
Journal of

Marine Science
and Engineering

Article

Explaining a Deep Reinforcement Learning Docking Agent
Using Linear Model Trees with User Adapted Visualization

Vilde B. Gjærum 1,* , Inga Strümke 1 , Ole Andreas Alsos 2 and Anastasios M. Lekkas 1,3

����������
�������

Citation: Gjærum, V.B.; Strümke, I.;

Alsos, O.A.; Lekkas, A.M. Explaining

a Deep Reinforcement Learning

Docking Agent Using Linear Model

Trees with User Adapted

Visualization. J. Mar. Sci. Eng. 2021, 9,

1178. https://doi.org/10.3390/

jmse9111178

Academic Editor: Alessandro Ridolfi

Received: 27 September 2021

Accepted: 20 October 2021

Published: 26 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Engineering Cybernetics, Norwegian University of Science and Technology,
7034 Trondheim, Norway; inga.strumke@ntnu.no (I.S.); anastasios.lekkas@ntnu.no (A.M.L.)

2 Department of Design, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
oleanda@ntnu.no

3 Centre for Autonomous Marine Operations and Systems, Norwegian University of Science and Technology,
7052 Trondheim, Norway

* Correspondence: vilde.gjarum@ntnu.no

Abstract: Deep neural networks (DNNs) can be useful within the marine robotics field, but their
utility value is restricted by their black-box nature. Explainable artificial intelligence methods attempt
to understand how such black-boxes make their decisions. In this work, linear model trees (LMTs)
are used to approximate the DNN controlling an autonomous surface vessel (ASV) in a simulated
environment and then run in parallel with the DNN to give explanations in the form of feature
attributions in real-time. How well a model can be understood depends not only on the explanation
itself, but also on how well it is presented and adapted to the receiver of said explanation. Different
end-users may need both different types of explanations, as well as different representations of
these. The main contributions of this work are (1) significantly improving both the accuracy and
the build time of a greedy approach for building LMTs by introducing ordering of features in the
splitting of the tree, (2) giving an overview of the characteristics of the seafarer/operator and the
developer as two different end-users of the agent and receiver of the explanations, and (3) suggesting
a visualization of the docking agent, the environment, and the feature attributions given by the LMT
for when the developer is the end-user of the system, and another visualization for when the seafarer
or operator is the end-user, based on their different characteristics.

Keywords: deep reinforcement learning; autonomous surface vessel; explainable artificial intelli-
gence; linear model trees

1. Introduction

Machine learning is the sub-field of artificial intelligence (AI) dedicated to self-learning
systems that use data to adjust their predictions. Among the most remarkable advance-
ments in machine learning methods has been the evolution from artificial neural networks
to deep architectures, known as deep neural networks (DNNs), forming the class of deep
learning [1,2]. reinforcement learning (RL) is a branch of machine learning where an
agent learns a strategy, referred to as a policy, which the agent uses to interact with an
environment based on an evaluation of the agent’s interactions with the environment [3],
called rewards. That is, the policy maps from a state to an action, similar to a controller.
Several noteworthy accomplishments have been made with the use of deep reinforcement
learning (DRL), such as learning to play Atari games directly from image pixels [4] or
discovering new strategies in a simulated hide-and-seek environment [5]. DRL has also
shown to be a very useful tool for accomplishing difficult tasks in robotics, one advantage
being that it does not require a mathematical model of the agent or the environment. In [6],
DRL was used to perform 20 different simulated physical tasks. In [7], DRL was used to
conduct various manipulation tasks with a dexterous, robotic hand. In [8], a DRL-agent
learned to walk on flat surfaces, but could also handle unseen, more challenging sur-

J. Mar. Sci. Eng. 2021, 9, 1178. https://doi.org/10.3390/jmse9111178 https://www.mdpi.com/journal/jmse

https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-2260-4273
https://orcid.org/0000-0003-1820-6544
https://orcid.org/0000-0001-6885-6372
https://doi.org/10.3390/jmse9111178
https://doi.org/10.3390/jmse9111178
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jmse9111178
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse9111178?type=check_update&version=2

J. Mar. Sci. Eng. 2021, 9, 1178 2 of 27

faces. The potential for reduced costs and increased safety has inspired the work towards
autonomous ships, and the industry has already shown promising autonomous surface
vessels (ASVs), such as Falco [9] and Yara Birkeland [10]. DRL has also been used for
marine operations, such as autonomous path-following [11–13], collision avoidance [14,15],
and for docking [16,17]. In [17], a DRL-agent was trained to perform docking of an ASV in
a simulated environment based on Trondheim harbor. Both the agent and the simulator
from [17] is used here and are described in Section 2, Appendices A and B. Even though
the agent showed promising and rather convincing results, its applicability to real-life
problems is reduced by the lack of understanding of how the DNN-policy makes its de-
cisions. This is because the many parameters and interconnections of DNNs make their
inner workings hard for humans to interpret. For this reason, DNNs are considered to be
black-boxes. The field of explainable artificial intelligence (XAI) is dedicated to developing
methods for explaining such black-box models [18]. The objective is to gain an increased
understanding of how the black-box model works and why it behaves the way it does.
XAI methods can thus be used to interpret and justify the decisions made by a black-box
model, control and prevent erroneous actions, improve the model, and even discover
new strategies, correlations in the data set or application [19]. In [20], the importance of
explaining AI-systems to non-expert users is highlighted, especially with consideration for
the preparation for wider-scale operations of ASVs. The combination of explanations and
thorough testing of the AI system is crucial for gaining the trust needed for the autonomous
system to be deployed [21]. The authors of [21] also argue that depending on the role and
needs of the recipient of the explanation, the explanations should be customized regarding
several aspects:

1. Whether all the details of an explanation should be provided, or if it is preferable to
highlight only the most relevant parts, with respect to the specific end-user, of the
explanation;

2. Whether the end-user need to process the explanations in real-time or not;
3. In what way the explanation will be presented to the end-user.

In this work, we consider two different end-users, the developer and the seafarer/
operator. Their main differences lies in their background knowledge, how much risk they
associate with the predictions made by the DNN, and how fast they need to evaluate the
predictions from the DNN and the explanations from the explainer.

Among the most widely used explanation methods are local interpretable model-
agnostic explanations (LIME) [22], Anchors [23], integrated gradients (IG) [24], Shapley ad-
ditive explanations (SHAP) [25], and SAGE [26]. The main characteristics of XAI-methods
are outlined in Table 1. IG is a model-specific method, only applicable to differentiable
models, while LIME, Anchors, SHAP, and Shapley additive global importance (SAGE)
are model-agnostic methods. While SAGE provides global explanations, SHAP, LIME,
Anchors, and IG give local explanations. Preliminary work was presented in [27], where we
approximated the DRL-policy from [17] with a linear model tree (LMT) and used the linear
functions in the active leaf node to form explanations in the form of feature attributions.
The LMTs was built by a greedy method, which was quite sensitive to the dataset. To
remedy this, a very time-demanding iterative data sampling process was used to ensure
that the LMT got enough samples from regions it did not approximate as well. In this
paper, we improve the approximation by enforcing the order of which features are used
when searching for the splits in each branch node at different depths of the tree to better
match the guidance system logic. Not only does this speed up the time it takes to build
one tree, but the iterative data sampling process was deemed unnecessary when ordered
feature splitting was used. Additionally, two different visualizations for two different
end-users with regards to their characteristics and needs are suggested. Following the main
characteristics of XAI-methods, LMTs is a post-hoc, model-agnostic explanation method
giving local explanations in the form of feature attributions. Even though the feature
attributions are used to form the local explanations in this work, it should be noted that
instead of creating an explanation model for specific data points, the LMT approximates

J. Mar. Sci. Eng. 2021, 9, 1178 3 of 27

the full model across its whole range of validity. So, the explanations provided by the
LMT are local, but since decision trees (DTs) are considered interpretable, in theory, the
LMT also yields a global explanation of the full model. However, note that for all practical
means, the global interpretability of a DT is reduced quickly as the size of the tree increases.
The LMT is intended to run in real-time, parallel to the full model, to provide explanations
in the form of feature attributions for its predictions. The ability of LMTs to run real-time
combined with their inherent transparency are the two main benefits of using them to
explain black-box models used in robotic applications such as docking. The terms used in
relation to LMTs and DRL are described in Table 2.

