [3,4]. The comprehensive study in
this field, especially for the distribution of ship positions on the waterway, is presented by
Irribaren [17]. Some general guidelines are presented in [18,19]. There are not many new
types of research dealing with this topic mostly due to the process is highly related to the
given case study. The design process also depends on the experience and knowledge of the
simulation team. This is remarkable to the maritime simulation sector wherein compared
to other branches of transportation like aviation or road engineering, there is still some
freedom and art inside the process itself. The expert knowledge supported by pilots here is
usually the key factor for conducting the simulations based on their previous design.

Benedict et al. [20] developed the computer-based support for the evaluation and
assessment of ship handling simulator exercise results but dedicated mostly for training
purposes of ship handling simulators.

Very useful in the navigator decision-making process are ship predictors, which are
also quite common onboard usually achieved within ECDIS environment [21].

Zhang [22] presented a very comprehensive study on the assessment of the com-
petence of seafarers trained on ship handling simulators in the scope of Bridge Team
Management and implementing the International Convention on Standards of Training
Certification and Watchkeeping for Seafarers (the STCW Convention).

Sarioz and Narli [23] presented the results of a real-time ship manoeuvring simulation
study and its assessment intended to investigate the manoeuvring performance of large
tankers in the Bosporus.

Inoue [24] developed a quantitative model for evaluating the difficulty of ship han-
dling caused by a restricted manoeuvring area or by traffic congestion or by a combination
of both. It includes acceptance criteria based on the mariner’s perception of safety.

Lataire et al. [25] presented the systematic investigation of ship manoeuvring in
restricted waters is performed by Flanders Hydraulics Research (FHR) and Ghent Uni-
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versity (UGent) through five different simulations techniques including real-time human-
controlled and fast time. Another Classification of ship maritime simulators is presented
by Cross and Olafsson [26].

Donatini et al. [27] described the results of a survey performed by the authors to
assess how hydrometeorological conditions are presently modelled in ship manoeuvring
simulators. They found that while mathematical models for the manoeuvring behaviour of
ships are well documented in the literature, an overview concerning hydrometeorological
modelling does not exist yet. The results are based on a wide questionnaire of simulator
end users.

Several types of research were made in the field of effects on the ship models imple-
mented within ship handling simulators like wind [28], waves [29], ice, and current [30].
Delefortrie and Vantorre [31] presented the overview of research and practical applications
of ship’s behaviour and modelling in muddy areas.

Fast-time simulations (FTS) are the widely accepted preliminary study method in
design of ports and its approaches [3–5]. The recent state of the art in this area is presented
by the Benedict at all [32]. The drawbacks of FTS are the autopilot capabilities which is still
far from human control and problems with automatic tug control which are the usual tool
to enhance manoeuvres in ports which also was the case in the presented example.

2. The Ustka Port Case Study

Ustka (Figure 1) is a medium Polish port located on the Baltic Sea serving around
100 merchant ships per year with fishing and pleasure craft traffic. The maximal length of
ships before the presented research was L = 60 m, B = 12 m, and T = 4.0 m with several
operational and weather restrictions.
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Figure 1. Ustka Port—the present layout.

The preliminary design of the breakwater layout is presented in Figure 2 (presented in
yellow). After the extensive wave development inside port analysis, it was found that the
wave was too high inside the port with NE winds and it was decided to investigate also the
longer version of the breakwater (Figure 2 presented in red) together with the decreasing
the entrance width and some works inside the port to reduce wave development inside
the port.
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2.1. Selected Elements of Ship Mathematical Model Creation

The values of hydrodynamic coefficients of particular forces and moments have been
predetermined according to published literature data from hull model tests (surface and
underwater part), propeller, and stern rudder, streamer rudder of similar dimensions and
shapes as the “characteristic” ship. In the case of gross mismatch, appropriate extrapolation
of test results to the technical and operational conditions of the model ship has been applied.
This was all the more important because not all coefficients can then be optimized (tuned,
identified) according to the measurements carried out during the nautical manoeuvre tests
of the tested craft or similar. The models are usually identified based on sea trials of a
modelled ship or similar ships according to the procedure presented by Artyszuk [33]. The
model used for Ustka Port development was validated based on four following groups
of tests:

