
Journal of

Marine Science 
and Engineering

Article

Experimental Assessment of a Conducting Polymer (PEDOT)
and Microbial Biofilms as Deterrents and Facilitators of
Macro-Biofouling: Larval Settlement of the Barnacle
Notobalanus flosculus (Darwin, 1854) from Central Chile

Simone Baldanzi 1,2,3,*, Ignacio T. Vargas 2,4 , Francisco Armijo 2,5 , Miriam Fernández 2,6

and Sergio A. Navarrete 2,6,7

����������
�������

Citation: Baldanzi, S.; Vargas, I.T.;

Armijo, F.; Fernández, M.; Navarrete,

S.A. Experimental Assessment of a

Conducting Polymer (PEDOT) and

Microbial Biofilms as Deterrents and

Facilitators of Macro-Biofouling:

Larval Settlement of the Barnacle

Notobalanus flosculus (Darwin, 1854)

from Central Chile. J. Mar. Sci. Eng.

2021, 9, 82. https://doi.org/

10.3390/jmse9010082

Received: 7 October 2020

Accepted: 6 January 2021

Published: 14 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Facultad de Ciencia del Mar y de Recursos Naturales, Universidad de Valparaíso, Av. Borgoño 16344,
Viña del Mar 2520000, Chile

2 Marine Energy Research and Innovation Center (MERIC), Las Condes 7550000, Chile;
itvargas@ing.puc.cl (I.T.V.); jarmijom@uc.cl (F.A.); mfernandez@bio.puc.cl (M.F.);
snavarrete@bio.puc.cl (S.A.N.)

3 Centro de Observación Marino para Estudios de Riesgos del Ambiente Costero (COSTA-R),
Universidad de Valparaíso, Valparaíso 2520000, Chile

4 Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile,
Santiago 7820436, Chile

5 Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860,
Macul 7820436, Chile

6 Estación Costera de Investigaciones Marinas (ECIM), Pontificia Universidad Católica de Chile,
Osvaldo Marin 1672, Las Cruces 2690000, Chile

7 Center for Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile,
Av. Bernardo O’Higgins 340, Santiago 2690000, Chile

* Correspondence: simone.baldanzi@uv.cl

Abstract: Maritime enterprises have long sought solutions to reduce the negative consequences
of the settlement and growth of marine biofouling (micro- and macro-organisms) on virtually all
surfaces and materials deployed at sea. The development of biofouling control strategies requires
solutions that are cost-effective and environmentally friendly. Polymer-based coatings, such as the
poly (3,4-ethylenedioxythiophene) (PEDOT) and its potential applications, have blossomed over the
last decade thanks to their low cost, nontoxicity, and high versatility. Here, using multiple-choice
larval settlement experiments, we assessed the efficacy of PEDOT against the balanoid barnacle
Notobalanus flosculus one of the most common biofouling species in Southeastern Pacific shores, and
compared results against a commercially available antifouling (AF) coating, and biofilms at different
stages of succession (1, 2, 4 and 8 weeks). We show that larval settlement on PEDOT-coated surfaces
was similar to the settlement on AF-coated surfaces, while larvae settled abundantly on roughened
acrylic and on early-to-intermediate stages of biofilm (one to four weeks old). These results are
promising and suggest that PEDOT is a good candidate for fouling-resistant coating for specific
applications at sea. Further studies to improve our understanding of the mechanisms of barnacle
larval deterrence, as well as exposure to field conditions, are encouraged.

Keywords: biofouling; environmental protection; coastal waters; larval settlement-biofilm interac-
tions; Notobalanus flosculus; Chile

1. Introduction

Marine biofouling refers to the settlement and growth of organisms on artificial
structures deployed in the ocean and is an age-old problem that has been a target for
control since the beginning of human maritime enterprises [1]. In the marine environment
biofouling includes the biofilms of microorganisms that rapidly settle on virtually all
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materials as well as large bodied invertebrates and macroalgae and can attain large biomass
per unit area [2]. Biofilms create diverse, extensive challenges for industries dedicated to the
development of new technologies, such as marine renewable energy (MRE, [3,4]) and great
economic losses to the navigation and aquaculture sectors [5,6]. The transformation and
rapid expansion of the aquaculture and MRE sectors [7–9] must cope with the challenges
imposed by marine biofouling [10].