Our main contributions are the following:

• An improved and faster building process of LMTs from [27] by introducing re-
ordering to the splitting sequence of the input features, to better match the way
guidance systems work. This made the iterative data sampling process slowing down
the building process from [27] unnecessary;

• An overview of the background knowledge, skills, needs, and requirements the
different end-users of the docking agents have;

• Two different visualizations of the explanations based on the characteristics of each
end-user.

Table 1. Main characteristics of XAI-methods.

Scope of explanation Local/
Global

The scope of the explanations range from lo-
cal explanations, where only one instance is
explained, to global, where the entire model
is explained. This is not a binary category, as
groups of similar instances can be explained
at the same time.

Complexity of model
to be explained

Intrinsic/
Post-hoc

Models that are self-explanatory, such as sim-
ple linear regression, are called intrinsically
explainable models. More complex methods,
such as most DNNs or other models consid-
ered to be black-boxes however, cannot be
easily understood by humans, so a post-hoc
XAI-method must be applied to the model to
aid with the understanding of it.

Applicability of XAI-
method

Model-
agnostic/
Model-
specific

A model-agnostic XAI-method treats the
model to be explained as a black-box, that is
the XAI-method only cares about the inputs
and outputs of the model to be explained.
Thus, it can be applied to any model. A
model-specific XAI-method, as the name im-
plies, can only be applied to one specific
model.

J. Mar. Sci. Eng. 2021, 9, 1178 4 of 27

Table 2. Description of terms used in relation with the LMT and DRL.

LMT DRL Description

Input features States

The information that the model is trained and later
used to predict on, in this case, a description of the
environment as provided to the policy and the policy
approximator, given in Equation (2). For this applica-
tion, the states are describing how the vessel is situated
in the harbor.

Predictions Actions
The model output, given in Equation (1). For this ap-
plication, the actions are directly controlling the force
and angle of the vessel’s thrusters.

Policy
approximator Policy

The model itself, providing a mapping from input fea-
tures to predictions or states to actions, respectively.
The policy corresponds to the controller in robotics,
while the LMT acts as the policy approximator and is
only used to generate explanations.

Explainer Agent

The application of the model. In the current setting,
the agent comprises the policy and the vessel, while
the explanations are formed using the LMT to generate
feature attributions and visualizations.

2. Preliminaries

In this section, the DRL agent, as well as the training environment used for its develop-
ment, are presented. For more details regarding the docking agent, the reader is referred to
Appendix A. For more details regarding the simulated environment, the reader is referred
to Appendix B. Both appendices are summarizing work done in [17].

2.1. The ASV Docking Problem

Docking is the process of taking a vessel from being in open waters to being fastened
to a specific location along the quay, referred to as the berthing point. The process can be
divided into the following three stages:

1. The approach phase;
2. The berthing phase;
3. The mooring phase.

During the approach phase, the vessel moves from open seas to confined waters. In
the berthing phase, the vessel maneuvers inside confined waters until it is parked at a
location close to the berthing point. In the mooring phase, the vessel is fastened to the
berthing point. Docking is considered to be a challenging task since it requires complex
decision-making and significant fine-tuning of actions. In addition to being difficult to
model, external disturbances affect the vessel more at low speeds than at high speeds.
Thus, their impact on the movement of the vessel increases when the vessel operates at
low speeds close to obstacles. The simulation environment used in this work is based on
Trondheim harbor and is the same as the one used in [17]. Figure 1a shows a snapshot of
the simulation environment. An illustration of the vessel is shown in Figure 1b. The vessel
has three thrusters: a tunnel thruster in the front and two azimuth thrusters at the back.
The vessel is controlled using the control inputs

A = [f1, f2, f3, α1, α2] , (1)

where f1, f2 are restricted to the range [−70 kN, 100 kN] and α1, α2 to the range [−90 degrees,
90 degrees] represent the force and the angle of the two azimuth thrusters, respectively.
The tunnel thruster is controlled by changing its force, f3, in the range [−50 kN, 50 kN].

J. Mar. Sci. Eng. 2021, 9, 1178 5 of 27

The features representing the vessel’s state and relative position in the environment form
the vector

x = [x̃, ỹ, ψ̃, u, v, r, l, dobs, ψ̃obs] . (2)

Here, x̃ and ỹ represent the relative distance to the berthing point in the vessel’s
body frame, in which u, v, r represent the vessel’s velocity. The variable ψ̃ represents the
difference between the actual heading and the heading desired at the berthing point. Note
that since x̃ and ỹ are in body frame, they are only aligned with the environment axis if ψ̃
is zero and aligned with the environment frames. That is, x̃ is not necessarily in the south-
north direction, and ỹ is not necessarily in the west-east direction. The binary variable l
indicates whether or not the vessel has made contact (i.e., collided) with an obstacle, which,
as discussed in Section 2.2, is mainly used during training. The vessel’s position relative to
the closest point of the closest obstacle is described by the two variables ddobs and ψ̃obss.
The direction of where the obstacle is in relation to the vessels own heading in body frame
is given by ψ̃obss, while the distance along this direction is given by dobs.

Berthing

Approach

(a) (b)

Figure 1. (a) The simulation environment, and (b) an illustration of the vessel’s states.

Even though the DNN should be able to understand the necessary dynamics of the
vessel based on the vessel’s pose and velocities, states that give information more directly,
which is important for the docking problem, were used in addition, because practice
shows that this gives quicker and more stable training. A restriction in the simulated
environment is that the agent is not allowed to make any contact with the harbor under any
circumstances, although gentle contact with the harbor under low speeds while berthing
is usually allowed in real life. The binary variable l is only used during training of the
DRL-policy through giving a large penalty and ending the episode.

2.2. The Docking Agent

As previously discussed, the problem of docking is challenging due to several reasons,
one being that it is hard to achieve adequate mathematical models of all the aspects
affecting the operation, which is crucial of most traditional control methods. In [17], an
RL-agent learned how to perform berthing from substantial distances—up to 400 m from
the berthing point, corresponding to LP4:Distance berthing in [17]—without using any
additional models of the environment or vessel. RL is the branch of machine learning
dedicated to learning by interacting with the environment and receiving rewards for
different states based on their desirability. The reward function is chosen or designed by
the programmer and is crucial for the learning process of the agent. Extensive work was
done in engineering a fitting reward function for the task in this paper, and the objectives
for the RL-agent are the following:

1. Avoiding any obstacles, specifically keeping dobs > 0;

J. Mar. Sci. Eng. 2021, 9, 1178 6 of 27

2. Reaching and staying at the berthing point, specifically achieve a stable situation with
x̃ = ỹ = ψ̃ = 0.

Note that COLREG (Convention on the International Regulations for Preventing
Collisions at Sea) (https://www.imo.org/en/About/Conventions/Pages/COLREG.aspx,
accessed on 26 September 2021) is not taken into consideration. These objectives are given
to the RL-agent through the following reward function

R(x̃, ỹ, l, dobs) = Rd + Rψ̃ + Robs + Rḋ . (3)

Here, Rd rewards the agent for minimizing the distance to the berthing point. Given that the
distance to the berthing point is small enough, rewards for achieving the desired heading
are given through Rψ̃. The agent was given significant negative rewards for getting close to,
and especially, making contact with any obstacles through Robs since this is of high priority.
However, this made the agent hesitant to get close to the berthing point since this is very
close to the harbor, which in the agent’s point of view is an obstacle. Therefore, the reward
component Rḋ, which rewards decreasing the distance to the berthing point, was designed.