1. Speed tests
2. Braking and acceleration tests
3. Circulation tests (Figure 3)
4. Zig-Zag tests (Figure 3).
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Therefore, the model represents the average ship with the average parameters for
typical Baltic Sea general cargo vessel of L = 133 m, B = 20 m and T = 7.9 m. The model
was created on the base of several available sea trials of similar ships which results was
averaged and used for fitting the hydrodynamic coefficients. The selected model sea trials
i.e., turning circle and 20◦-20◦ Zig-Zag manoeuvre are presented in Figure 3.

2.2. Selected Elements of Environment Modelling and Conditions Selection during Tests

The objective of the research: Research on the possibility of entrance and exit of a
general cargo ship of L = 133 m, B = 20 m, T = 7.9 m in the modernized port of Ustka.
Modernization of external breakwaters and construction of an internal port.

Breakwater system: The corrected arrangement of breakwaters according to Figure 2.
Ship parameters:
Type: General cargo, coaster. Lc = 133 m; B = 20.0 m; T = 7.9 m.
Propulsion: Right-hand conventional propeller, bow thruster typical power for

this vessel.
Indicative speeds: FA (Full Speed Ahead) = 12 kn, HA (Half Ahead) = 9 kn, SA (Slow

Ahead) = 6 kn, DSA (Dead Slow Ahead) = 4 kn.
Towing operation: One tug with a 20 tf of pull power.
Hydrometeorological conditions: Manoeuvres were performed for conditions without

wind and wave (as a reference and for a preliminary acquaintance of the ship and the
area by captains) and with wind 11 m/s (lower value of 6◦B), and 17 m/s (upper value of
7◦B) blowing from the north-western direction, which is the most unfavourable direction
for the entrance. For the exit and ships turning, the winds up to 11 m/s from the north-
western and north-eastern directions were assumed to be the most influential for the ship
during turning.

Wind cover by infrastructure was assumed (Figure 4). The steady wind (no gusts) was
used for the analysis.
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The height of the wind-wave (the direction following the wind direction) was assumed
equal: 0.9 m (wind 11 m/s) and 1.6 m (wind 17 m/s). The wave distribution is shown
in Figure 4.

Good visibility and daytime visibility were assumed, which results from the type of
simulator visualization.
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One-way traffic of ships has been assumed.
The weather conditions, especially the wind and water level changes were analysed

before planning the simulations. The influence of climate change is also considered as a
mean water level change and changes in the severity of strong winds. There are hydro-
and meteorological stations in the Ustka Port. The data were collected with the use of
this station and then after statistical analysis applied to the project and final solution. The
possibility of storm surges was included as a deterministic factor in the under-keel clearance
analysis as an additional reserve for storm surges and water level changes appropriate for
this region.

The selected wind conditions represent the one from most extreme to easiest in the
scope of ship manoeuvring. It is done before simulations by very careful planning the
experiment conditions. In this case, it was decided to consider the following conditions:
the close to extreme operation conditions, maximum average conditions, and zero wind
conditions. The selected wind directions are also considering infrastructure-related factors
like breakwater layout. The 20 years wind rose for Ustka is presented in Figure 5.
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The prediction of weather is important for the operational stage of the process of ship
entrance to the ports. Usually, ports use government regulated prediction platforms for
their operation. As an appropriate tool for predictions, the Ensemble Prediction Systems
(EPS) could be used. EPS are numerical weather prediction (NWP) systems that allow
estimating also the uncertainty in a weather forecast as well as the most likely outcome [34].
This technique is based on running the NWP model several times with slightly different
initial conditions [35]. Such a tool could be used also for hydrological problems like storm
surges [36,37].