Several factors act simultaneously to define biofouling risks: (a) the characteristics of
local biofouling species [11], (b) the properties of the material, such as surface topography
(e.g., roughness), wettability and colour [12], (c) the type of application of the material
(small rigid sensor, large moving energy converter) (d) the local environmental conditions,
such as temperature, local productivity, hydrodynamics and oxygen conditions [13] and (e)
the biotic interactions among species during different phases of the ecological succession,
such as the initial biofilm–larval interactions [4,14,15]. It is, therefore, fundamental to under-
stand the complex interactions, often of inter-kingdom origins [16] arising among different
organisms involved in the biofouling process and between those organisms and abiotic
forces [14]. In fact, the existence of a wide range of fouling species demands a variety of an-
tifouling coating strategies, which can be summarized as follows [17]: (i) fouling-resistant
coatings that prevent adhesion of biofilm and/or algae, (ii) fouling-release coatings, which
allow an initial weak foulant-surface adhesion, followed by an easy removal by the appli-
cation of mechanical forces, and (iii) fouling-degrading coatings, which degrade adsorbed
organic material and/or kill biofilm by the action of bactericides. While the application
of fouling-degrading coatings, (e.g., copper and zinc-based anti-fouling coatings) and
recurrent maintenance has been the standard approach in the industry, this is either im-
practical for many applications (e.g., sensors, soft flexible materials, etc.) or questioned
for environmental consequences (e.g., the inevitable release of chemical pollutants to the
environment), making this approach highly questionable and subject to increasing restric-
tions [4,18]. Thus, the race is on to find alternative, environmentally friendly coatings and
strategies to reduce the “biofouling problem”, improve sustainability of the industries and
promote the development of new marine technologies and instrumentation [19].

Fouling-resistant and fouling-release strategies using polymer-based coatings [17]
have blossomed over the last decade, thanks to advances in medical science [20,21] and
nanotechnologies [22]. These coatings are low cost, nontoxic, biocompatible, highly versa-
tile, and their functionalities and architectures can be easily modified, allowing interfacial
adjustments of the antifouling properties [17]. Among polymer coatings, the conducting
polymer poly (3,4-ethylenedioxythiophene) (PEDOT) and its composites have been used
as antifouling and anticlotting coatings in medical applications [20,23,24] and biocorrosion
in marine environments [25–27]. An important factor associated to its application are the
experimental conditions necessary to obtain the PEDOT on different surfaces, which are
related to its adherence, conductivity, and stability. Usually three electrochemical methods
are used to obtain PEDOT, which are cyclic voltammetry (application of a linearly variable
voltage), chronopotentiometry (constant current), and chronoamperometry (constant po-
tential) [28]. In addition, the effects of other experimental variables have been observed
(e.g., solvent, starting unit, monomer and supporting electrolyte kind and concentration,
temperature effect) on the mechanism and process of electropolymerization [29,30]. It is
therefore imperative to specifically study each system to optimize the electropolymerization
conditions according to the intended use for the conducting polymer electrodeposited on
the working electrode. Nonetheless, PEDOT seems to be particularly promising to prevent
marine fouling because it prevents adsorption of non-specific proteins associated with a
biofilm [31,32]. Recently, laboratory experiments showed that PEDOT can delay bacterial
formations by about 35 days in submerged PEDOT-coated coupons compared to uncoated
ones [27]. To our knowledge, there is no evidence of the efficiency of conducting polymers
in general and PEDOT in particular, on preventing direct colonization by macrofouling,
the most harmful components of biofouling for many applications. Here we provide an
experimental assessment to start filling this important information gap for the development
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of environmentally friendly antifouling strategies in the maritime industry. Moreover, little
information is available on strategies that prevent macrofouling colonization of submerged
materials in general, in regions characterised by high productivity, such as the Humboldt
Upwelling Ecosystem, in the Southern Pacific [33].

Several studies have shown that the settlement and fast growth of fouling species in the
Humboldt Upwelling Ecosystem can reach very high biomass accumulation rates [34–36],
among the highest reported in the world. Understanding biofouling dynamics and mech-
anisms to prevent it in this productive region is a major concern for the success of the
MRE and aquaculture industries [36]. The ecological succession at wave exposed sites
was characterised by initial settlement of microbial biofilms that were rapidly colonized
by fast growing invertebrate larvae, leading to deterministic final stages of succession
dominated by barnacles and tunicates of large biomass [36]. Further experiments found
that diverse materials, deployed above and below the thermocline, were colonized indis-
tinctively by late successional species (barnacles and tunicates of large biomass) and that
standard, copper-based antifouling paint was an effective deterrent after seven months
of exposure [36]. Here we advance our understanding on biofouling dynamics by testing
the antifouling efficiency of PEDOT with settling larvae of barnacle Notobalanus flosculus,
an intertidal/shallow subtidal barnacle [37] found in abundance in biofouling communi-
ties [36,38]. Using multiple choice experiments, we tested PEDOT efficiency as a fouling-
resistant coating against barnacle settlement using both a positive control substratum
(roughened acrylic plates) and a negative control (self-polishing Cu2O-based antifouling
paint). Furthermore, since larval-biofilm interactions are complex and some barnacle
species actively select substrate with different biofilm composition [14,15] (or even without
bacterial deposition, Roberts et al. 1991), we evaluated settlement preferences for different
stages of biofilm (i.e., biofilms with different age of deposition).