To train the DRL-agent, the proximal policy optimization (PPO) algorithm from [28]
was used. It is a stochastic, on policy algorithm that uses a trust-region to prevent too large
updates to the policy based on a training batch, which can lead to getting trapped in a
local minimum. The trust-region is the area in which the approximation of the gradient
descent of the policy is accurate. To prevent the training to become too constrained to this
trust-region, the trust-region does not set hard boundaries for the exploration but is rather
included in the objective by giving penalties to the updates that encourage not leaving the
trust-region. The resulting PPO-trained neural network has two hidden layers, consisting of
400 neurons each. The hidden layer’s nodes use the rectified linear units (ReLu) activation
function [29], while the output layer uses the hyperbolic tangent function, restricting the
outputs to the range [−1, 1]. The agent converged after approximately 6 million interactions,
i.e., instances of having a state, performing an action, and receiving a reward. One episode
consists of maximum 2500 interactions(or steps) given that the vessel does not collide with
the harbor limits. Thus, it took at least 2400 episodes, but most likely more since the agent
is expected to perform poorly early in the training process.

3. Linear Model Trees

decision trees (DTs) form a class of machine learning algorithms based on conditional
control statements, and are capable of solving many classification and regression problems.
Their main advantages are being both easily visualized and interpretable for humans. A
DT consists of branch and leaf nodes, where the branch nodes perform data splitting based
on the control statements, and the leaf nodes perform the DTs prediction. In its simplest
form, a DT has univariate splits, i.e., it splits based on only one feature at a time, and each
leaf node has a constant prediction. Oblique DTs have multivariate splits in the branch
nodes, making them less interpretable and significantly increasing their building time, due
to which they are not used in this work. Model trees are DTs where the constant predictions
in the leaf nodes are replaced by a prediction model, for example, a linear regression model
or a DNN, so that the tree maps the input to the appropriate model. The simplest version
of model trees are linear model trees (LMTs), which have a linear function in the leaf nodes.
As illustrated in Figure 2, an LMT makes out a piecewise linear function and the number
of regions resulting from the splits of the tree correspond to the number of leaf nodes.

https://www.imo.org/en/About/Conventions/Pages/COLREG.aspx

J. Mar. Sci. Eng. 2021, 9, 1178 7 of 27

(a) (b) (c)

Figure 2. Illustrations of how two perfect LMTs of depth (a) two, (b) three, and (c) an imperfect
LMT of depth three, fit to the same data set. The number of regions estimated by a linear function
correspond to the number of leaf nodes.

The problem of building an LMT for a data set (X, Y) can be expressed as

min
a,t,w

= ∑
∀(x,y)∈(X,Y)

(y− f (x))2 , (4)

where f (x) is the prediction made by the LMT, which we express as follows

f (x) = ∑
l∈∀ leaf nodes

fl(x) ∏
n∈lla

{aT
n x < tn} ∏

n∈lra
{aT

n x ≥ tn} . (5)

Here, an is a standard basis vector in the chosen coordinate basis, which is in our case
that of the vessel, while tn is the threshold value upon which node n is split. A leaf node l’s
ascendants are its left and right ascendants, lla and lra. The linear function fl in leaf node l,
is given by

fl(x) =
F

∑
f=1

(w f x f) + wF+1 , (6)

where F is the number of input features, i.e., states.
It is sometimes stated that DTs are fully interpretable models, but this is an oversim-

plification for most practical means. As outlined in [30], transparency can be understood
as simulatable, decomposable, or algorithmic transparency. To be simulatable transparent,
the model as a whole must be simple enough that a human can easily interpret it. This also
implies that both the input features and the output features must be easily understandable.
Provided that the inputs and outputs are understandable and that the trees have a reason-
able size, both DTs and LMTs are simulatable transparent. To be decomposable transparent,
all parts of the model must be simulatable transparent. This means that an LMT that is too
big to be simulatable transparent, is still decomposable transparent, since all its parts, i.e.,
its subtrees, are still simulatable transparent. Finally, algorithmic transparent methods are
those that can be analyzed using mathematical tools. Thus, LMTs are always decomposable
and algorithmic transparent, and whether they are also simulatable transparent depends
on the size of the specific tree.

3.1. Heuristic Tree Building

The LMTs used here are constructed by a modified version of Algorithm 1 from [27].
Since building an optimal DT given a data setD is an NP-complete problem [31], our approach
is heuristic, which is common for most approaches to building DTs (see e.g., CART [32],
ID3 [33], and C4.5 [34]).

J. Mar. Sci. Eng. 2021, 9, 1178 8 of 27

Algorithm 1: The LMT algorithm from [27].
Require:
Training data D

Maximum number of leaf nodes N
Minimum number of data samples for leaf nodes M
while number of leaf nodes is less than N do

if there exist a node that fulfills all splitting criteria then
Choose node to split
Perform splitting
Calculate best potential split for the newly created nodes

else
return root node

end
end

A so-called perfect DT is a tree with binary splits where all the leaf nodes have the same
depth. The trees in Figure 2a,b are examples of perfect DTs. However, as pointed out in [35],
perfect DTs are often unnecessarily big. Consider the docking problem, the complexity of
the agent’s behavior will vary in different parts of the harbor and with different positions
and velocities. For example, it is expected that the maneuvers required close to the berthing
point will be more intricate than at open seas. If the DT is to be perfect, it will either not be
deep enough to approximate the behavior close to the berthing point, or it may overfit to
the regions that require less complex behavior, such as for open seas. For the same reason,
the stopping criteria were changed from maximum depth to maximum number of leaf
nodes, which allows the DT to grow deeper in areas that require more splits, resulting in an
imperfect tree. Figure 2b,c illustrates the difference between an imperfect DT and a perfect
DT. One way of searching for splitting conditions for a node is to order the values for each
feature, and try threshold values in the middle between two neighboring feature values.
However, for large data sets, this procedure is very computationally expensive. Therefore,
a search grid evenly distributed from the lowest to the highest feature values is used to
find the split thresholds. The splitting condition for a node is found via

F , tn = argmin
F ,n

(loss(DL) + loss(DR)) , (7)

where F and tn are the feature and threshold, respectively, the node is to split upon, given
the data samples in D. That is, the non-zero entry of the basis vector an for node n in
Equation (5) corresponds to F . The data sets DL and DR are subsets of D, and result from
the split of a node. Each branch node splits the data it receives into a left and right part,
so all data points end up in exactly one leaf node. Each node splits the data it receives
according to

DL = x ∈ D if xF ≤ tn ,

DR = x ∈ D if xF > tn ,
(8)

where xF is the data sample x’s value for feature F . Since not all possible thresholds are
explored, and there is no guarantee for global optimality since this method is greedy, there
is no need for the algorithm to be deterministic and yield exactly the same tree in each run.
Instead, having the process include some randomness leads to a wider exploration in the
same runtime if run in parallel. The n’th threshold is

tn = min(DF) + (n + r)
(max(DF)−min(DF))

N
, (9)

J. Mar. Sci. Eng. 2021, 9, 1178 9 of 27

where DF are all the values of feature F in the data set D, N is the number of thresholds
in the grid search, and r is a random number that alters the threshold value in the range
±2%. The next node ns to split is chosen using

ns = argmax
n

((1 + r)(loss(Dn
L) + loss(Dn

R))) , (10)

where Dn
L and Dn

R are the losses of the left and right child nodes, respectively, of node n,
given its best split variables F and tn. The linear functions showed in Equation (6) in the
leaf nodes are calculated by performing ordinary least squares regression on the data Dl
belonging to leaf node l.

As our aim is for the LMT to be a faithful explanation model for the DRL model, the
loss in Equation (10) is calculated as the mean squared error (MSE) between the prediction
of the DRL model and that of the linear function fitted by linear regression in the leaf nodes.

When tested, Algorithm 1 turned out to be very sensitive to the data set D, which is
a well-known problem for DTs. How many data points are needed to represent an area
properly, depends on how complex the DRL model is in that area.

To mitigate this, we performed the data sampling and tree building iteratively, accord-
ing to the following algorithm

This process was repeated for 10 iterations, before checking which resulting LMT
performed best on an independent validation set. The best chosen LMT tree was built on
the ninth iteration.