2.3. The Detailed Sea Trials Performed and Their Conditions

Five simulation series have been planned, each representing typical manoeuvres under
different conditions, which have been selected to cause the greatest difficulty. The plan of
research is presented in Table 1. The individual simulation series represent manoeuvring
situations selected from the point of view of difficulty related to the operation of vessels in
this area, i.e., successively:

1. series 1, 2, and 3—entry to the port of general cargo vessel L = 133 m without rotation
and mooring. The purpose is to determine the parameters of the approach waterway
and the safety of entrance and mooring energy.



J. Mar. Sci. Eng. 2021, 9, 211 7 of 17

2. series 4, 5 and 6—entry from the general cargo carrier port L = 133 m with rotation. The
purpose is to define the parameters of the turning place, and waterways parameters
during ship’s departure.

Table 1. The plan of simulation research in Ustka.

No. Name of File Manoeuvre
Initial
Speed
(kn)

Wind
Speed (m/s)

Wave on the
Approach

(m)

No. of
Trials

1 1_L133_Wej_0

Entry into port
and mooring

on the
starboard side

6 no no 15

2 2_L133_Wej_NW11 as above 6 NW 11 0.9 15

3 3_L133_Wej_NW17 as above 6 NW 17 1.6 15

4 4_L133_Wyj_0
Unmooring,
turning and
leaving port

0 no no 15

5 5_L133_Wyj_NW11 as above 0 NW 11 0.9 15

6 6_L133_Wyj_NE11 as above 0 NE 11 0.9 15

3. Methods
3.1. Proposed Method of Reducing Cost and Time of Simulation Analysis

The major change in the typical method used for designing the breakwater and port
entrance in contrary to already existing methods [3–5,38] is the use of the so-called “Soft-
Bank” method (Figure 6). This methodology is as follows:

1. Determine design water depth considering ships draft and under-keel clearance
(H = 9.0 m in the presented study);

2. Design basic navigational aids with its minimum as possible number;
3. Design the navigable area without simulated embankments so no interaction between

the ship and embankments is simulated;
4. Display the area layout on the electronic chart and inform the Captains performing the

simulations that it is possible to passage the ship over the elements of infrastructure
only in justified by environmental conditions cases;

5. Execute simulations and analyse the results.
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The procedure is presented in Figure 6 is alike the standard port design procedure [3]
with the novel “Soft-Bank” module included.

It should be mentions that that in port and waterway design from ships manoeuvring
perspective other preliminary methods could be applied like:

1. Analytical methods like PIANC, ROM or Japanese;
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2. Statistical methods based on generalisation of simulation experiments;
3. Fast Time Simulations (FTS) method.

3.2. Real-Time Manoeuvring Simulation MethoD—Limited Task Simulator

The application of the real-time manoeuvring simulator with navigators (Captains
and Pilots) as the control element in the loop, as applied in this study, is supposed to be
the most reliable in port and waterways design studies [39]. There are several kinds of
simulators with various applications, from the most advanced full mission simulators to
limited task simulators. The latter was applied in the presented research. The simulator
has 2D display and was made by the Maritime University of Szczecin research team and is
described in [39,40]. The ship’s hydrodynamic model applied in this simulator is based
on detailed parameters of hulls, propulsors, and steering devices. External influences like
current, wave, shallow water, and collisions are modelled. Usually, depending on the
availability, the actual manoeuvring characteristics are applied for the model’s validation.
A special procedure for such validation is developed. The model of m/f Ustkamax used
in the presented research is created with the modular methodology where all effects like
hull hydrodynamic forces, propeller forces, and steering equipment forces together with
given external influences are modelled as separate forces, and finally they are summed as
perpendicular, parallel and rotational forces and later on movements [41].

The modular approach applied here for the ship manoeuvring simulator is presented
in Figure 7. The graphical interface of the model is based on 2D display similar to the
nautical chart (Figure 8). The interface includes also the data of ships basic parameters
(position, course, speed, rotational speed, etc.), mooring pier and coastline location, nav-
igational markings, soundings, external conditions information, tug steering interface,
and line controller, and other control elements of the model. The model is implemented
in Object Pascal with the use of Delphi™ environment and Visual C™ with the use of
C++ language. Limiting to the usual 3DOFs (the horizontal planar motion) or in some
application 4DOFs when the squat is included. The ship movement over the ground (thus
the so-called dynamic effect of the water current is introduced) is given by Artyszuk [41].
The crucial element in modelling is the verification of the ship’s hydrodynamic model [42].
Usually, the verification process is made until 10% or smaller error between model and
real ship data in the selected trials like turning trial, zig-zag, and stopping—acceleration is
achieved [39].