2. Materials and Methods
2.1. Study Species and Sampling Area

We chose the common balanoid barnacle N. flosculus [39] as test model for our experi-
ments because the species is one of the most frequent barnacle present in the biofouling
of wave-exposed habitats of central Chile [36]. The species is found along the entire coast
of central-northern Chile, and it can attain high abundances from the low intertidal rocky
shore to shallow subtidal environments [37]. Although it can be displaced in late stages of
ecological succession by the larger barnacle Austromegabalanus psittacus and the tunicate
Pyura chilensis [36], larval culture and availability make it an ideal laboratory test model
species for south-eastern Pacific waters. Moreover, understanding the interaction between
anti-fouling materials and barnacles can shed light on other important barnacle fouling
species. Specimens of N. flosculus were collected at Las Cruces, Central Chile (S33.5. W71.6)
from the rocky intertidal shores during Summer 2019. This site was chosen for three
reasons: (i) availability and proximity to the facilities of the larval laboratory of ECIM
(Pontificia Universidad Católica de Chile), (ii) existence of biofouling pilot experiments on
N. flosculus at the same location, and (iii) the existence of Wave Energy Converter projects
in the same area (https://lascrucesem.cl).

2.2. Settlement Substrates

In the laboratory experiments described below, we tested five different settlement
substrates, including biofilms. First, since many field studies have used roughened acrylic
plates to monitor barnacle settlement [34–36,40], we used this material as a positive refer-
ence for larval settlement to contrast settlement on PEDOT. We used an AF paint to assess
whether it inhibits barnacle settlement. Most commercially available antifouling paints use
copper (cuprous oxide, Cu2O) as biocide. To prevent excessive Cu2O leaching within the
experimental aquaria, we opted for a coating with Self-Polishing Copolymer technology
(SPC), which has a controlled and stable hydrolysis release over time (SeaVoyage CDP100,
Sherwin Williams; https://www.sherwin.cl/industrial/marino/). The paint was applied
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on roughened acrylic plates following manufacturer instructions. Although the product
labeling does not specify the presence of copper, the coating does have copper as active
compound and the manufacturer ensures that encapsulation of Cu2O guarantees long-
term retention in the matrix with negligible leaching (below detection; see manufacturer
instructions attached as supplementary material). Considering the short duration of our
experiments and water movement, leaching could not be detected. In any case, AF paint
plates were deployed in the numbers in all aquaria, thus preventing any potentially con-
founding effects. Both roughened acrylic plates and AF paint on which larvae are known to
settle and not settle, respectively, can be considered as the positive and negative references
for our broad hypothesis (Ho: Larval settlement is similar among the different materials).
As organic coating, we used PEDOT, deposited on stainless steel (SS) plates (see details
below). Finally, two different biofilm stages were used, (i) early and (ii) late biofilm stages
(see details below), grown on roughened acrylic plates.

2.3. Preparation of PEDOT Coated Stainless Steel

The electrochemical synthesis of PEDOT was conducted in a conventional three-
electrode cell following the procedures described by Aguirre and colleagues [27], using
a cylindrical mesh of AISI 316L SS (surface area 42 cm2) as counter electrode, Ag/AgCl
(KCl saturated) as reference electrode, and the AISI 304 SS coupons as working electrodes,
exposing a surface area of ≈ 20 cm2. The conducting polymer was electrodeposited from
an organic solution containing 0.1 mol L−1 monomers of 3,4-ethylenedioxythiophene
(EDOT) and 0.10 mol L−1 LiClO4 in acetonitrile (CH3CN). To prevent the oxidation of
the monomers prior to electropolymerization, the solution was de-aerated by purging
with nitrogen gas. Deposition of PEDOT on the working electrode was achieved by cyclic
voltammetry, applying 10 potentiodynamic cycles at a scan rate of 0.05 V·s−1 in a potential
window between −0.7 to 1.3 V. These experiments were carried out using an OrigaLys
potentiostat (OrigaFlex OGF500).