In [27], an imperfect LMT with a total of 681 leaf nodes was trained to approximate and
serve as an explanation model for the DRL-model presented in Section 2.2. The tree model
is inarguably too large to be considered simulatable transparent, but it can still be used
to map the input features, i.e., the states, to the predictions, i.e., the actions. Furthermore,
sub-parts of the tree are still considered simulatable transparent. The maximum depth of
the tree was 15, while the shallowest leaf node was at depth 5. As the vessel has five control
inputs, the DRL model has five outputs, and so must the LMT. This can be achieved
either by building one LMT for each control input or by building one LMT for all the
control inputs. In the latter case, every leaf node contains a fitted linear function for each
of the control inputs, and the average loss is used when fitting and evaluating the splits.
Consequently, this approach requires the control inputs, respectively the LMT outputs, to
be normalized. The latter approach was used both in [27] and the present work, because
simplicity is desired, and because it is much more time-demanding to build five trees
instead of just one.

3.2. Building Linear Model Trees Utilizing Ordered Feature Splitting

Although the LMT used in [27] did show promising results, there are two important
drawbacks. Primarily, the process of building it is slow because several trees must be built,
and data sampling has to be done for several iterations. This leads to a larger data set,
which again increases the time it takes to build an LMT for each iteration. Secondly, the
resulting tree is very large and thus, as mentioned, in no way simulatable transparent,
which is a significant drawback since the LMT is used as an explanatory model.

To address this, we set the order in which the LMT building process searches for
feature splits. This is done by letting the LMT search for splits on the following features,
and in the following order:

1. x̃, ỹ, ψ̃;
2. dobs, ψ̃obs;
3. u, v, r.

As mentioned, the binary variable l is only for penalizing the DRL-agent during
training and ending the episode, and it will therefore not be used for the LMTs. The order
is set to better match guidance system logic, however, a more systematic approach remains
for future work. During training, the criteria for a split to be valid is that the overall loss
decreases, and that the child node receives a minimum number of data samples, here M.

J. Mar. Sci. Eng. 2021, 9, 1178 10 of 27

Once these criteria are met, the node is split. If the criteria are not met after trying all
features in the three feature groups, the tree stops growing. How these criteria are set
is essential for the building process of the LMT, and both the complexity of the problem
and the size of the dataset must be taken into consideration when setting the criteria. If
the criteria are set too strict by requiring either too big of a loss decrease or by setting the
minimum number of samples in each leaf node too high, the tree might underfit and not be
able to represent important aspects of the problem. If the criteria are set not strict enough,
the tree might overfit to the dataset.

As expected, this approach to searching the features for splitting decreases the time
needed to train the LMT, since the number of feature and threshold pairs are reduced
in the split search. Additionally, with ordered feature splits the iterative data sampling
process shown in Algorithm 2 was deemed unnecessary. More importantly, the resulting
tree is more interpretable for humans since similar features are close to each other, making
it easier to locate which parts of the tree are relevant in different situations.

Algorithm 2: The data sampling process from [27].
Require:
Maximum number of iterations Max_it

Maximum number of leaf nodes N
Minimum number of data samples for leaf nodes M
it = 0
while number of iterations it is less than Max_it do
Dit+1 ← sample_from_environment(LMTit)
LMTit ← Algorithm 1(Dit,M,N)
it++

end

4. Increasing Model Interpretability Using Linear Model Trees

The goal of approximating the DRL model with an LMT is to use the inherent trans-
parency of the LMT and its intuitive structure to efficiently obtain an importance ranking
of the input features, i.e., the states of the vessel. However, as previously emphasized,
although DTs, and consequently LMTs, are transparent, this does not necessarily make
them easily understandable for humans. In this section, we first discuss how the linear
functions in the leaf nodes can be used to obtain explanations for a prediction in the form of
feature attributions. Next, we demonstrate how these feature attributions can be visualized
together with the environment as well as the states and actions of the vessel to obtain a
more comprehensible picture.

4.1. Extracting Feature Attributions from the Leaf Nodes

LMTs can give local explanations in the form of feature attributions, which can be seen
as giving credit or blame to the input features for the output, in essence, feature attributions
are answering the question “how much did each input feature affect the model’s output?”.
The local explanations are calculated utilizing the coefficient in the linear function in the
leaf nodes and the values of the instance to be explained. The linear functions in the leaf
nodes take the form of and Equation (11) shows how the importance for the feature F , IF
is calculated.

IF =
wF xF

∑ f∈∀F |w f x f |
, (11)

where wF and xF is the coefficient from the linear function in the leaf node in Equation (5)
and the sample’s value for feature F . It should be noted that the constant coefficient wF + 1
from Equation (5) is not included in Equation (11), which means that if the linear function
in a leaf node is a constant, no feature attributions can be calculated. Additionally, it should
be noted that when forming these local explanations, only the function in the leaf node is
taken into consideration, even though the path from the root node to this leaf node is not

J. Mar. Sci. Eng. 2021, 9, 1178 11 of 27

irrelevant and most likely should be considered. However, including the paths in (both
local and global) explanations should not be done carelessly since even irreducible DTs
can have irrelevant splits [36].

4.2. Visualization of Feature Attributions

Different users require both different explanations and different representations of
the explanations, states, and actions. For this work, two users of the black-box model are
considered, namely the developer and the seafarer/operator. The developer wants to use
the XAI-method to verify that the black-box model works as intended, detect edge cases
or erroneous behavior to improve the model, as well as understanding how the model
behaves. On the other hand, the seafarer/operator uses the XAI-method as a supporting
tool to monitor and control the autonomous agent’s behavior to assess whether or not they
should intervene to prevent a dangerous situation or accident. An important difference
is that the operator/seafarer has personal risks associated with the potential erroneous
behavior of the model, whereas the developer has not. The different relation to the black-
box model, the environment, and the XAI-system for the two users is shown in Figure 3.
Where the developer can carefully inspect the model’s behavior in a simulated environment
with no time pressure, the seafarer/operator must make assessments within a short time
span with risk of serious consequences for vessel, crew, and equipment. Additionally, the
seafarer/operator has a lot of other sources of information, both from other sensors and
displays, but also from their own senses. The main differences that need to be taken into
account when deciding how to convey the explanations to the specific user are outlined in
Table 3.

(a) (b)

Figure 3. Illustration of (a) the developer’s and (b) the operator/seafarer’s different relations to the
agent and the environment.

Table 3. Differences between developer and operator/seafarer.

Developer Operator/Seafarer

Background
knowledge

Good analytical skills, but not
necessarily domain knowledge

Domain knowledge, but not nec-
essarily good analytical skills

Environment
Works in simulated environ-
ments or digital twins without
risk of physical damage

Works with the physical vessel,
with risks for material damage
and potentially personnel injury

Risk Works with a risk-free simulated
environment

Works in a physical environment
where errors can compromise
safety of units involved

J. Mar. Sci. Eng. 2021, 9, 1178 12 of 27

Table 3. Cont.

Developer Operator/Seafarer

Urgency Analyzes the model offline with no
time pressure

Monitors the controller via the XAI
module real-time under time pres-
sure

Tools Has access to analytical and mathe-
matical tools

Has no analytical or mathematical
tools available

Information
design

Prefers information enabling thor-
ough and analytic investigation of
the controller’s behavior

Prefers information suitable for fast
processing, and related to the vessel

Level of detail

Desires high level of detail, has low
risk of cognitive overload as infor-
mation originates from one source
only and the working environment
is stress-free

Only interested in the necessary in-
formation, having several sources of
information and a potentially stress-
ful working environment, creating a
risk for cognitive overload

Event
frequency

Interested in examining the con-
troller’s behavior over the entire
state space

Not interested in experiencing states
that might lead to undesired behavior
or dangerous situations

Edge cases Uses edge cases to detect undesir-
able or unexpected behavior

Does not wish to experience edge
cases that involve higher risk of faulty
controller behavior

Intervention Does not intervene if undesirable or
unexpected behavior is discovered

Intervenes if entering or experiencing
state that lead to undesired behavior
to avoid dangerous situations

To aid the developer in thoroughly investigating the step-by-step state-action pairs
with their corresponding feature attributions the plots in Figure 4 are suggested. In
Figure 4a, the feature attributions are plotted for each step. The feature attributions should
be studied together with the state and action plots of Figure 4b,c. Figure 4 contains a lot of
information that requires a lot of time to analyze, so this type of visualization cannot be
used in real-time. For a user like the operator/seafarer, another type of representation of
this information is needed. One aspect that makes it hard for humans, and even domain
experts such as operators/seafarers, to process the information is the fact that the vessel
has nine state features and five control inputs. Additionally, f1 and α1, and f2 and α2 are
controlling the same motors, and it is not possible to understand the agent’s behavior as a
whole while looking at cooperating actions independently. To remedy this, the actions are
mapped to and visualized on the vessel for faster comprehension, as can be seen Figure 5.
Additionally, feature attributions for the five actions are combined as follows

IF = ∑
a∈A
|IFa | (12)

where IF is the overall importance for the feature F . Still, having to consider feature attri-
butions for nine features is too much to take into consideration in a stressful environment
with time pressure, so the feature attributions are further compressed, as shown in Table 4.
It is important to note that the feature importance is not confused with the actual values
of the features. High importance for the velocity does not mean that the vessel has a high
velocity, it just means that the velocity played an important part when the action was
predicted. The pipeline between the DRL-agent, the LMT and the visualization tools, and
the end-users after the DNN is trained and the LMT is built is shown in Figure 6.