J. Mar. Sci. Eng. 2021, 9, 211 9 of 18 
 

 

on detailed parameters of hulls, propulsors, and steering devices. External influences like 
current, wave, shallow water, and collisions are modelled. Usually, depending on the 
availability, the actual manoeuvring characteristics are applied for the model’s validation. 
A special procedure for such validation is developed. The model of m/f Ustkamax used 
in the presented research is created with the modular methodology where all effects like 
hull hydrodynamic forces, propeller forces, and steering equipment forces together with 
given external influences are modelled as separate forces, and finally they are summed as 
perpendicular, parallel and rotational forces and later on movements [41]. 

The modular approach applied here for the ship manoeuvring simulator is presented 
in Figure 7. The graphical interface of the model is based on 2D display similar to the 
nautical chart (Figure 8). The interface includes also the data of ships basic parameters 
(position, course, speed, rotational speed, etc.), mooring pier and coastline location, navi-
gational markings, soundings, external conditions information, tug steering interface, and 
line controller, and other control elements of the model. The model is implemented in 
Object Pascal with the use of Delphi™ environment and Visual C™ with the use of C++ 
language. Limiting to the usual 3DOFs (the horizontal planar motion) or in some applica-
tion 4DOFs when the squat is included. The ship movement over the ground (thus the so-
called dynamic effect of the water current is introduced) is given by Artyszuk [41]. The 
crucial element in modelling is the verification of the ship’s hydrodynamic model [42]. 
Usually, the verification process is made until 10% or smaller error between model and 
real ship data in the selected trials like turning trial, zig-zag, and stopping—acceleration 
is achieved [39]. 

 
Figure 7. The modular model of ship manoeuvring for the port design that was applied in this 
study. 

Figure 7. The modular model of ship manoeuvring for the port design that was applied in this study.



J. Mar. Sci. Eng. 2021, 9, 211 9 of 17J. Mar. Sci. Eng. 2021, 9, 211 10 of 18 
 

 

 
Figure 8. The 2D GUI (Graphical user interface) of the simulation model (with ships movement 
control panel activated). 

3.3. Statistical Methods of Data Processing 
Despite the real-time ship simulators are now very widely used and hydrodynamic 

models are becoming increasingly accurate, without efficient statistical data processing, it 
is usually not possible to draw reliable conclusions from the experiments. For the simula-
tion data processing standard statistical models are proposed.  

The Method of Simulation Result Data Processing 
The most important safety factor is the horizontal area which is required for naviga-

tors to perform the safe manoeuvres [39,43]. Statistical processing of the simulation results 
allows the determination of the statistical parameters necessary to define a safe manoeu-
vring area (SMA). There are three specific values for the given waterway areas occupied 
by ships as the result of simulations. They are determined as (Figure 9): 
1. Maximum waterway area needed for manoeuvring ships (extreme ships positions in 

all trials), 
2. Average waterway area needed for manoeuvring ships (defined as mean SMA), 
3. Waterway area on the given confidence level (defined as SMA on a given confidence 

level). 

Figure 8. The 2D GUI (Graphical user interface) of the simulation model (with ships movement control panel activated).

3.3. Statistical Methods of Data Processing

Despite the real-time ship simulators are now very widely used and hydrodynamic
models are becoming increasingly accurate, without efficient statistical data processing, it is
usually not possible to draw reliable conclusions from the experiments. For the simulation
data processing standard statistical models are proposed.

