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Abstract: Modeling free surface flows in a CFD context typically requires an incompressible approach
along with a formulation to account for the air–water interface. Commonly, pressure-correction
algorithms combined with the Volume of Fluid (VOF) method are used to describe these kinds of
flows. Pressure-correction algorithms are segregated solvers, which means equations are solved
in sequence until convergence is accomplished. On the contrary, the artificial compressibility (AC)
method solves a single coupled system of equations. Solving at each timestep a single system of
equations obviates the need for segregated algorithms, since all equations converge simultaneously.
The goal of the present work is to combine the AC method with VOF formulation and prove its
ability to account for unsteady flows of immiscible fluids. The presented system of equations has
a hyperbolic nature in pseudo-time, thus the arsenal of the hyperbolic discretization process can
be exploited. To this end, a thorough investigation of unsteady flows is presented to demonstrate
the ability of the method to accurately describe unsteady flows. Problems of wave propagation on
constant and variable bathymetry are considered, as well as a fluid structure interaction problem,
where viscous effects have a significant impact on the motion of the structure. In all cases the results
obtained are compared with theoretical or experimental data. The straightforward implementation of
the method, as well as its accurate predictions, shows that AC method can be regarded as a suitable
choice to account for free surface flows.

Keywords: artificial compressibility CFD; free surface flows; volume of fluid

1. Introduction

Free surface flows pose significant challenges when it comes to numerical modeling.
Accurate modeling of the free surface is crucial in many engineering applications ranging from
ship hydrodynamics to floating platforms. Additionally, for the proper hydrodynamic and structural
design of marine vessels and offshore structures, it is mandatory to take into account wave–structure
interaction. To that end, several numerical methods have been developed of varying fidelity.
Boundary element methods (BEM) have been widely used in the literature to model non-linear free
surface waves [1]. They can provide accurate results at a small computational cost [2] and can be easily
coupled with other numerical frameworks (e.g., hydro-aero-elastic solvers [3]). More sophisticated
models have been also developed [4] reducing the problem size and consequently the computational
cost. However, potential methods do not account for viscosity and the usual remedy is to apply viscous
correction on the results [5].

When viscous effects become significant, the usual approach is to employ a computational fluid
dynamic (CFD) framework. Space is discretized using structured/unstructured grids and the Reynolds
Averaged Navies-Stokes (RANS) equations are solved on the underlying mesh. Two main categories
of methodologies have been developed to account for free surface flows. On the one hand, the surface
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tracking methods [6,7] describe the free surface as a moving boundary, with the appropriate boundary
conditions, and the solution process involves only the liquid phase. Deforming grids are used to
track the motion of the free surface boundary. On the other hand, the other broad category for free
surface flows are the surface capturing methods. In this case, the free surface is identified as density
discontinuity and both liquid and air phase are resolved. In respect to the free surface capturing
approach, there are several options, namely the Volume of Fluid method (VOF) [8], the Level Set
method [9] and the Marker-and-Cell method (MAC) [10]. In this approach an additional equation
is added to the system of equations expressing the general fluid properties. Finally, a third category
has been introduced, where a hybrid formulation of a potential approach combined with the RANS
numerical framework is used [11]. In all cases, the flow is treated as incompressible even though
recently there are several works that consider compressibility effects in the air phase [12,13].

The assumption of incompressible flow poses further complexity in the numerical procedure.
The complication arises from the fact that there is no equation for the time evolution of pressure
that satisfies the kinematic constraint of the continuity equation. A straightforward discretization
of the incompressible equations will lead to spurious oscillations (checkerboard problem). One of
the first attempts to tackle the decoupling of the momentum and mass equation is the Staggered
Grid approach [10]. In this framework, the unknown variables are computed in grid points which
are staggered with respect to each other. It is the most straightforward solution to the checkerboard
problem, and it is the method of choice for orthogonal grids. Another approach is the fractional step
methods [14], where an operator splitting is performed and the convective, diffusive and pressure
terms are accounted in different steps. The most well-known and broadly used algorithms accounting
for incompressible flows are the projection methods and its variants pressure-correction algorithms
(e.g., PISO [15], SIMPLE [16], etc.). These methods attempt the inter-equation coupling by perturbating
the mass equation with pressure terms. These algorithms are segregated, meaning that equations are
solved in sequence. In the two-phase flows context, projection methods are by far the most employed
approach to the incompressible equations [17,18], while fractional step methods are recently also
employed in the literature [19].

Contrary to pressure-correction methods the artificial compressibility (AC) method [20–22] solves
the incompressible equation in a non-segregated manner. The coupling is performed by adding
a pressure derivative to the continuity equation that vanishes when convergence is accomplished.
Employing the AC method gives rise to a hyperbolic (for the convective terms) coupled system of
equations in pseudo-time. Upon convergence the original set of equation is restored. Consequently,
the numerical techniques developed for hyperbolic systems (e.g., approximate Riemann solvers) can
be used. Additionally, it removes the need for segregated algorithms since a single system of equations
is formed. On the other hand, the fully coupled system of equations is formed at the expense of an
arbitrary parameter (β).

For one-phase flows the AC method is widely used; however, in the multiphase flows context the
literature is rather limited. In [23] they successfully formulated an AC method for free surface flows in
close containers. Kunz et al. [24] applied a preconditioned AC approach for cavitating flows while [25]
handled the steady state wave problem. Nevertheless, to the authors’ knowledge, employing an AC
formulation to unsteady water wave problems is not explored in the literature.

This paper, based on the work of Kunz et al. [24], proposes an artificial compressibility approach
to simulate free surface flows. We present an AC framework coupled with the VOF approach for
unsteady water flows. A series of numerical experiments are conducted to prove the validity of the
method. Furthermore, we investigate the effect of the AC parameter β and guidelines for its values are
given. Finally, an implicit method to generate and absorb free surface waves is presented.