2.4. Surface Roughness and Wettability of PEDOT, Acrylic and AF Coating

We measured surface roughness (SR) and wettability (W) for the PEDOT, acrylic
and AF plates. The SR was measured using a BioLogic Optical Surface Profiler (OSP470)
along two perpendicular transects within a 4 × 2 cm area on a randomly chosen plate of
each substrate. All measurements were then expressed as RMS (mean square root) and
given in µm2. Surface wettability was measured by determining the water contact angle
(WCA) following ASTM D7334-08 (ASTM International, 2013), using water-type II reagent
(distilled) after ASTM D1193-06 (ASTM International, 2011). The W value was used to
define hydrophobic and hydrophilic properties of the substrate from critical surface tension
theory, assigning hydrophilic property to WCA < 45◦, hydrophobic property to WCA > 90◦,
and intermediate property to 45◦ < WCA < 90◦. Finally, the quality of polymer adhesion
was tested by means of a tape-and-peel test, conducted according to ASTM D3359-09ε2
standard (method A, ASTM International).

2.5. Biofilm Deposition and Characterization

The biofilms were grown on 40 finely roughened acrylic plates using emery paper
(grit 240) and exposed in aquaria (50 × 30 × 17 cm) to the running sea water system
of ECIM, which pumps seawater from ca. 1.5 m depth and filtered at 1 mm. Prior to
exposure to running seawater, plates were left in 95% ethanol overnight in the dark. Acrylic
plates were then left undisturbed in the aquaria under natural sunlight, photoperiod, and
seawater temperature, allowing biofilm formation. Different biofilm ages were used in the
two trials described below, early, and late, since the exact age of the biofilm varied between
experiments as mandated by the availability of competent barnacle larvae (see below).

At the end of the biofilm depositions and before deployment in experimental arenas,
each plate was placed in a clean Petri dish and photographed with a digital camera (Nikon
D80 set at f/2, 1/60 s exposure, ISO 400, 50 mm focal length, no flash, and recording in RAW
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format). Lighting was controlled using overhead lights. The photo images (Figure 1A)
were then analysed using the software Image-J2 [41] to calculate the % of biofilm cover
per plate using the standard technique described by Otsu [42]. Briefly, this technique
establishes a threshold to delineate foreground (biofilm) from background (clean acrylic
surface) by reducing a grayscale image (8-bit image) to a binary image and assuming pixel
values form a bimodal histogram. Threshold value were chosen algorithmically using the
Otsu’s method of thresholding, which is one of the most referenced algorithmic techniques.
Once photographed, biofilms were kept in aquaria with still FSSW in the dark avoiding
successive biomass growth for a maximum of three days.

Figure 1. Upper-left panel (A): photographs of some of the plates with different biofilm age (from 1-week to 2-months)
used for settlement experiments and image analysis (see material and methods for details). Upper-right panel (B):
two photographs of cyprids of Notobalanus flosculus settling in the biofilm plates (C) schematic drawing of a lateral view of
the V-shaped stand placed in the outer aquarium used in the settlement experiments and a photograph of the stand with the
experimental plates mounted. In the drawing, the grey-shaded triangle represents the 90 µm nylon mesh used to constrain
larvae during the trial, the yellow rectangle represents the experimental plates, and the dashed blue line represents the level
of water within the aquarium (see material and methods for details).

2.6. Barnacle Collection, Spawning and Larval Rearing

Animals were collected manually by removing approximately 10 small boulders
colonized by adult N. flosculus from the low intertidal zone. In the laboratory rocks were
inspected under a stereoscope and other species were carefully removed with tweezers and
scalpels. External shells of N. flosculus and naked rocks were gently brushed cleaned using a
diluted solution (1:50) of ethanol to reduce the microbial load (i.e., biofilm) and then rinsed
carefully using pre-filtered (1 µm), UV sterilized seawater (FSSW). Rocks were cut into units
of 10 cm long max with 20 to 30 individual barnacles and randomly assigned to five different
aquaria (20 L each) connected to a flow-through system provided with serial polyethylene
filtering—(from 20 to 1µm) and UV light sterilizing apparatus (FSSW). The water leaving
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each aquarium was collected in a 15 × 15 × 20 cm (W × L × H) plastic boxes equipped
with 100 µm mesh for larval retention. The entire system (aquaria with adult individuals
and larval retention filters) was placed inside a temperature-controlled chamber (hereafter
incubation chamber) which allowed full control of light intensity, photoperiod (14:10 h
dark:light) and temperature (15 ◦C, simulating the temperature at the study site when
animals were collected) to stimulate spawning (see below). Barnacles were fed ad libitum
with a daily dose of the microalgae Skeletonema sp. of approximately 2 × 106 cells mL−1