The Method of Simulation Result Data Processing

The most important safety factor is the horizontal area which is required for navi-
gators to perform the safe manoeuvres [39,43]. Statistical processing of the simulation
results allows the determination of the statistical parameters necessary to define a safe
manoeuvring area (SMA). There are three specific values for the given waterway areas
occupied by ships as the result of simulations. They are determined as (Figure 9):

1. Maximum waterway area needed for manoeuvring ships (extreme ships positions in
all trials),

2. Average waterway area needed for manoeuvring ships (defined as mean SMA),
3. Waterway area on the given confidence level (defined as SMA on a given

confidence level).

The analysis of simulation results is to determine the parameters of the ship’s hori-
zontal safe manoeuvring area. In simulation trials, these parameters are determined by
the width of the ship’s manoeuvring area, i.e., the area occupied by a single ship during a
manoeuvre. The traffic lane (so-called PATH) is defined for a given ship and manoeuvre,
while the safe manoeuvring area (SMA) is a term given to different ships and various
manoeuvres (Figure 6). It can be seen from Figure 6 that the safe manoeuvring area (SMA)
extends beyond the available water area (AWA) and encroaches on the navigational danger
area (D), resulting in the need for some adjustments (e.g., dredging) to avoid potential
accidents. SMA defined in such way is probabilistic 2D area which includes ships hy-
drodynamics with external effects (wind, wave, tugs, etc), position systems errors, and
human-navigator performance during conducting the manoeuvre.
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A safe manoeuvring area is an area in which the probability of exit of the ship beyond
the AWA is at a relatively low level. In the port design studies, usually, 95% is applied in
typical ship operations and 99% in more critical operations such as in presence of passengers
of dangerous cargo or the existence of hard bottom [40]. The basic safe navigation condition
needs to satisfy the following dependency:

diα ≤ Di (1)

where:
Di—width i-th point of the waterway at the bottom for safe isobath,
diα—width of safe manoeuvring area on the given confidence level (1-α).
It should be noticed that the general population here has the infinite number of

variables of all possible simulation trials of the ship. The sample is defined as the series of
simulation trials conducted with an adequate number at the same conditions. The width of
the safe manoeuvring area of the ship is the range, which contains specified as a percentage
part (fraction) of the general population. It can be defined as:

diα = mdi + kασpi + kασli (2)

where:
mdi = mpi − mli (3)

or using the equivalent dependence in the form of:

diα = dipα − dilα (4)

for:
dipα = mpi + kασpi (5)

where:
diα—width of the safe manoeuvring area at i-th point of the waterway on the confi-

dence level equals to (1-α);
mdi—average of the safe manoeuvring area;
kα—factor dependent on the fraction of the general population, which should be

covered by estimation (for SMA 95% k = 1.96);
mli, mpi—mean of the maximum distance of ship’s extreme points on the port side

and starboard side of the waterway;
σli, σpi—standard deviations of the maximum distance of ship’s points to the port

and starboard from i-th point of the waterway;
dilα, dipα—width of the port and the starboard safe manoeuvre area at i-th point of the

waterway at defined confidence level (1-α).
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The presented approach leads to the probabilistic method of safe manoeuvring area
establishing is presented in Figure 10.
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3.4. Conducting the Research

Several simulation series have been planned and then conducted as an illustrative to
solve the port design problem:

1. Entrance and departure in no wind conditions (light conditions);
2. Entrance to the port with wind NW 11 m/s (moderate condition);
3. Entrance to the port with wind NW 17 m/s (severe condition);
4. Departure and turning manoeuvre in no wind;
5. Departure and turning manoeuvre with wind NW 11 m/s;
6. Departure and turning manoeuvre with wind NE 11 m/s.

The simulations according to the presented “Soft-Bank” methodology was made for
the ship approach only (series 1–3). The shading effect of wind and wave were included
in the simulation. Apart from the wind, the wave was modelled with a significant height
of 0.9 m (moderate condition) for 11 m/s wind speed and 1.6 m (severe condition) for
stronger winds. In total six experienced Captains were engaged to perform the simulations.
The fifteen ship passages were conducted for each simulation series, which make 75
simulation runs in total. The single entrance manoeuvre of the ship for “Soft-Bank” method
is presented in Figure 11.