The present methodology was implemented as an extension to the compressible solver
MaPFlow [26,27]. MaPFlow is developed at NTUA and it is an unstructured cell-centered finite volume
solver, that solves the unsteady Reynolds Averaged Navier–Stokes equations. The solver is parallelized
by using the MPI protocol, while the grid partitioning is performed by the Metis library [28].



J. Mar. Sci. Eng. 2020, 8, 590 3 of 25

The paper is structured as follows. Sections 2 and 3 present Mathematical and Numerical
modeling, while Section 4 includes the analysis of various method parameters. In addition, MaPFlow’s
predictions are validated against available experimental data. The case of wave propagation over
a variable bathymetry is considered and compared to measurements available from [29]. Also,
a fluid–structure interaction problem of a moonpool-type floater is considered and predictions are
compared with available experimental data from [30]. Finally, in Section 5 the basic conclusions
are outlined.

2. Governing Equations

The VOF method uses an indicator function to describe the presence of the liquid or the gas
phase. Specifically, let ρw be the water density and ρα the density of the air, then the volume fraction is
defined as αl = (ρm − ρa)/ (ρw − ρa). The volume fraction is equal to 0 in regions occupied by the air
phase, equals to 1 when only the water phase is present and takes values between 0 and 1 near the free
surface. The interface of the fluids is located in regions of rapid change of the gradient of the indicator
function. The properties of the mixture fluid, density (ρm) and dynamic viscosity (µm), are described
by the blending functions (1).

ρm = αlρw + (1− αl)ρa

µm = µlρw + (1− αl)µa
(1)

The free surface, as presented in Equation (2), is considered to be a material surface.

∂αl
∂t

+~υ · ∇αl = 0 (2)

where~υ = (u, v, w) is the three-dimensional velocity vector,∇ =
(
∂x, ∂y, ∂z

)
is the divergence operator

and t denotes the real time variable.
The artificial compressibility method attempts to overcome the decoupling of the mass and

momentum equations by augmenting the mass equation with a pseudo-time derivative of pressure (p),
as it is shown in Equation (3). The influence of pseudo-time derivative is regulated by the artificial
compressibility factor β.

1
β

∂p
∂τ

+∇ ·~υ = 0 (3)

τ denotes the pseudo-time variable.
The pseudo-time derivative corresponds to the iterative numerical procedure until convergence.

In order to obtain the original equation, the pseudo-time derivative of the convergent solution should
be equals to zero.

The essence of the AC method is that it assumes a relation between pressure and density during
convergence (Equation (4)). This relation is similar to compressible definition of sound speed. However,
in this case the parameter β is a numerical parameter that regulates convergence.

∂ρ

∂p

∣∣∣
τ
=

1
β

(4)

Equation (4) gives rise to a pseudo-sound speed definition. In case of one-dimensional, one-phase
flows, the artificial speed of sound is given by Equation (5). The sound speed is regulated through
the artificial parameter β. In Appendix A it is shown that the pseudo-sound speed regulates the
convergence in a similar way that the sound speed effects the compressible equations.

c =
√

β + u2 (5)
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Regarding the simulation of two-phase flows, the momentum equations written in a conservative
form and expressed in terms of the mixture quantities are presented in Equation (6), along with the
VOF equation expressed also, in conservative form.

∂ρm~υ

∂t
+∇ · (ρm~υ ·~υ) +∇p = ∇σ + ~FB

∂αl
∂t

+∇ · (~υαl) = 0
(6)

In previous equations, σ̄ is the stress tensor and the vector ~FB includes source terms and
body forces.

The Equations (3) and (6) constitute a fully coupled system of equations capable of describing
two-phase flows. The formed system has a hyperbolic nature and consequently numerical techniques
used for such solvers can be used. By introducing the AC method the system of equation becomes
hyperbolic in pseudo-time and consequently numerical techniques used for such solvers can be used.
The convergent solution should satisfy the original sets of equations, by eliminating the pseudo-time
derivatives. Nevertheless, the system in its original form poses several difficulties. Firstly, the density
appears in the eigenvalues of the system yielding it stiff for high density ratios and secondly, the system
cannot be written in a conservative form. To mitigate these perplexities, the preconditioner of Kunz [24]
is employed.

By introducing, the fictitious time derivative, for the momentum equations, the artificial
compressibility method can be used in time-accurate computations. Indeed, employing the dual-time
stepping technique each unsteady timestep is treated as a steady state problem. Furthermore, to express
the governing equations as a single coupled system of equations the time derivatives (real and fictitious)
of the momentum are expressed as a sum of time derivatives for velocity and density. The governing
equation can be written in the following integrated form.

Γ
∂

∂τ

∫
Di

~QdD + Γe
∂

∂t

∫
Di

~QdD +
∫

∂Di

(
~Fc − ~Fv

)
dS =

∫
Di

~SqdD (7)

The system of Equation (7) is a fully coupled system of equations. These equations express
the governing equations with respect to the primitive variables ~Q. In order to cast the system in
conservative form, the transformation matrix Γe is used. In Equation (8) the conservative variables
are given by the vector ~U. The three-dimension vector of velocity is denoted with ~υ, while p is
the pressure.

~U =
[
0 ρ~υ αl

]T
~Q =

[
p ~υ αl

]T

∂~U
∂t

= Γe
∂~Q
∂t

(8)

The Jacobian matrix Γe and the precondition matrix of Kunz Γ are given by (9), where ∆ρ is the
density difference between the heavier and the lighter fluid and I3×3 is the 3 by 3 identity matrix.