and recently hatched nauplius of Artemia salina. Spawning in the laboratory facilities was
achieved using a light-stress technique. After a week of acclimation to laboratory conditions
in the incubation chamber, animals were kept completely in the dark and starved for 48 h.
After this period, light was applied at full intensity (6 led bulbs of 2520 lumens each) for the
following 24 h, which led to the release of larvae in delayed batches over a period of about
a week. Hatched larvae were collected daily and placed in pre-autoclaved 10 × 10 × 2.5 cm
glass containers half-filled with 150 mL of FSSW. The number of total larvae per container
depended on the number of larvae released per batch, with a maximum concentration of
100 larvae per container. Larvae were kept separated by day of collection to rear similar
cohorts within each container. Following Jonsson and collaborators [43] we identified
6 nauplius stages over the larval developmental time starting from nauplius 2–3 until
cypris stage which is competent to settle (Figure 1B). Larvae were fed with a microalgal
mix (Skeletonema sp. and Isochrysis sp.) given at a concentration of 1 to 2 × 106 cells mL−1.
The FSSW of the glass containers was changed daily.

2.7. Settlement Choice Experiments
2.7.1. Experimental Set-Up

Settlement choice experiments consisted in offering larvae the five selected materials
and biofilms conditions. Experiments were performed using a flow-through, acrylic
aquarium modified from [44]. Briefly, aquarium consisted of an inner V-shaped stand in
which experimental plates could be placed in a 120◦ angle facing each other (Figure 1C).
To the sides of each stands a 90 µm nylon mesh, which was glued allowing FSSW to flow
through while retaining larvae. The design of the experimental chambers ensured that
the experimental plates were the only substrate available to settle (settlement on nylon
mesh was zero; see also [43]). The stand was placed inside an aquarium fed with FSSW
from a header tank. Water temperature during the experiments was kept constant at 15 ◦C
by placing the header tank and the experimental aquarium within an incubation chamber
(same used above for the nauplius rearing).

Each of the five substrates (treatment) was offered on two 10 × 2 cm plates that
covered the entire available surface the V-shape stands. A total of 10 plates (five substrates)
were therefore available in each aquarium. Using a table of random numbers, where each
number represented a plate, we placed one plate of each substrate on the left and the other
on the right-hand side of the V-shape stand, in this manner preventing potential bias due
to unforeseen gradients. Before analyses, the number of settled larvae on the two plates
was added within each replicate aquarium.

2.7.2. Laboratory Trials

As larvae developed and turned into the cyprid stage, they were placed inside separate
glass containers (same as above) filled with 150 mL of FSSW and left in the dark at 6 ◦C for
a maximum of five days [44] until a total 360 individual cyprids were obtained (60 from a
first batch and 300 from a second batch).

Two separated settlement experimental trials were performed, using the two separate
batches of cyprids, so the only difference between the two trials was the age of the biofilms,
which cannot be controlled with precision. In the first trial (named experiment 1), we had
2-month old biofilm and 2-week old biofilm, besides the PEDOT, AF coating and acrylic
plates. A total of 60 cyprids were used in experiment 1. In the second experiment (named
experiment 2), we had 1-month old biofilm and 1-week old biofilm, besides the other three
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materials. A total of 300 cyprids were used in the experiment 2. In both experiments,
cyprids were carefully placed in three (experiment 1) and five (experiment 2) replicated
aquaria with the settlement plates and left undisturbed with flowing FFSW seawater, in
the dark at 15 ◦C, for one week. After this incubation time, aquaria were inspected under
a stereoscope for the evidence/confirmation of larval settlement. Those larvae found
attached to each substrate were gently stimulated using a micropipette to ensure that
settlement had occurred. After this preliminary inspection, and if the majority (>80%) of
larvae had settled, plates were individually transferred to a large Petri dish filled with FSSW
and settlers were carefully counted, and their general condition assessed. The number
of larvae settled was registered for each plate and aquarium. Larvae that did not settle
within the experimental time were recorded but not considered in analyses. Assessment of
statistical significance of larval settlement among plates was conducted through separate
Pearson chi-square tests for each experiment. The test compared observed numbers of
larvae settled on the different substrates against the expectation of equal frequencies on
all substrates. Larvae which had settled within each replicated plate on the aquaria were
averaged before the analysis.