J. Mar. Sci. Eng. 2021, 9, 211 12 of 17

J. Mar. Sci. Eng. 2021, 9, 211 13 of 18 
 

 

simulation runs in total. The single entrance manoeuvre of the ship for “Soft-Bank” 
method is presented in Figure 11. 

 
Figure 11. The single simulation passage—entrance and berthing in zero wind conditions. 

4. Results of Simulation Research and Discussion 
All simulations were conducted by qualified captains and pilots experienced in this 

type of vessel and manoeuvre. Simulation data were recorded and analysed. The analysis 
of the simulation results was carried out based on the horizontal safe manoeuvring area 
criterion at the 95% confidence level (SMA) typically used in marine operations [5,39] ac-
cording to the previously presented method. 

As it is presented in Figure 12. the navigational marking in “Soft Bank” method is 
reduced to a minimum—there is only one green buoy on approach to show the Captains 
the turning point but only in a very approximately manner. Figure 13 presents the results 
of a standard method (without “Soft-Bank”) with final navigational markings and with 
modelled embankments and canal effects. The explanation for Figures 12 and 13:  
• 95% is the Safe Manoeuvring Area (SMA) at a 95% level of confidence. 
• Mean is the average waterway area. 
• MAX is the maximal overbound area of all ships in series. 

Figure 11. The single simulation passage—entrance and berthing in zero wind conditions.

4. Results of Simulation Research and Discussion

All simulations were conducted by qualified captains and pilots experienced in this
type of vessel and manoeuvre. Simulation data were recorded and analysed. The analysis
of the simulation results was carried out based on the horizontal safe manoeuvring area
criterion at the 95% confidence level (SMA) typically used in marine operations [5,39]
according to the previously presented method.

As it is presented in Figure 12. the navigational marking in “Soft Bank” method is
reduced to a minimum—there is only one green buoy on approach to show the Captains
the turning point but only in a very approximately manner. Figure 13 presents the results
of a standard method (without “Soft-Bank”) with final navigational markings and with
modelled embankments and canal effects. The explanation for Figures 12 and 13:

• 95% is the Safe Manoeuvring Area (SMA) at a 95% level of confidence.
• Mean is the average waterway area.
• MAX is the maximal overbound area of all ships in series.

4.1. Comparison of Methods. Discussion

Table 2 shows channel widths obtained from different methods for two wind speeds.
It can be noted that in the case of the simulation method, the channel widths under severe
conditions may be smaller than under moderate conditions. This is because these ma-
noeuvres are performed by experienced pilots and captains and not autopilot or artificial
intelligence. Worse hydrometeorological conditions give fewer possibilities to manoeuvre
freely (including the choice of speed and adjustments) and to manoeuvre correctly navi-
gators have to do it very similar each time. In better hydrometeorological conditions, on
the other hand, a man has more possibilities and selects the settings more freely. This is a
common paradox when a man controls a ship. It should be noted that using analytical or
empirical methods like PIANC, this phenomenon does not occur and the worse the condi-
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tions, the more manoeuvring space is necessary. Knowing this phenomenon, waterway
designers use it by appropriately processing data from the simulation.
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The basic statistical parameters of the manoeuvring area namely: mean and standard
deviation are presented in Figure 14 for the designed approach waterway. The number
of sections is 250 and the section width is 5 m. It can be observed that the mean and
standard deviation is significantly lower for the standard method in comparison to the
“Soft-Bank” method. It is because of the design, after the first step, navigational marking
limits the waterway. Moreover, some changes in the waterway layout have been made
so the movement of the ship on the approach is more optimized. The green buoy on the
approach in “Soft-Bank” method (Figure 12) has been removed and the final layout of
navigational marking is proposed (Figure 13) that consists of the gate of red-green buoys
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and two green buoys marking the starboard side of approach waterway. Such a design
of waterways together with the navigational marking need an experienced marine traffic
engineer engaged in the process.

Table 2. Channel widths were obtained from different methods for two wind speeds.