Γ =


1

βρm
0 0

0 ρm I3×3 ~υ∆ρ
αl

βρm
0 1

 , Γe =

0 0 0
0 ρm I3×3 ~υ∆ρ

0 0 1

 (9)

Finally, the inviscid and viscous fluxes can be summarized as:

~Fc =


Vn

ρmu∆V + pnx

ρmv∆V + pny

ρmw∆V + pnz

αl∆V

 , ~Fv =


0

τxxnx + τxyny + τxznz

τyxnx + τyyny + τyznz

τzxnx + τzyny + τzznz

0

 (10)
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where Vn = ~υ ·~n, Vg = ~υvol ·~n, ∆V = Vn −Vg, while ~υvol is the velocity of the control volume and~n is
the surface normal of the control volume. The viscous stresses τij are computed as

τij = (µm + µt)

(
∂ui
∂xj

+
∂uj

∂xi

)
− 3

2
ρδijk (11)

where µt is the turbulent dynamic viscosity, k is the turbulent kinetic energy and δij is the
Kronecker delta.

3. Numerical Framework

3.1. Spatial Discretization

The details of the spatial discretization and the evaluation of the fluxes are given in Appendix A.
In this section, the methods used for the reconstruction of the flowfield are described.

The evaluation of the inviscid fluxes in Equation (10) requires an approximation of the left and
right state of a face (Figure 1). These states are computed based on a reconstruction scheme that
extrapolates the cell-centered value of the volumes in the respective face. The right and left state are
designated based on the normal vector of the face, which points from the left state to the right. Due to
the particular nature of the governing equations, a different reconstruction scheme is adopted for
each equation.

RL

Dj
Di

f

rj
→ri

→

rij
→ n→

Figure 1. Reconstruction of variables on face f .

The velocity field is approximated through a piecewise linear interpolation scheme, given by
Equation (12). Since the surface tension is neglected, the velocity field is continuous even across the
free surface. For this reason, the gradients are retained, and no limiter is applied.

~υL = ~υi −∇~υi ·~ri

~υR = ~υj +∇~υj ·~rj
(12)

The vectors~ri,~rj are pointing from the cell center to the midpoint of the face, as illustrated in
Figure 1.

Furthermore, the pressure field is a continuous function in space, since surface tension is neglected.
However, the pressure gradient is discontinuous across the free surface, due to the density jump.
The jump condition that must hold requires

[
∇p
ρ

]
= 0. Many researchers [17,31] have introduced

different schemes to treat this difficulty by adopting a density-based interpolation scheme. In MaPFlow,
the work of Queutey et al. [17] is followed. This scheme is introduced only near the free surface,
while in the rest of the computational domain a piecewise linear interpolation scheme is used, similar to
Equation (12).

Finally, of great importance is the reconstruction of volume fraction field (αl). In order to reduce
the numerical diffusion, it is important to adopt a compressive reconstruction scheme. Over recent
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decades, numerous reconstruction schemes have been introduced which offer low numerical diffusion.
The requirements should meet is boundedness and high accuracy even in large CFL numbers. Most of
these reconstruction schemes are based on Leonard’s Normalized Variable Diagram (NVD) [32]
(e.g., CISCAM [33], HRIC [34], BICS [35]). In the present work the STACS [36] scheme is adopted as
the free surface capturing scheme.

3.2. Temporal Discretization

The present section focuses on the time discretization process. Let ~Q∗ be the vector of unknowns.
An implicit formulation of the problem can be defined as

Γ
∂
(
~Q∗Di

)
∂τ

+ ~R∗ = 0 (13)

where ~R∗ is the unsteady residual (14), which includes the spatial terms of Equation (7), here denoted
as ~RDi

(
~Q∗
)

, and the unsteady term.

~R∗ = ~RDi

(
~Q∗
)
+ Γe

∂
(
~Q∗Di

)
∂t

(14)

If n is the index of the known time solution and k is the internal iterator of the steady problem,
then at the beginning of every steady iteration k = 0, the vector of unknowns is initialized as ~Q∗ = ~Qn

and until convergence they do not satisfy the original unsteady problem. The convergent solution of
the problem is obtained when ~R∗ → 0 and hence ~Q∗ → ~Qn+1.

The unsteady term is discretized as a series expansion of successive levels backwards in time
(BDF schemes) [37].

∂
(
~QDi

)
∂t

=
1

∆t

[
ϕn+1

(
Di~Q

)n+1
+ ϕn

(
Di~Q

)n
+ ϕn−1

(
Di~Q

)n−1
+ ϕn−2

(
Di~Q

)n−2
+ . . .

]
(15)

When the control volume changes in time, the Geometric Conservation Law (GCL) [38] should be
satisfied (Equation (16)).

d
dt

∫
Di(t)

dD =
∮

∂Di(t)
~uvol ·~ndS (16)

Using a similar backwards differentiation in time as in Equation (15) the GCL can be written as

1
∆t

[(
ϕn+1Dn+1

i + ϕnDn
i + ϕn−1Dn−1

i + ϕn−2Dn−2
i

)
+ . . .

]
= ~Rn+1

GCL (17)

where the residual of the GCL is defined as

~Rn+1
GCL =

N f

∑
f

(
Vg∆S

)n+1
f (18)

To ensure that the GCL is satisfied, Equation (17) is applied directly to the discretization of the
unsteady term and thus Equation (15) becomes

∂
(
~QDi

)
∂t

= ~Qn~Rn+1
GCL+

1
∆t

[
ϕn+1

(
~Qn+1 − ~Qn

)
Dn+1

i + ϕn−1

(
~Qn−1 − ~Qn

)
Dn−1

i + ϕn−2

(
~Qn−2 − ~Qn

)
Dn−2

i + . . .
] (19)
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In MaPFlow two successive levels of solution are retained, yielding a second order accurate
scheme in time. The fictitious time derivative of equation is discretized using a first-order backward
difference scheme

∂
(
~Q∗Di

)
∂τ

= Dn+1
i

~Q∗,k+1 − ~Q∗,k

∆τ
= Dn+1

i
∆~Q∗,k

∆τ
(20)

To facilitate convergence the local time stepping technique is used. The local pseudo-timestep is
determined by

∆τ = CFL
Di

Λ̂c,i
(21)

where Λ̂c,i is the convective spectral radii and it is defined by

Λ̂c,i =

N f

∑
j=1

(∣∣~Vn
∣∣+ c−

Vg

2

)
ij

∆Sij (22)

3.3. Turbulence Modeling

Regarding turbulence modeling, the k − ω SST model of Menter [39] is used in this work.
A well-known downside of RANS models when employed for free surface flows is the exponential
growth of the turbulent kinetic energy and eddy viscosity [40,41]. The overproduction of turbulence
viscosity, especially around the interface between water and air, is triggered by the shear layer in the
free surface and results to an artificial damping of the propagated waves. Devolder et al. [40] proposed
a buoyancy term (23) to the turbulent kinetic energy equation.