3. Results
3.1. Physical Properties of Materials and Biofilm Coverage

The cyclic voltammetry profiles recorded during EDOT electro-polymerization at the
AISI 304 SS surface in ACN+LiClO4 supporting electrolyte are shown in Figure 2, as well
as a proposed electrochemical polymerization mechanism. In the first cycle (red line) at
1.0 V onset the oxidation of the monomer and a nucleation current loop can be observed.
This is the expected result for a 2D nucleation followed by 3D growth [27]. Later, in the
consecutive cycles, it was possible to observe the redox processes of the polymer. There is
a current increase with the number of scans until a stable cyclic voltammogram (blue line)
is reached, which can be correlated with the doping–undoping processes of the polymer.
This behavior indicates the gradual formation of a conductive film on the AISI 304 SS
coupon and has been previously reported for PEDOT and other conducting polymers [29].
In addition, under the same conditions for obtaining the conducting polymer, a thickness
of ~2 µm has been reported [27].

Figure 2. Cyclic voltammograms recorded during 10 cycles of EDOT electropolymerization in the
potential range from −0.7 to 1.3 V on 304 SS at 0.05 V·s−1 from a 0.1 mol·L−1 EDOT + 0.1 mol·L−1

LiClO4 solution, in CH3CN. Inset: Proposed electrochemical polymerization mechanism of EDOT.
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The physical properties (SR and W) of the experimental substrates are summarized in
Table 1. Surface roughness was highest for the acrylic plate (0.332 µm2) and lowest for the
PEDOT (0.118 µm2) with intermediate roughness observed for AF painting (0.243 µm2).
Wettability was lowest for PEDOT, which was categorized as the most hydrophobic sub-
strate, while acrylic and AF painting had similar intermediate hydrophobicity values (see
Table 1).

Table 1. Results of the analysis of surface roughness and wettability of the two materials
(Acrylic, PEDOT) and antifouling (AF) paint. WCA = Water Contact Angle; High = WCA > 90◦;
Intermediate = 45 ◦ < WCA < 90◦.

Plate Surface Roughness (µm2) Wettability (WCA) Hydrophobicity

Acrylic 0.332 81.9 Intermediate
PEDOT 0.118 103.4 Hydrophobic

AF 0.243 81.13 Intermediate

The mean cover (%) of biofilm, measured with image analysis, increased rapidly
with biofilm age, from slightly over 10% in 1-week-old biofilm, to less than 50% in 2- to
4-week-old biofilms, to 100% cover in 2-month-old biofilm (Figure 3A).

Figure 3. (A) Biofilm deposition cover (%) on acrylic plates calculated from the image analysis of the four different stages of
biofilm, (B) proportion of barnacle settlement in the 5 experimental plates for the experiment 1, (C) proportion of barnacle
settlement in the 5 experimental plates for the experiment 2, (D) results from the polynomial quadratic OLS regression
between larval settlement (mean ± SE) and biofilm cover. BF = biofilm; AF = antifouling paint. Experimental time: 1 week.

3.2. Settlement Experiments

In the experiment 1, from a total of 60 larvae (20 larvae per aquarium), 52 (87%) settled
within the one-week experimental time. Of these, 42% settled on the 2-week-old biofilm,
38% on the acrylic plates, and 10% settled on the 2-month-old biofilm. No larvae settled on
PEDOT or AF-painted plates (Figure 3B).
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In the experiment 2, from a total of 300 larvae (60 per aquarium), 215 (72%) settled
within the experimental time. Of these, 35.2% settled on the 1-month old biofilm, 34.5% on
acrylic plates, 28.9% on 1-week-old biofilm while 1.4% settled on the PEDOT (Figure 3C),
corresponding to three larvae observed in three plates. No larvae settled on the AF paint.
Since no larvae settled on AF paint on any of the experiments and only three larvae
settled on PEDOT (pooling results from experiment 1 and 2), these two substrates were not
included in the statistical comparisons and must be considered significantly different to
those in which positive settlement was observed [45]. In both experiments, the frequency
of settlement in the three substrates compared in the analyses (acrylic plate, early and late
biofilms) was significantly different from the equal settlement expectation. In experiment 1,
larval settlement on 2-month-old biofilm was lower than expected (χ2