J. Mar. Sci. Eng. 2021, 9, 1178 13 of 27

Table 4. Overview of mapping from features as the agent and explainer receives them to the
compressed feature representation used for the visualizations for the operator/seafarer.

Compressed Features Features Compressed Feature Importance

Distance to berthing point x̃, ỹ ID = I x̃ + I ỹ

Velocity u, v, r IV = Iu + Iv + Ir

Obstacle dobs, ψ̃obs IO = Idobs + Iψ̃obs

Heading ψ̃ IH = Iψ̃

(a)

(b)

Figure 4. Cont.

J. Mar. Sci. Eng. 2021, 9, 1178 14 of 27

(c)

Figure 4. The visualization of the (a) feature attributions, (b) states, and (c) actions and from one episode for the developer.
The shaded area in the action-plot shows the difference between the actions taken by the DRL-agent and predicted by
the LMT.

Figure 5. The visualization of the environment, vessel, and compressed feature attributions for the
seafarer/operator. The top left part of the figure shows both the states and the actions on the vessel,
along with the total forces and moment acting on the vessel. The compressed feature Distance to
berthing position is shortened to Dist. to berth. pos.

Figure 6. Pipeline after both the LMT and DNN are trained.

J. Mar. Sci. Eng. 2021, 9, 1178 15 of 27

5. Results

To create the data set to build the LMTs, 1000 unique starting points were found,
whereas 800 of these were used as starting points for the training set, 50 for the validation
set, and the remaining 150 for the test set. The complete data sets consisted of data from
runs performed by the RL-agent with these starting points. In this chapter the LMT process
presented in Section 3.1 and the LMT process utilizing ordered feature splitting presented
in Section 3.2 will be evaluated and compared.

5.1. Structure of Linear Model Trees

There is an important difference between building the optimal tree given a data set,
and building the optimal tree given a specific structure of the tree and a given data set. In this
work, we take on the problem of building an LMT given a maximum number of leaf
nodes, univariate, binary splits, and a given data set. In Table 5, the structures of the two
best LMTs built using ordered feature splitting and one LMT built by the purely greedy
approach. The trees built with ordered feature splitting resulted in smaller trees than when
the trees were built without the ordered feature splitting.

Table 5. Overview of the structures of the different LMTs. LMT OFS denotes LMTs where ordered feature splitting was
utilized, while the number denotes the total number of leaf nodes the LMT has.

Name of LMT Number of Leaf Nodes Depth of Deepest Node(s) Depth of Shallowest Node(s)

LMT 467 467 16 3

LMT OFS 100 100 11 3

LMT OFS 312 312 12 3

5.2. Computational Complexity

To compare the computational complexity of building LMTs with the algorithm
presented in Section 3.1 and the version that limits the number of features considered
at each split as presented in Section 3.2 the time it takes to build trees with 10 and 50
leaf nodes are compared. The different run times are presented in Table 6. LMT OFS is
significantly faster than LMT, and the difference (naturally) increases when the size of the
trees increases.

Table 6. Run time for the different algorithms for trees of different sizes.

Algorithm Build Time for 10 Leaf Nodes Build Time for 50 Leaf Nodes

LMT 74.75 s 171.45 s

LMT+ OFS 52.748 s 117.91 s

5.3. Evaluating the Fidelity

The most important aspect when choosing which tree to use is how well the tree
approximated the DRL-agent, i.e., the fidelity, which will be evaluated based on the
following metrics:

1. The average error between the DRL-agent’s output and the tree’s output given the
same input state as presented in Section 5.3.1;

2. The trees’ path when running the vessel in the simulator compared to the path taken
by the DRL-agent as presented in Section 5.3.2;

3. The error between the resulting forces and moment based on the predicted actions as
presented in Section 5.3.3;

4. The rewards of the PPO-policy’s and the LMT OFS 312’s given the same starting
points are compared in Section 5.4.

J. Mar. Sci. Eng. 2021, 9, 1178 16 of 27

5.3.1. Output Error

The mean absolute error and the standard deviation can be seen in Table 7. Both
the LMT OFS 100 and LMT OFS 312 has better accuracy and precision than LMT 467,
despite LMT 467 being significantly larger. LMT OFS 312 also has better accuracy and
precision than LMT OFS 100 on all actions. Additionally, using ordered feature splitting
gave consistently better results than without, and the building process became less sensitive
to the dataset.

Table 7. Output error analysis for the three different LMTs LMT OFS 100, LMT OFS 312, and LMT
467. The improvements from the LMT presented in [27] are highlighted in red.

LMT OFS 100

Output feature Mean absolute error Error standard deviation

f1 (kN) 4.57 (2.68%) 9.31 (5.5%)

f2 (kN) 4.018 (2.36%) 7.261 (4.2%)

α1 (deg) 3.43 (1.9%) 7.66 (4.3%)

α2 (deg) 4.81 (2.67%) 8.04 (4.4%)

f3 (kN) 1.77 (1.77%) 4.049 (4.05%)

LMT OFS 312

Output feature Mean absolute error Error standard deviation

f1 (kN) 3.55 (2.08%) (−7.22%) 7.78 (4.57%) (−7.27%)

f2 (kN) 3.33 (1.95%) (−6.35%) 7.085 (4.16%) (−5.675%)

α1 (deg) 2.463 (1.36%) (−7.84%) 6.93 (3.85%) (−6.12%)

α2 (deg) 3.66 (2.15%) (−5,48%) 8.03 (4.45%) (−3.42%)

f3 (kN) 1.302 (1.3%) (−7.78%) 3.513 (3.51%) (−12.387%)

LMT 467

Output feature Mean absolute error Error standard deviation

f1 (kN) 11.85 (6.97%) 19.07 (11.22%)

f2 (kN) 9.039 (5.32%) 17.38 (10.22%)

α1 (deg) 7.9 (4.3%) 14.32 (7.96%)

α2 (deg) 14.09 (7.83%) 18.91 (10.51%)

f3 (kN) 3.84 (3.84%) 6.83 (6.83%)

5.3.2. Comparing the Paths of the Agent and of the Linear Model Trees

If the LMT has approximated the PPO-policy well enough, the LMT should be able to
replicate the PPO-policy’s behavior. Therefore, one way of evaluating how well the LMT
has approximated the PPO-policy is to compare the paths of their runs given the same
starting point. Plots for the four agents from four different starting points can be seen in
Figures 7 and 8. Figure 7 shows a difficult scenario where the agent must first steer the
vessel backwards followed by straightening the yaw while simultaneously controlling the
surge and sway. Unlike Figure 7, Figure 8 does not require a turn, but the path is close to
the boundaries and deviations from this path will quickly lead to the vessel making contact
with the harbor limits. The DRL-agent’s behavior is shown in Figures 7a and 8a, the LMT
OFS 100’s behavior in Figures 7b and 8b, the LMT OFS 312’s behavior in Figures 7c and 8c,
and finally the LMT 467’s behavior in Figures 7d and 8d. In the episode shown in Figure 8
it is clear that the LMT OFS 312 performs best out of the three. In the episode shown in
Figure 7 only LMT DK 100 and LMT OFS 312 complete the episode, while LMT 467 makes

J. Mar. Sci. Eng. 2021, 9, 1178 17 of 27

contact with the harbor limits while attempting the last part of the docking. LMT OFS 312
mimics the behavior of the DRL-agent better than LMT OFS 100, as can be seen in Figure 7.