Gb =
νt

σt

∂ρ

∂xj
gj (23)

Although this technique improves drastically the results, when free surface waves are considered
in more complex flows (e.g., with surface piercing geometries) the problem of the overproduction
persists [41]. For this reason, the Kato—Launder production limiter [42] is also used.

3.4. Wave Generation and Absorption

When considering a numerical wave tank, the generation of the desired wave profile as well as
the effective radiation of the outgoing waves outside the computational domain are two non-trivial
tasks. The generation of steadily progressive waves is performed by forcing the numerical solution,
in a specific part of the computational domain, to follow a wave solution provided by a wave theory.
Furthermore, an artificial damping of the waves is required near the boundaries of the domain.
The boundary conditions, assume a uniform field and thus any physical disturbance created inside the
domain should not reach the farfield boundary. Various techniques have been considered for practical
implementations. Among them, is the coarsening of the computational mesh near the boundaries.
Although this technique is able to smear the solution, the mesh coarsening is case-dependent, and it
does not guarantee zero reflection. In most cases, the boundaries are supplied with damping zones
where the farfield conditions are imposed.

In this work, the numerical generation and absorption of the free surface waves is performed
through source terms applied in the momentum equations, in specific zones of the computational
domain near the farfield boundaries. Typically, these zones extend for a few wavelengths. The general
form of the source terms is given by Equation (24). This source term drives the solution to the imposed
~υtar velocity vector.

~Snwt = Cnwtρm (~υ−~υtar) (24)
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The effect of the source terms is regulated through the Cnwt function, its form is given by
Equation (25), while in Figure 2 it is plotted for different values of α and n. The maximum value
of the function is regulated through parameter α, while its spatial distribution through n parameter.
The function is zero away from the boundaries of the computational domain, scales exponentially
inside the specified zone and it reaches its maximum value α at the boundary. This function was
originally proposed in [43] where the desired numerical solution was imposed explicitly. In the present
work, the desired numerical solution (e.g., a specific wave profile in the generation zone) is obtained
implicitly, meaning that the solver needs to converge to that solution through the numerical procedure.
The source term (25), should be able to drive the solution to the desired one, while at the same time
maintain the convergence properties of the method. Large values of Cnwt may lead to numerical
instabilities, while small values of α may not be able to drive the solution. Typical values for the
exponent n is between 2 and 5 and usually α multiplier is not greater than 200. In the first section of
the numerical results, it will be shown that there is an acceptable range of values for the coefficient
Cnwt where no numerical instabilities appear.

Cnwt = α
exp (xn

r )− 1
exp (1)− 1

, xr =
xs − x
xs − xe

(25)

The source term of Equation (25) is a function of the non-dimensional space variable xr,
which depends on the starting position xs of the specified zone and the end point of the zone xe.

The wave generation is performed by imposing the velocity ~υtar as given by an appropriate wave
theory. In this work, the wave solution is obtained from the semi-analytical method of Fenton’s Stream
Function Theory [44].

In case of the wave damping zones, the target is to minimize the transverse velocity components.
In a two-dimensional context, where the wave propagation is along the x-axis, the velocity vector
~υtar takes the form ~υdamp =

(
0, vin f

)
. This method has been assessed extensively as a wave damping

technique [45]. In the present work, wave generation is accomplished in a similar manner.

 0

 20

 40

 60

 80

 100

 120

 0  0.2  0.4  0.6  0.8  1

C
n
w

t 
[-

]

xr [-]

α = 60 n = 3.5
α = 60 n = 2.0
α = 120 n = 2.0

Figure 2. The effect of the values α and n in function Cnwt.

3.5. Volume Fraction Boundedness

The volume fraction equation is an advection equation. The values of αl should always remain
inside the definition bounds [0 : 1]. However, due to numerical instabilities its value may surpass its
domain of definition. This can be triggered by two factors. First, for the derivation of the conservative
form of the VOF equation a divergence free field was assumed. This may not hold when distorted
meshes are used, near the sharp edges of the wall boundary or when dominant sources are applied
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(such as in damping and generation zones). Secondly, another reason for violating the domain of
definition is the spurious oscillations caused by the reconstruction scheme of the VOF field. High
order reconstruction scheme may introduce unphysical oscillations near sharp discontinuities [46].
This may be treated by employing a first-order approximation which would ensure boundedness, but
at the cost of excessive diffusion. Much work has been done to remedy this behavior, especially in the
frameworks of the Total Variation Diminishing (TVD) schemes [47] and of the Normalized Variable
Formulation [32]. Unfortunately, in practical implementations the requirements for boundedness of
the reconstruction scheme may not be satisfied. Finally, it should be noticed that both arguments are
correlated with the timestep resolution and thus small Courant number are usually adopted.

In MaPFlow a relaxed limit (of order 1e−3) to the volume fraction is applied. Through numerical
investigation it was seen that the VOF clipping was large during the initial stages of simulations;
however, when a steady or periodic state was reached the clipping was reduced significantly. In all
cases, the introduced mass error was negligible.