No Methods Case
Channel Widths

Moderate Severe

3 Simulations

Mean 30 33

95% confident 83 80

Max 79 75

1 PIANC 60 m
(3.0 B)

70 m
(3.5 B)

2 Japanese (OCDI 2009) 55.6 m
(2.8 B) NA

B: ship width.
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4.2. The Limitation of the “Soft-Bank” Method

The presented method has some limitations, mostly in the following form:

1. The bank effect cannot be taken into account;
2. Limited possibility of taking into account the settlement of the vessel;
3. Impossible to take into account an accident in the form of a stranding and collision

with embankments or a moored vessel or another civil engineering technical object;
4. The psychological impact on the navigator due to a false sense of safety due to not

considering the ship’s collision possibility in simulation trials.

The first two limitations are not critical because there is the possibility to investigate
them in the final stage of simulations if such need exists. In some research, however,
depending on the investigated area effects presented in points 1 and 2 are not crucial and
they could be neglected. Limitation number 3 is usually not critical since accidents are
quite rare even in simulations. Limitation number 4 needs a deeper understanding of the
Captains and Pilots. Usually, they are well debriefed before simulation (this was also the
case in the Ustka Port study) and informed about such limitations. Clear instruction on
how to behave shall be given because it could vast the overall effort of the simulation
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process. In the presented case, Captains and Pilots got the serious message in their task
description namely: “The breakwaters and entrance waterway are modelled as “soft” and
can be “passed over” by the ship—but this should be as much as possible avoided—this is
done to determine possible changes in their layout. The quay is modelled as “hard” please
impact with it to determine the energy of ship contact”.

5. Conclusions

The presented study showed the applicability of real-time simulation methods for
design the new ports, their approaches, and the breakwater layouts. The case study of
Ustka Port was used as a working example. Moreover, the “Soft-Bank” method developed
and presented could let to reduce almost 50% workload for conducting the simulation
runs by reducing the number of possible port infrastructure solutions. The presented
approach gives also the possibility of predesign and opening the discussion about the
proposed solution in the middle of research work which gives always some opportunity to
test more solutions and optimize the overall project. The method itself is useful because
it comprises the most important effects related to ship’s dynamics and enables suitable
shaping of the layout of waterway and breakwaters without testing too many variants.
The method has also great potential for designing the navigational marking like in this
particular study the navigation marking was designed by the presented method, deciding
on the possibility of mooring vessels in the vicinity of waterways (Some vessels could limit
the existing waterways and decision could be done with presented method application. It
should be noted that in comparison to the Fast Time Simulation (FTS) method, the Soft-
Bank method seems to have both advantages and disadvantages. The Soft-Bank method
is still more time consuming, especially when comparing different approach channel
layouts and/or breakwater configurations. The Soft-Bank method enables to engage in the
process of Captains and Pilots and tugs for manoeuvres which is usually problematic in
the FTS method.

The case study was presented in [Gucma L., Łazuga K. & Perkovic M. 2019. Ship
manoeuvres on existing turning places—when the size of the ship reaches the limits of
port infrastructure on the example of Kołobrzeg Port. Proc. of European Navigation
Conference (ENC) Warsaw.] to będzie 42), turning places design [11], and other types
of port infrastructure dedicated for ships. The limitations of the presented method were
selected and discussed. They generally do not negatively affect the overall process of
waterway design since all its important drawbacks could be eliminated in the final step
design like it was presented in the Ustka Port case study.

Moreover, it was observed that the real-time simulation method and the limited task
simulator used here have proven their usefulness in port modernization work to increase
the benefits of port operations without compromising navigational safety. The following
precautions should be considered when planning and executing simulation experiments:

1. Simulators are widely used tools and proper verification, especially of the simulation
hydrodynamic model and hydrometeorological conditions models, should be carried
out at the outset to match simulations to reality as closely as possible.

2. The simulation method should be carried out by multiplying ship runs. The simula-
tion studies based on a single or very small number of simulations without statistical
data processing and experimental plan are questionable and do not present the proper
value to port design needs.

3. In any real-time simulation project, a very good link between pilots with good local
knowledge for validation and provision of domain expertise should be established.
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