(a) (b)

(c) (d)

Figure 7. (a) Successful run by the PPO-policy, (b) failed run by the LMT OFS 100 , (c) failed run by
the LMT OFS 312 , and (d) failed run by the LMT 467 .

(a) (b)

(c) (d)

Figure 8. (a) Successful run by the PPO-policy, (b) failed run by the LMT OFS 100, (c) failed run by
the LMT OFS 312 , and (d) failed run by the LMT 467.

J. Mar. Sci. Eng. 2021, 9, 1178 18 of 27

5.3.3. Comparison of Resulting Forces and Moment on Vessel

To further investigate the behavior of the policy and the LMT, we look at the forces
acting on the vessel that result from the actions taken. This is because there are many
combinations of actions that may result in the same overall forces. This also means that
small deviations in each action may accumulate, causing the policy and the LMT to predict
very different forces, despite their action predictions being similar. On the other hand, if
the force of a thruster is zero then its angle does not matter, but it may still look like an
important error. We calculate the overall forces predicted by the two models as

Fx =
3

∑
i=1

ficos(αi), (13)

Fy =
3

∑
i=1

fisin(αi), (14)

T =
3

∑
i=1

fi(lix sin(αi)− liy cos(αi)) , (15)

where Fx denotes the applied force in the x-direction, Fy the applied force in the y-direction,
and T the applied torque, all three in the body frame. The forces’ arms of moment are
given by lix and liy . Figures 9 and 10 show the forces and moments predicted by both
the PPO-policy and the LMT. The LMT predictions do not follow the PPO-policy forces
and moment perfectly, but the behavior is very similar. Note that, as was also the case for
the actions and feature attributions, the actions predicted by the LMT sometimes change
abruptly. This happens when there is a change in which leaf node in the tree is being used
to make the prediction.

Figure 9. Plot of total force and moment predicted by both the LMT and the PPO-policy for an episode where the PPO-policy
actions are given to the vessel.

J. Mar. Sci. Eng. 2021, 9, 1178 19 of 27

Figure 10. Plot of total force and moment predicted by both the LMT and the PPO-policy for an episode where the
PPO-policy actions are given to the vessel.

5.4. Comparison of Rewards

The LMT is trained without any knowledge of the reward function, whereas the
DRL-agent’s training relies heavily on it. However, it is expected that the LMT receives
approximately the same rewards as the DRL-agent throughout an episode since they
should behave similarly. In Figure 11, an episode where the LMT and PPO-policy behaves
very similarly and their corresponding rewards can be seen. Since they have such similar
paths their rewards are also similar, though with small deviations. The docking problem
is a complex problem with many possible solutions, and thus, many different reward
functions ought to lead to a viable solution. An example of two different paths successfully
leading to the berthing point from the same starting point can be seen in Figure 12. Even
though both the LMT and the PPO-policy successfully bring the vessel to the berthing
point, the PPO-policy receives a higher cumulative reward. In cases like this, where the
LMT ends up taking a different, but still viable, path than the PPO-policy does, the output
error will be high. It might be interesting to evaluate the LMT in the same way as the
PPO-policy, because if the LMT behaves as well as the PPO-policy, the LMT could replace
the PPO-policy entirely, which would be beneficial because then we would be certain that
the feature attributions would be completely correct. Nevertheless,as could be seen in
Figure 8, the PPO-policy performs better than the LMTs.

J. Mar. Sci. Eng. 2021, 9, 1178 20 of 27

(a) (b)

(c)

Figure 11. (a) A successful run by the LMT OFS 312, (b) a sucussefull run by the PPO-policy, and
(c) the LMT’s and PPO-policy’s rewards for their respective runs with the same starting points.

(a) (b)

(c)

Figure 12. (a) A successful run by the LMT OFS 312, (b) a successful run by the PPO-policy, and
(c) the LMT’s and PPO-policy’s rewards for their respective runs with the same starting points.

J. Mar. Sci. Eng. 2021, 9, 1178 21 of 27

6. Discussion

The main drawback with the building process outlined in Algorithm 1 is that it is a
heuristic, greedy method. This means that there is no guarantee of an optimal approxima-
tion of the black-box method, nor any guarantee of optimality given a dataset or a given
tree structure. One of the main issues with building LMTs in a greedy way is that good
splits hidden behind seemingly bad splits will not be found. This has been addressed by
adding some randomness to the building process to further explore the solution space.
Algorithm 1 can be sensitive to outliers in the dataset since a larger range in the features’
values will stretch out the thresholds’ grid search. The linear regression may also be affected
by outliers. For this reason, alongside the fact that the LMT cannot learn aspects of the
black-box model’s behavior that are not represented in the dataset, it is important to have a
good dataset. For this application, one tree with five linear functions in each leaf node was
chosen due to the fact that building five trees is much more computational demanding than
building one. As discussed, transparency for both DTs in general and LMTs depends on
the size of the tree. If a small enough tree can be made with decent fidelity to the black-box
model it is approximating, an assessment between accuracy and interpretability must be
made. In this work, all the trees considered are too big to be categorized as simulatable
transparent, thus only accuracy should be taken into account when choosing which tree
should be the explainer model for the black-box model. If an LMT was to approximate the
PPO-policy with adequate accuracy, the LMT may replace the PPO-policy entirely. This
is beneficial because then the correctness of the feature attributions would be guaranteed.
Introducing feature ordering to the splits improved the accuracy of the trees while decreas-
ing their size, but still, good splits can be hidden behind bad splits which will not be found
due to the building process’ greedy nature. The ordering of which features can be searched
for at different depths of the tree should be done in a way that makes sense in terms of
the application, but there may be many orders that could work, so several alternatives
should be tested. In this work, the explanations come in the form of feature attributions
which are calculated by using the linear function in the activated leaf node. This means
that the splits along the path from the root node to the activated leaf node are not taken
into account when forming the explanation, even though it clearly is important. Say that a
leaf node gives out a constant prediction through the coefficient wF + 1 from Equation (5),
then the feature attributions will all be zero, and thus there are no explanations for this
region. For this problem, the thruster’s force and angle are controlled directly instead
of having the vessel be controlled through a total force and torque applied to the vessel.
This is desirable because the DRL-agent gets more freedom to learn new strategies, but
it provides an additional challenge to the XAI-method because it gets less clear what the
DRL-policy is attempting to do because there will be many combinations of forces and
angles of the thrusters that equal the same total force and torque. Additionally, a1 and
f1 controls the same azimuth thruster, and how each of these actions affects the vessel is
heavily dependent on each other. For example, if f1 gives no force, the angle, a1, of the
thruster does not affect the vessel in any way. As pointed out by [37], interpretability is not
a concept that is easily objectively measured, and how the explanation is communicated to
the end-user is of great importance to how well the model will be understood. Thus, the
visualizations of the vessel’s states, actions, and corresponding feature attributions should
be evaluated by the users themselves in terms of how factors such as how efficiently the
information is communicated, and how they affect the users’ trust towards the system.
Additionally, how the trees’ structure can be used to form better explanations should be
investigated, and a more systematic approach to the reordering of the features used in the
splitting should be looked into. To summarize the main points of the discussion:

• There are no guarantees for optimality;
• The LMTs are not small enough to be simulatable transparent;
• The splits in the trees are not used when forming the explanations, even though they

are of importance;
• In regions where the LMT makes a constant prediction, no explanations can be made;

J. Mar. Sci. Eng. 2021, 9, 1178 22 of 27

• Ordering feature splitting significantly improved both the accuracy and build time of
the LMTs because the search process for each split becomes faster, in addition to that
the iterative data sampling process becomes unnecessary;

• The two user-adapted visualizations of the explanations should be evaluated by the
said end-users.