4. Numerical Results

In this section, numerical results based on the artificial compressibility method are presented.
First, the ability of the solver to accurately generate and propagate waves on constant bathymetry
is demonstrated. Following a grid and timestep sensitivity study, a parametric study regarding
the influence of the artificial compressibility parameter is presented. Afterwards, the interaction
of waves with variable bathymetry is considered and the results are compared with experimental
data. Finally, a two-dimensional fluid–structure interaction problem is presented. In the latter case,
the artificial compressibility methodology is coupled with a dynamic solver and the interaction of
moonpool-type floater with incident waves is examined. The amplitudes of the motions are compared
with experimental data.

4.1. Numerical Wave Tank

The propagation of a cnoidal wave at constant bathymetry is considered. The wave period is
equal to T = 5 s, the wave height is H = 0.05 m, while the depth of the numerical wave tank is
d = 0.5 m. Using the stream function theory of Fenton, the wavelength is found equals to l = 11.08 m.

4.1.1. Wave Generation and Absorption

First, the influence of the generation parameters α, n, as defined in Equation (25) is investigated.
In Table 1 six test cases are defined. The same grid configuration is used in all cases. In the direction of
the wave propagation, the mesh is uniform almost everywhere with 150 cells per wave period, except
in the damping zone where the mesh coarsens based on a geometric rule. In the vertical direction,
20 cells per wave height are employed. Regarding the timestep discretization, a constant timestep is
chosen corresponding to 800 timesteps per wave period (dt = 0.0625 s).

Table 1. Wave Generation Case Definition.

# Case Forcing α Exponent n

1 60 3.5
2 120 3.5
3 300 3.5
4 60 2
5 60 5
6 600 2

The surface elevation, for all cases, inside the generation zone are shown in Figure 3a and is
compared with the analytical solution provided by the Stream Function Theory. It can be seen that
the waveform is distorted for large values of α. Furthermore, discrepancies are noted near the farfield
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boundary. This occurs due to a lagging between the boundary conditions and the time window that
solver need to converge to the imposed wave solution. However, in all cases the solution converges to
the desired wave profile as depicted in Figure 3b, where the free surface elevation is plotted against
time and it is compared with its analytical form.

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0  0.2  0.4  0.6  0.8  1

y 
[m

]

x/λ [-]

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Stream Function

(a)

-0.02

-0.01
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 0.01
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 0.03

 0.04

 24.6  24.8  25  25.2  25.4
y 

[m
]

t/T [-]

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Stream Function

(b)

Figure 3. Influence of parameters α and n in the generation of a wave. Wave characteristics: T = 5 s,
H = 0.05 m, d = 0.5 m, λ = 11.08 m. (a) Wave elevation inside the generation zone after 25
wave periods; (b) Wave elevation at a station after the generation zone.

Tables 2 and 3 present the error of the amplitude of the first four harmonics and the error of
the phase angle in degrees between the analytical and numerical solution. Overall, the error of
the amplitude at the dominant frequency is below 0.5% for all cases, while for large values of α an
amplification in higher frequencies is evident. The exponent n does not seem to have any significant
influence on the results. The general recommendation is that the source terms should have small
influence in the system of equations, in order to enhance the stability of the solver. For this reason, large
values of exponent n and small values of the parameter α are desired. On these grounds, an accurate
representation of the wave profile is obtained, while keeping the influence of the source terms small,
by choosing α = 60 and n = 3.5.

Table 2. Relative Error (%) of Harmonic Amplitudes for Generation Test Cases.

# Case Harmonics
1st 2nd 3rd 4th

1 0.40 0.45 0.88 0.87
2 0.40 0.42 0.77 0.91
3 0.37 0.39 0.63 1.08
4 0.44 0.38 0.69 1.29
5 0.40 0.49 1.10 0.87
6 0.42 0.37 0.31 1.72

Table 3. Phase Angles Error in Degrees for Generation Test Cases.

# Case Harmonics
1st 2nd 3rd 4th

1 0.12 0.06 0.78 1.60
2 0.20 0.09 0.58 1.41
3 0.30 0.27 0.33 1.15
4 0.31 0.33 0.21 1.04
5 0.03 0.32 1.11 1.90
6 0.42 0.71 0.32 0.35
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Next the damping performance of the solver is evaluated. A parametric study is conducted by
varying the values of the parameters α, n and the length of the damping zone. The case studies are
defined in Table 4. The asterisk, in the last two cases, indicates that the damping zone is coarser.
In Figure 4a the surface elevation inside the damping zone is shown for the six test cases, while in
Figure 4b the free surface elevation during a wave period at the beginning of the damping zone is
presented. As illustrated in Figure 4a, the elevation of the free surface near the boundary is completely
damped in case 4, contrary to cases 1 and 3. It is also worth noticing that for the same parameters
α, n (cases 2 and 5) the grid coarsening does not affect the damping of the wave. However, all cases
produce the same wave profile at the beginning of the damping zone.

Table 4. Wave Damping Case Definition (* denotes coarser damping zone).

# Case Forcing α Exponent n Length [L]

1 60 3.5 3
2 120 3.5 3
3 120 3.5 1.5
4 120 3.5 6
5 120 3.5 3 *
6 250 3.5 3 *
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Figure 4. Influence of parameters α and n in the generation of a wave. Wave characteristics: T = 5 s,
H = 0.05 m, d = 0.5 m, λ = 11.08 m. (a) Wave elevation inside the damping zone after 25 wave periods;
(b) Wave elevation at a station before the damping zone; (c) Amplitude of the 1st harmonic of the wave
at various grid locations.
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Furthermore, in order to examine in detail the effect of the damping zone in the wave flume,
the amplitude of the 1st harmonic of the free surface elevation is plotted in Figure 4c, at various stations
across the computational domain. As expected, in all cases the amplitude decays due to numerical
diffusion. However, in case 3 an oscillatory behavior of the harmonics amplitudes is noticed. This is
caused by reflections at the boundary of the domain. Also, in case 1 the amplitude of the 1st harmonic
is not monotonically decreasing in space. This can be attributed to reflections at the farfield boundary,
as in the previous case. In all other cases, the differences are regarded negligible. A damping zone
extending six wavelengths is excessive for practical implementations while large values of α may cause
numerical instabilities. For this reason, α = 120, n = 3.5 is chosen (case 2) for the rest of the work.