(2, 52 = 11.2311:
p = 0.0034) and lower than on acrylic or 2-week-old biofilm (Figure 3). In experiment
2, settlement across treatment was more even and was not significantly different than
expected (χ2

(2, 212) = 1.623; p = 0.443).
Since we observed differences in settlement among different stages of biofilm, which

were probably related to the differences in biofilm age and total cover (Figure 3A), we
examined whether total larvae settled on biofilm (%) was associated to biofilm cover
(Figure 3D). We used percentage of larvae settled as the response variable because the
total number of larvae available to settle was different between the two experiments. The
relationship was significant and non-linear (significant quadratic polynomial fit), with
increased larval settlement at intermediate ages of the biofilm (between 2 weeks and
1 month) than when biofilm was only 1 week old or 2 months old.

4. Discussion

Our experiments showed that (i) the PEDOT is a good candidate for a fouling-resistant
coating, as it showed extremely low to nil barnacle settlement, similar to the commercially
available AF painting, (ii) N. floscolus is a good model species for biofouling experiments
and to investigate larval settlement-biofilm interactions, as well as for implementation
of environmentally friendly AF strategies, (iii) the cypris of N. floscolus prefer biofilms of
intermediate age (between 2 weeks and 1 month), suggesting that larvae of this species
perceive differences and actively choose among microbial communities of different age
and composition.

A central issue of this study is the use of an AF paint as negative reference that con-
tain copper (CU2O), although it has a delayed releasing technology (see supplementary
material). Copper could have affected larval settlement in the plates within each aquaria,
especially those closer to the AF treatment. We recognize this as a limitation to the discus-
sion of our results, although we found that randomizing the plates within each aquarium
should have homogenized this effect. In fact, even assuming that copper was circulating
in the assays, we have still showed differential settlement on the different plates, with
low-to-zero settlement on PEDOT and higher settlement on acrylic and biofilms.

An important result that extends previous results, was the high efficiency of the
conducting polymer coating PEDOT to inhibit N. flosculus larval settlement. A potential
mechanism for this deterrent activity may be associated with the previously documented
prevention of microbial biofilms by a PEDOT coating [27]. The previous authors showed
that PEDOT can delay biofilm formation of at least 35 days, suggesting therefore that
PEDOT should be a candidate for further experimentation, including field testing. The
hydrophobic characteristic of PEDOT possibly also played an important role in settlement
inhibition. Indeed, hydrophobicity of the material has been shown to inhibit larval set-
tlement in Balanus amphitrite ([12,46], but see also [47] for the opposite pattern) and other
important fouling organisms such as mussels [48] as well as spores of marine macroal-
gae [49]. The efficiency of PEDOT as antifouling coating against other taxa, which accounts
for a large fraction of the final biofouling biomass in submerged structures, like the giant
barnacle Austromegabalanus psittacus and the tunicate Pyura chilensis [36], should also be a
priority if PEDOT is to be developed as a marine, environmentally friendly application.
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The conducting polymers are interdisciplinary materials with cohesive aggregation of
various areas, viz., electrochemistry, microbiology, environmental engineering, material
sciences, biochemistry, and many other related areas, and are therefore a prime subject for
research at the interface with marine biology.

We showed that the surface roughness among PEDOT coated surfaces, AF and rough-
ened acrylic largely differ (see Table 1), with PEDOT showing lower roughness than both
positive and negative references. Given that rougher surfaces can generate higher settle-
ment, this can be considered a cofounding effect limiting the interpretation of our results.
Nevertheless, while it is true that the surface topography created by the polymer and
adhered to the solid surface could have been one of the proximate mechanisms deterring
establishment of competent settling larvae, it is also possible that changes in the hydropho-
bic nature of the polymer also played a role (as shown in other species). In previous
work [50], we have shown that larvae of most macro-foulers (barnacles, tunicates) settle
abundantly over a very wide range of surface roughness, bracketing the roughness range
presented in these experiments. Simple comparison among materials of similar surface
roughness will therefore not provide much insight into the mechanisms by which PEDOT
deters larval settlement. The primary experiments presented here were not designed to test
those mechanisms of larval inhibition, but only to determine whether a polymer-covered
solid surface elicits deterrent activity for macrofouling. We consider that the PEDOT effect
on larvae is rather indirect, though affecting the composition and attributes of the biofilms,
as shown by Aguirre and collaborators [27]. We encourage future experiments to focus on
disentangling the mechanisms of action and considering a wide range of roughness and
hydrophobicity and, ideally, independent control of the biofilm.