7. Conclusions

There is a clear need for XAI-methods for black-box methods, such as DNNs, to be
used in marine robotics in general, but the need is also clear for ASVs specifically. In this
work, the preliminary work from [27] was significantly extended through improving the
algorithm, more thorough testing of the approximation, and better communication of the
feature attributions through user adapted visualizations. The algorithm was improved by
introducing ordered feature splitting to the trees, both in terms of more accurate trees and
in faster building time. This makes the LMTs capable of tackling more complex problems
with higher dimensions. Different users require different types of explanations, as well as
different representations of both the information about the ASV and the explanation given
by the LMTs. Therefore, two different visualizations were suggested for two different
users—the developer and the seafarer/operator. The visualizations of the feature attribu-
tions do not serve as a full explanation of the model, but can be used as a step towards
understanding, or at least trusting, the model.

Author Contributions: V.B.G. and A.M.L. conceived the presented idea. V.B.G. developed the soft-
ware and performed the simulations. V.B.G. and O.A.A. formalized the overview of the two different
end-users and worked out their respective visualizations presented in Section 4.2. V.B.G. wrote the
manuscript with support from I.S. and A.M.L. All authors contributed to the final manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Research Council of Norway through the EXAIGON
project, project number 304843.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors, without undue reservation, to any qualified researcher.

Acknowledgments: We thank Tim Miller at The University of Melbourne for providing insightful
feedback and proofreading of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Docking Agent

The DRL-agent used in this work was trained in [17]. Details about the DNN, the
reward function, and parameters used for the PPO-algorithm are given here. For a more
detailed description, the reader is referred to [17]. Due to the task’s complexity, it was
decided to divide the docking problem into several phases and use the results from the
subtasks as a warm start for the full task. The docking problem was divided in the following
way:

1. Dynamic positioning involves getting the vessel to a specific point and keeping the
vessel there. Here the vessel started in close proximity to the point;

2. Berthing involves getting the vessel to the berthing point and keeping it there, starting
in close proximity to the berthing point;

3. Target tracking involves getting the vessel in the vicinity of the berthing point and
keeping it there, starting from the outside of the harbor;

4. Distance berthing involves performing berthing from larger distances.

How the different subtasks relate to each other are shown in Figure A1. As can be
seen in Figure A1, the reward function for the dynamic positioning task was designed
before adding components to the reward function for performing berthing. Distance
berthing can be seen as a combination of berthing and target tracking. Dividing the task
into subtasks allowed for optimizing the reward function for each subtask, as well as

J. Mar. Sci. Eng. 2021, 9, 1178 23 of 27

confirming that the rewards for that subtask make sense. After refining the reward function
for the three subtasks dynamic positioning, berthing, and target tracking, the reward
function for berthing and target tracking was combined to form the reward function used
for the task of performing distance berthing, shown in Equation (3) and repeated here for
convenience with more details:

Figure A1. The different subtasks of the docking problem in relation to each other.

r(x̃d, ỹd, l, dobs) = rdd
+ rψ̃ + robs + rddot

, (A1)

where the different components of the reward function are defined as follows:

rdd
=

Cdd
e

−(d2
d)

2

2σ2
dd , if l = 0 and |ψ̃| < π

2

0, otherwise.
, (A2)

where dd =
√

x̃2 + ỹ2 is the distance from the origin of the vessel to the berthing point.

rψ̃ =

Cψ̃e
−(ψ̃2)2

2σ2
ψ̃ , if l = 0 and rdd

< Cdock
2

0, otherwise.
(A3)

robs =

Cobse

−(d2
obs)

2

2σ2
dobs , if l = 0 and |ψ̃| < π

2

Cobs,T , otherwise.
(A4)

rddot
=


0, if ḋd > 0 and |ψ̃| < π

2

Cddot
ḋd, if ḋd < −1

Cddot
ḋd, otherwise.

(A5)

The parameters for the different reward components in the reward function is given
in Table A1.

Table A1. Parameters used in the reward function.

Cobs,T Cobs Cdd Cỹ Cḋd
σobs σdd σỹ

−600 −2.5 2.5 2.5 1 1 10 0.17

The agent was trained using the PPO-algorithm from [28], and the parameters for the
PPO-algorithm is given in Table A2. The DNN for both the policy- and value-function
was fully connected and had 2 hidden layers of 400 neurons each. The activation function
between the two hidden layers was ReLU, while the activation function on the output was

J. Mar. Sci. Eng. 2021, 9, 1178 24 of 27

tanh. The size of the network, as well as the parameters for the PPO-algorithm and the
reward functions, were found through trial and error.

Table A2. Parameters used for the PPO-algorithm.

Mini batch size 20,000

Replay buffer size 106

Actor learning rate 3× 10−4

Critic learning rate 10−3

Discount rate γ 0.99

Number of epoch updates with minibatch maximum 8

GAE parameter λ 0.96

Clipping range 0.2

Appendix B. The Simulated Environment

The environment consists of two components that need to be simulated, namely the
vessel and the harbor. In Appendices B.1 and B.2, how the vessel’s dynamics and shape are
simulated in [17] is described. In Appendix B.3, how the simulated docking area is defined
in [17] is described.

Appendix B.1. Vessel Dynamics

The vessel was modeled as a rigid-body mass with no external forces and three degrees
of freedom, giving the following two equations of motion:

η̇ = R(ψ)V , (A6)

and
MV̇r + DVr = τcontrol , (A7)

where M is the rigid-body matrix, and D is the constant damping matrix. The position
vector η = [x, y, ψ]T ∈ R2 is given by the Cartesian coordinates (x, y) and the yaw angle ψ.
The velocity vector V = [u, v, r]T ∈ R2 is given by the linear velocities (u, v) and the yaw
rate r, and Vr is the vessel’s velocity relative to the ocean current. The mapping from the
actions directly controlling the thruster angles and forces to the control forces and moments
are done in τcontrol . This mapping was first shown in Section 5.3.3, but is repeated here for
convenience:

τcontrol = T(a)f =

Fx
Fy
T

, (A8)

where a is the vector containing the control actions for the angles of the thrusters, and f the
control actions for the force of the thrusters. Fx, Fy, and T is given by

Fx =
3

∑
i=1

ficos(ai), (A9)

Fy =
3

∑
i=1

fisin(ai), (A10)

T =
3

∑
i=1

fi(lix sin(ai)− liy cos(ai)). (A11)

The rotation matrix R(ψ) is given by

J. Mar. Sci. Eng. 2021, 9, 1178 25 of 27

R(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

. (A12)

The state of the next time step t + 1 is calculated using Euler’s method:

ηt+1 = R(σt)Vth + ηt, (A13)

Vr,t+1 = (M−1(τt(αt, ft)−DVr,t))h + Vr,t), (A14)

where h is the size of the time step.

Appendix B.2. Vessel’s Shape

The vessel’s shape is approximated by a pentagon and has the following spatial
constraints

Sv ∈ {o ≥ Abpb − bb}, (A15)

where pb = [xb, yb] are Cartesian coordinates in body frame,

Av =


−1 0
2.72 −1
−2.72 −1
−1 0
0 −1

, (A16)

and

bv =


−7.7
41.91
41.91
7.7
−41.91

. (A17)

For safety measures, the shape was enlargened by 10% to ensure that the vessel does
not crash into the quay when docking.

Appendix B.3. Docking Area

The docking area is represented by the convex set Sd, which is defined as

Sd ∈ {0 ≥ Ad pn − bd}, (A18)

where pn = [xn, yn] are Cartesian coordinates in the NED-frame,

Ad =


−8.57 −1

0 −1
−0.51 −1
−2.77 −1

0 −1

. (A19)

and

bd =


5163.85
1242.0

1503.91
2846.56

120.0

. (A20)

J. Mar. Sci. Eng. 2021, 9, 1178 26 of 27

Since both the shape of the vessel and the shape of the docking area are represented
by convex sets, the binary variable l stating whether or not the vessel has made contact
with the harbor can be defined as

l =

{
1, if As p− bs < 0, ∀p ∈ Vertex(Sd) ≤ 0.
0, otherwise

(A21)

The berth rectangle can also be defined as a convex set

Sbe ∈ {0 ≥ Abep
n − bbe}, (A22)

where pn = [xn, yn] is the Cartesian position in NED-frame. The vertexes of the overlapping
area between the berth area and the vessel can be found by using the Shoelace formula on
the following two inequalities:

Av p− bv < 0, ∀p ∈ Vertex(Sbe). (A23)

Abe p− bbe < 0, ∀p ∈ Vertex(Sv). (A24)

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [PubMed]
2. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: London, UK, 2016.
3. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: London, UK, 1998.
4. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]
5. Baker, B.; Kanitscheider, I.; Markov, T.; Wu, Y.; Powell, G.; McGrew, B.; Mordatch, I. Emergent Tool Use From Multi-Agent

Autocurricula. arXiv 2020, arXiv:1909.07528.
6. Lillicrap, T.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep reinforcement

learning. arXiv 2016, arXiv:1509.02971.
7. Singh, L.Y.; Hartikainen, C.F.K.; Levine, S. End-to-end robotic reinforcement learning without reward engineering. Robot. Sci.