Most of the results showed that the generation and damping technique can produce accurate
results. The differences noted for different values of α and n can be considered small. In case of wave
generation, the numerical procedure was able to provide acceptable results in all cases however for
large values of α (>300) numerical instabilities were noticed. Regarding wave damping, the method
can absorb the outgoing waves, provided that the length of the zones is sufficient. Finally, the damping
sensitivity study indicates that the damping performance is more sensitive to the chosen value of α.
For this reason, a larger value of α, compared to wave generation, is chosen.

4.1.2. Grid and Timestep Independence

Once α and n are decided the next step is to perform a grid and a timestep sensitivity study.
The grid parameterization is based on the number of cells per wavelength (λ/dx) and the number
of cells per wave height near the free surface (H/dyFS). Predictions from four grids are compared in
Figure 5 with respect to free surface elevation in Figure 5a and the elevation at a specific station during
a wave period in Figure 5b.

In Figure 5c the amplitude of the first harmonic of the propagating wave is depicted. The figure
shows that in case of the fine grid (blue line) the amplitude of the wave elevation remains almost
constant across the domain. The coarse grid (red line) produces significant numerical diffusion and
the amplitude of the waves is decreasing. The yellow line corresponds to a mesh with highly skewed
cells near the free surface. It should be noticed that although the green line corresponds to a coarser
grid, the numerical diffusion introduced is smaller. Due to very thin cells near the free surface, the CFL
number is large and consequently the numerical diffusion introduced by the temporal discretization is
significant [48]. The computational mesh with 150 cells per wavelength and 20 cells in the wave height
(green line) exhibits similar characteristics with the finer grid (blue line) and consequently, it is kept for
the rest of the simulations.
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Figure 5. Cont.
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Figure 5. Grid and Timestep independence study. Wave characteristics: T = 5 s, H = 0.05 m, d = 0.5,
λ = 11.08 m. (a) Grid Independence: Wave elevation 5 wave lengths after the wave generation zone;
(b) Grid Independence: Wave elevation at a station 5 wave lengths after the wave generation zone.
The snapshot is after 25 wave periods; (c) Grid Independence: Amplitude of the 1st harmonic of the
wave at various grid locations; (d) Timestep Independence: Amplitude of the 1st harmonic of the wave
at various grid locations.

In Figure 5d the amplitude of the first harmonic of the cnoidal wave can be found. Three different
timesteps are considered, based on the wave period. Predictions for 400, 800 and 1600 timesteps per
period are shown. It is evident that that even when 400 timesteps per period are chosen the relative
error after 8 wavelengths is ≈ 2.5%. Predictions with 800 and 1600 timesteps per wave period are in
very close agreement and thus the former is selected in the present work.

4.1.3. Influence of the Artificial Compressibility β Parameter

The next case is to study the impact of the artificial compressibility parameter β on wave
propagation. In general, β regulates the coupling between pressure and density during convergence,
i.e., β regulates the pseudo-sound speed (c). On the one hand, small values of β lead to small values
of c thus the system is strongly coupled, on the other hand large values of β lead to a loose coupling
of the equations. Because the parameter β affects the convergence of the method, it is imperative to
quantify how the choice of β affects the predictions.

Several guidelines for choosing β can be found in the literature. For one-phase incompressible
flows, Turkel [22] proposed that β should scale with the square of the local velocity, and hence β

varies across the domain. Special care should be taken near stagnation points where its value should
be safeguarded. In case of wave propagation, the velocities under the crest are small and so the β

parameter could not depend on the local characteristics of the flow. Nevertheless, the flows considered
in his work did not involve gravity. Kunz et al. [24] applied the AC method for cavitation problems
and suggested values of β ranging from 5− 15 ·~υ2

∞. In order to understand the effect of β on the
predictions, we conduct a parametric study, using five different constant values of β = 1, 10, 50, 100
and 1000.

The numerical setup is based on the previous remarks. The results are summarized in Figure 6.
Figure 6a shows the free surface elevation 5 wavelengths downstream of the generation zone. It is
evident that the predictions yield large differences for the two extreme values of β (β = 1 and β = 1000).
However, for values ranging from 10–100 the predictions yield negligible differences. This is also
exhibited in Figure 6b where the amplitude of the first harmonic for the various β values is shown.
For values β = 1 and β = 1000 elongation of the wavelength is observed. This is an artifact that
implies undesired compressibility effects.
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Figure 6. Influence of the AC β parameter: Wave characteristics: T = 5 s, H = 0.05 m, d = 0.5 m,
λ = 11.08 m. (a) Wave elevation 5 wave lengths after the wave generation zone. The snapshot is after
25 wave periods; (b) Amplitude of the 1st harmonic of the wave at various grid locations; (c) Amplitude
of the 2nd harmonic of the wave at various grid locations; (d) mplitude of the 3rd harmonic of the
wave at various grid locations.

To further investigate the effect of β on the solution, the 2nd and 3rd harmonics are provided in
Figure 6. It is apparent that within the range β = 10− 100 the solution is insensitive to the chosen
value for both the 2nd (Figure 6c) and 3rd (Figure 6d) harmonic. Nonetheless, for β = 1 the differences
are larger but still within an acceptable limit. For β = 1000 the solutions is clearly affected.

From the preceding analysis, it is evident that for the present formulation predictions are
insensitive of value of β within an acceptable range. With these considerations and taking into
account the guidelines of the literature, a value of β = 10 is chosen for the rest of this work.