Notobalanus floscolus demonstrated to be a good candidate for settlement studies
because of its high abundance in the field, low mortality of adults, continuous larval
production and low mortality rate of nauplius (data not shown), which led to a sufficient
number cyprids available for the settlement experiments. These biological characteristics,
its frequent presence in all man-made materials deployed at sea [35,36] and its extensive
geographic distribution make it an ideal model species to compare experimental results
across biofouling studies. While N. flosculus showed relatively high abundance among the
biofouling species of central Chile [36] another barnacle species, such as the giant barna-
cle Austromegabalanus psittacus, can attain much larger biomass and create more serious
problems to the maritime industry. The size of A. psittacus, however, make this species
more difficult to rear under laboratory conditions, larval stages are harder to cultivate, and
its availability along the shore is sparser. Settlement behaviour of barnacles, consisting in
an elaborate sequence of exploratory activity, is well known among different species of
balanoid barnacles, particularly among the family Balanidae of which Balanus amphitrite
and Semibalanus balanoides (not present in the Southeastern Pacific) have been amply used
as model experimental species. The native N. flosculus could fulfil a similar role in science
exploration along the Pacific shores.

In both settlement experiments, cyprids showed settlement preferences for plates with
free-space availability such as the acrylic plates and plates with biofilm covers between
40 and 50% (between 2 weeks and 1 month of biofilm stage), which correspond to mid-
successional microbial biofilm communities [2,15]. It has been reported that larvae of
B. amphitrite preferred biofilm-free surfaces ([51]), but observations with other barnacle
species suggest larvae settle on the biofilm [15,16,52]. In our study, higher settlement found
on the 2-week- and 1-month-old biofilms than on the 1-week-old biofilm that had higher
bare surface (see Figure 3), suggested that N. flosculus larvae preferred to settle on the
established biofilms probably with more favourable chemical and mechanical conditions
than bare space. It is important to highlight that in our experiments, there was a little
mixing of cyprids age during the assay, because not all nauplius turned in cyprids at the
same time. Mixing of cyprids prior the start the experiments strongly reduced this effect,
yet a possible confounding effect of cyprids age on settlement remains. Specifically, caution
should be taken when drawing conclusions about the difference in settlement between early
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and intermediate biofilm deposition ages. Nonetheless the results of low settlement on a
more complete biofilm cover is clear, and suggest that later stages of microbial community
succession are less suitable for larval settlement. While the association between biofilm
age/density and larval settlement is generally positive [52–54], this is not always the case.
For example, the settlement rate of the sea urchin Tripneustes gratilla larvae was not affected
by the increasing age of a mixed consortium of bacteria [55].

Our experiments, as most others examining biofilm-larval interactions, could not
separate between biofilm cover and biofilm age. As soon as the first microbial biofilm
species get established on the surface, within hours of deployment in seawater [56], an
ecological succession of highly diverse microbial species starts, changing diversity and
composition over the course of weeks as the community advances towards late, more
stable microbial composition [15]. Thus, differential N. flosculus settlement among different
ages of biofilms are probably also or even mostly related to the changes in microbial
community composition.

There is still much debate as to whether the microbial community can act as facilitator
or inhibitor of macroscopic organisms (metazoans), such as barnacles [15], and clearly part
of the answer is related to the state of the microbial succession with which larvae interact.
This is today a very active and fascinating area of interdisciplinary research in which basic
scientific breakthroughs could make major contributions to help solve the ages-old problem
of marine biofouling.

5. Conclusions

In conclusion, the efficiency of PEDOT in reducing barnacle settlement was evident
and promising and we showed that this organic coating is a good candidate as fouling-
resistant strategy for specific application at sea. Further tests, however, are needed to
confirm this potential deterrent efficacy against other fouling species, including other
barnacles as the settlement behaviour of this taxonomic group highly depend on the
substrate [15,16,36,52]. Future laboratory experiments should also be designed to examine
in more detail the proximate mechanisms of deterrence of barnacle and other larvae by
PEDOT coatings and its modulation by microbial biofilms, which will allow improvements
in polymer designs. Beyond the laboratory testing, the final test of any antifouling strategy
is the exposure of the material and technology to the diverse fouling community and
environmental conditions encountered at sea where the application is to be deployed. This
lies still ahead in the development of antifouling polymers.
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