Syst. 2019. [CrossRef]
8. Haarnoja, T.; Ha, S.; Zhou, A.; Tan, J.; Tucker, G.; Levine, S. Learning to walk via deep reinforcement learning. Robot. Sci. Syst.

(RSS) 2019. [CrossRef]
9. Rolls-Royce. Marine RRC. Rolls-Royce and Finferries Demonstrate World’s First Fully Autonomous Ferry. 2018. Available

online: https://www.rolls-royce.com/media/press-releases/2018/03-12-2018-rr-and-finferries-demonstrate-worlds-first-fully-
autonomous-ferry.aspx (accessed on 18 May 2021).

10. Skredderberget, A.Y.I.A. The First Ever Zero Emission, Autonomous Ship. 2018. Available online: https://www.yara.com/
knowledge-grows/game-changer-for-the-environment/ (accessed on 18 May 2021).

11. Shen, H.; Guo, C. Path-following control of underactuated ships using actor-critic reinforcement learning with mlp neural
networks. In Proceedings of the Sixth International Conference on Information Science and Technology (ICIST), Dalian, China,
6–8 May 2016; pp. 317–321. [CrossRef]

12. Martinsen, A.; Lekkas, A. Curved-path following with deep reinforcement learning: Results from three vessel models. OCEANS
MTS/IEEE 2018. [CrossRef]

13. Martinsen, A.; Lekkas, A. Straight-Path Following for Underactuated Marine Vessels using Deep Reinforcement Learning.
IFAC-PapersOnLine 2018, 329–334. [CrossRef]

14. Meyer, E.; Heiberg, A.R; Rasheed, A.; San, O. COLREG-compliant collision avoidance for unmanned surface vehicle using deep
reinforcement learning. IEEE Access 2020, 8, 165344–165364. [CrossRef]

15. Zhao, L.; Roh, M.I. COLREGs-compliant multiship collision avoidance based on deep reinforcement learning. Ocean Eng. 2019,
191, 106436. [CrossRef]

16. Anderlini, E.; Parker, G.; Thomas, G. Docking Control of an Autonomous Underwater Vehicle Using Reinforcement Learning.
Appl. Sci. 2019, 9, 3456. [CrossRef]

17. Rørvik, E.L.H. Automatic Docking of an Autonomous Surface Vessel: Developed Using Deep Reinforcement Learning and
Analysed with Explainable AI. Master’s Thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,
2020.

18. Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A Survey of Methods for Explaining Black Box
Models. ACM Comput. Surv. 2018. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.15607/RSS.2019.XV.073
http://dx.doi.org/10.15607/RSS.2019.XV.011
https://www.rolls-royce.com/media/press-releases/2018/03-12-2018-rr-and-finferries-demonstrate-worlds-first-fully-autonomous-ferry.aspx
https://www.rolls-royce.com/media/press-releases/2018/03-12-2018-rr-and-finferries-demonstrate-worlds-first-fully-autonomous-ferry.aspx
https://www.yara.com/knowledge-grows/game-changer-for-the-environment/
https://www.yara.com/knowledge-grows/game-changer-for-the-environment/
http://dx.doi.org/10.1109/ICIST.2016.7483431
http://dx.doi.org/10.1109/OCEANS.2018.8604829.
http://dx.doi.org/10.1016/j.ifacol.2018.09.502
http://dx.doi.org/10.1109/ACCESS.2020.3022600
http://dx.doi.org/10.1016/j.oceaneng.2019.106436
http://dx.doi.org/10.3390/app9173456
http://dx.doi.org/10.1145/3236009

J. Mar. Sci. Eng. 2021, 9, 1178 27 of 27

19. Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018,
6, 52138–52160. [CrossRef]

20. Jing, Q.; Wang, H.; Hu, B.; Liu, X.; Yin, Y. A Universal Simulation Framework of Shipborne Inertial Sensors Based on the Ship
Motion Model and Robot Operating System. J. Mar. Sci. Eng. 2021, 9, 900. [CrossRef]

21. Glomsrud, J.; Ødegårdstuen, A.; Clair, A.; Smogeli, O. Trustworthy versus Explainable AI in Autonomous Vessels. Available
online: https://sciendo.com/chapter/9788395669606/10.2478/9788395669606-004 (accessed on 10 October 2021).

22. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17
August 2016. [CrossRef]

23. Ribeiro, M.T.; Singh, S.; Guestrin, C. Anchors: High-Precision Model-Agnostic Explanations. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), New Orleans, LA, USA, 2–7 February 2018.

24. Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic Attribution for Deep Networks. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, Sydney, NSW, Australia, 6–11 August 2017; pp. 3319–3328.

25. Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red
Hook, NY, USA, 2017; pp. 4768–4777.

26. Covert, I.; Lundberg, S.; Lee, S.I. Understanding Global Feature Contributions with Additive Importance Measures. arXiv 2020,
arXiv:2004.00668.

27. Gjærum, V.B.; Rørvik, E.L.H.; Lekkas, A.M. Approximating a deep reinforcement learning docking agent using linear model
trees. Eur. Control. Conf. 2021.

28. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347.

29. Agarap, A.F. Deep Learning Using Rectified Linear Units (ReLU). arXiv 2018, arXiv:1803.08375
30. Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Herrera, F. Explainable Artificial Intelligence

(XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [CrossRef]
31. Hyafil, L.; Rivest, R.L. Constructing optimal binary decision trees is NP-complete. Inf. Process. Lett. 1976, 5, 15–17. [CrossRef]
32. Breiman, L.; Friedman, J.; Olshen. R.; Stone, C. Classification and Regression Trees; Wadsworth: Belmont, CA, USA, 1984.
33. Quinlan, R. Induction of Decision Trees. Mach. Lear 1986, 1, 81–106. [CrossRef]
34. Quinlan, R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers: San Mateo, CA, USA, 2014.
35. Avellaneda, F. Efficient Inference of Optimal Decision Trees. AAAI Conf. Artif. Intell. (AAAI) 2020, 34, 3195–3202. [CrossRef]
36. Izza, Y.; Ignatiev, A.; Marques-Silva, J. On Explaining Decision Trees. arXiv 2010, arXiv:2010.11034
37. Dinu, J.; Bigham, J.; Kolter, J.Z. Challenging common interpretability assumptions in feature attribution explanations. arXiv 2020,

arXiv:2012.02748.

http://dx.doi.org/10.1109/ACCESS.2018.2870052
http://dx.doi.org/10.3390/jmse9080900
https://sciendo.com/chapter/9788395669606/10.2478/9788395669606-004
http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1016/0020-0190(76)90095-8
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1609/aaai.v34i04.5717

	Introduction
	Preliminaries
	The ASV Docking Problem
	The Docking Agent

	Linear Model Trees
	Heuristic Tree Building
	Building Linear Model Trees Utilizing Ordered Feature Splitting

	Increasing Model Interpretability Using Linear Model Trees
	Extracting Feature Attributions from the Leaf Nodes
	Visualization of Feature Attributions

	Results
	Structure of Linear Model Trees
	Computational Complexity
	Evaluating the Fidelity
	Output Error
	Comparing the Paths of the Agent and of the Linear Model Trees
	Comparison of Resulting Forces and Moment on Vessel

	Comparison of Rewards

	Discussion
	Conclusions
	The Docking Agent
	The Simulated Environment
	Vessel Dynamics
	Vessel's Shape
	Docking Area

	References