4.2. Wave Interaction with Variable Bathymetry

We shall now consider the interaction of a wave with a trapezoidal bathymetry. This is a
standard benchmark to evaluate the solver’s capability to accurately simulate dispersive phenomena.
The original experiment was setup and conducted by Beji and Battjes [49], where seven wave gauges
were placed along the wave tank. Later, Dingemans [29] repeated the same experiment using four
more probes. The location of the wave probes are depicted in Figure 7. The generated wave profile has
height h = 2.0 cm and period T = 2.02 s.
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Figure 7. Numerical setup of the wave interaction with variable bathymetry test case.

Figure 7 also illustrates the numerical setup. The length of the numerical wave tank is 31 m.
The damping zone is 9 m and the wave generation zone extends for 3.5 m. The coefficients of
the generation and damping zones are chosen according to the preceding investigation. Following
the guidelines from the previous analysis, a timestep and grid sensitivity study was conducted.
The timestep resolution was based on the incident wave period, and the parametric study included the
values dt = T/400, T/800 and T/1600. The spatial mesh should have enough resolution to account for
the smallest ripples of the irregular wave caused by the interaction with the bathymetry. The sensitivity
study concluded for the timestep resolution to dt = 2.5 e−3s which corresponds to ≈800 steps per
period and to a grid of total size of 3.2 · 103 cells. The grid in the x direction is uniform with dx = 5 mm,
in the y direction the mesh is dense near the free surface (dy = 1 mm) and coarsens gradually towards
the bottom.

Regarding the numerical setup, the artificial compressibility factor is equal to β = 10.
The pseudo-CFL number is equal to 50 and at each time true iteration 10 dual steps were executed
for the convergence of the pseudo-steady state problem. At the bottom, no slip boundary condition
is applied.

The predicted free surface elevation is also presented in Figure 7 (continuous red line). Due to
shoaling, the wavelength is compressed, and energy is transferred to higher harmonics. The deepening
after the bar releases the energy from the higher harmonics and an irregular wave profile is obtained.

The signals recorded at the wave probes are compared against the experimental data in Figure 8,
at eleven stations.

At the first probe (Figure 8a), the two signal appear to have a small difference in amplitude.
However, as the comparison at the other probes suggests it does not affect the overall comparison.
At probe 7 (Figure 8g) a small phase shift is observed between the simulation and the measurements.
Nevertheless, the comparison of free surface displacement is very good at all stations even when
higher harmonic are excited after the shoaling (Figure 8f–k).
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Figure 8. Free surface elevations at the wave probes. Comparison of the numerical results and
experimental data (probes 1–6).

4.3. Moonpool-Type Floater

In this section, the response of a moonpool-type floater in incident wave is investigated and
compared with experimental data from [30]. Under wave excitation the floater is displaced and the
free surface inside the moonpool is subjected to a vertical motion, commonly called piston motion,
while additional sloshing modes may appear. The piston motion inside the moonpool reduces the
motion of the structure induced by the incident waves. This problem poses additional challenges
since the motion of the floater is induced by the underlying flowfield. It is noted that viscous effect
are significant in this case since the flow separation at the sharp edges directly affects the free surface
elevation inside the moonpool. Employing potential methods in this case results in overshoots of the
piston mode and thus viscous corrections must be included [50,51].
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The motion of the floater is described by Newton’s second law. At each unknown timestep n + 1,
Equation (26) should be satisfied.

M~̈xn+1
= ~Fn+1

tot (26)

The vector ~x contains the unknown displacements and rotations and the double dots imply twice
differentiation with respect to time. The matrix M is the mass matrix and vector ~Ftot includes the sum
of the forces applied to the body (e.g., hydrodynamic forces, external forces, etc.). The above system
of equations constitutes a non-linear system of equations. A linearization is imposed based on the
assumption of small perturbations in each pseudo-timestep. As a result a linearized δ-formulation is
obtained (Equation (27)).

Mδ~̈xk = δ~Fk
tot (27)

In the above equation ~Fk
tot is the force vector calculated at the known timestep k and for the correction

δ~x applies δ~x = ~xk+1 −~xk.
This linearization implies an iterative process during pseudo-timesteps. At each k-iteration the

correction components δ~x are computed based on the hydrodynamics forces provided by the solver.
The iterative procedure ends when both solvers converge, implying a strong coupling between them.

The second order ordinary differential equations (ODE) (27) are solved with the Newmark-β

method with coefficient values β = 0.25 and γ = 0.5. This method uses a second order Taylor
expansion variant, in which a predictor step is intervened based on the coefficients β and γ.

Since the geometry, is not stationary an appropriate grid technique needs to be adopted to account
for the moving boundaries. In cases of small amplitude motion, the deforming grid technique could
be used. In MaPFlow the nodes of the mesh are moved based on a damping term as described in [52].

In the experiments conducted by [30] two barges of rectangular cross section of 20 cm were
mounted together to form a moonpool of 10 cm. The breadth of the barges was 14 mm smaller than
the width of the experimental wave tank and thus 3D effects are limited.

Following the notation of the experiments, the test case is defined on the y–z plane. In a
two-dimensional context, a body has three degrees of freedom, namely the sway motion (motion along
the y-axis, η2), the heave motion (motion along the z-axis, η3) and the roll motion (motion around the
x-axis, η4).

The setup of the experiment is depicted in Figure 9. The structure is mounted with horizontal
mooring lines to prevent it from drifting. At the end of these lines springs were connected to allow the
structure to move. Pre-tension was applied to the springs, which was much larger than the tension
due to motion, thus the restoring effect of the mooring system was always active. A coupling between
sway and roll motion is assumed because the center of gravity of the model and the mounting point of
the mooring lines were not in the same height. Considering the abovementioned remarks, the rigid
body motion is described by Equations (28).

mη̈2 =
∫

∂S
−pnydS +

∫
∂S

(τ̄~n) ·~nydS− K22η2 − K24η4

mη̈3 =
∫

∂S
−pnzdS +

∫
∂S

(τ̄~n) ·~nzdS

Iη̈4 =
∫

∂S
−p~n×~rdS +

∫
∂S

(τ̄~n× r)dS− K42η2 − K44η4

(28)

In the above equations m is the mass of the structure, I is the inertia of momentum about its center
of gravity,~n is the normal unit vector defined on the boundary S of the body, ny, nz the components of
~n, p is the fluid pressure and τ̄ is the viscous stress tensor. Lastly, K22 and K44 are the spring constants
for the heave and roll motion, respectively and K24 = K42 are the spring constants for coupling of the
heave and roll motion due to the level arm formed between the axis of the restoring forces and the
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center of gravity. A more detailed report for the experimental setup and the physical modeling of the
rigid body motion can be found in [53].

Generation Zone Damping Zone0.2m 0.2m

0.1m

0.097m

1m

KMRKMR

η2

η3
η4

z

y

Figure 9. Numerical setup for the moonpool-type floater test case.

The experiment considered three types of waves based on the wave height to wavelength ratio
for several wave periods. In the present study, only results for waves with ratio H/λ = 1/30 for wave
periods between the range [0.6 : 1.2 s] are presented.

The flow is considered fully turbulent for all wave periods. This is valid for a large amplitude of
motion, where wave-breaking occurs. In smaller amplitudes, the production of turbulent viscosity is
lower resulting in an almost laminar approximation. The grid and the timestep is the same for all cases.
In the stream-wise, direction the grid is almost uniform with size of dy = 0.008 m and in the transverse
direction in the near free surface regime dz = 0.001 m. On the damping zone region, the mesh coarsens
with a geometric rule to effectively damp the outgoing waves. The grid around the structure has an
O-grid topology which is dense to account for the vortex formation near the sharp edges. The total
size of the mesh is 3 · 105 cells. Based on a sensitivity study, the timestep is selected equals to 0.001 s .

In Figure 10 the results are compared with the experimental data. In Figure 10a–c the Response
Amplitude Operators (RAOs) of the motions are presented, while Figure 10d presents the amplitude
of the space averaged free surface elevation inside the moonpool. Regarding the sway motion,
the amplitudes scale linearly with respect to the wave period and the results coincide with the
experimental ones. The heave amplitudes appear to have a resonant behavior for wave periods
between T = 0.65 s and T = 0.8 s. This behavior is depicted in the amplitudes of the free surface as
well. Small discrepancies are observed near this resonant region. Furthermore, the Figure 10c shows
the amplitudes of the roll motion, except for large wave periods the present method produces similar
results with the experiments. However, larger amplitudes of roll motion are obtained for wave periods
between T = 1 s and T = 1.2 s. This could be caused due to the assumption of two-dimensional
flow. Additional drag forces could be act on the structure caused by the liquid between the side of the
structure and the wave tank.

In Figure 11 vorticity near the edges of the structure is depicted where the flow separation at the
corners of the structure is evident. The flow separation at the lower entrance of the moonpool regulates
the resonant behavior of the piston mode which is apparent for wave periods between T = 0.75 s and
T = 0.85 s. Finally, the pressure field upstream of the structure is presented in Figure 12. The figure
illustrates the pressure distribution at the incident wave, the free surface elevation inside the moonpool,
as well as the pressure drop due to vortex formation near the sharp edges of the structure.
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Figure 10. RAOs of the three motion and the space averaged free surface elevation inside the moonpool
for wave steepness H/λ = 1/30. ζa is the amplitude of the incoming wave.

Figure 11. Vorticity contours multiplied by the volume fraction near the moonpool-type structure.
The wave steepness is H/λ = 1/30 and the period is T = 0.95 s.



J. Mar. Sci. Eng. 2020, 8, 590 20 of 25

-290

p-p
260

Figure 12. Pressure contours upstream of the moonpool-type structure. The wave steepness is
H/λ = 1/30 and the period is T = 0.95 s.

5. Conclusions

Concluding, in the present work a two-phase flow solver was formulated based on the artificial
compressibility approach and the volume of fluid method. In the first part, the derivation of the
hyperbolic system of equations was presented. A detailed analysis of the time discretization process
was illustrated, while emphasis was given to account for the moving boundaries. Regarding the spatial
discretization the finite volume method was used, while an approximate Riemann solver was used for
the evaluation of the inviscid fluxes. Finally, a simple and efficient implicit methodology to generate
and absorb free surface waves was illustrated.

A series of numerical test cases was performed to demonstrate the efficiency and consistency of
the solver. A simple wave propagation problem on constant bathymetry was chosen to illustrate the
ability of the solver to generate, propagate and damp free surface waves. Also, the same configuration
was used to investigate the effect of the artificial compressibility parameter-β. The results indicate
that there is a wide range of values where no significant differences were observed. Regarding the
last two validation examples, the predictions of the solver were compared to available experimental
data. In case of the variable bathymetry the solver was able to perform well and account for the higher
harmonics developed due to shoaling.

In the final test case, it was shown that the present methodology was able to produce adequate
results for a surface piercing problem with wave–structure interaction. The solver was able to handle
the fluid–structure interaction problem accurately being in close agreement with the measurements.

As a last remark, the proposed methodology compared to the alternatives provided by the
literature solves a single system of equations in a coupled manner. The formulation enables simulation
of free surface flows using a hyperbolic perspective. The method performed well in a variety of cases,
providing a viable alternative for modeling free surface flows within the CFD framework.
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Appendix A. Discretization of the Hyperbolic System of Equations

The equations of flow (7) are discretized-based on the finite volume method. Control volumes
are defined in every cell of the mesh with its center being the geometric center of the mesh elements.
The unknown variables ~Q are expressed over a control volume Di as

~Q =
1

Di

∫
Di

~Q (~x; t)dD (A1)

The surface terms of Equation (7) are considered constant in each face of the control volume. Thus,
the surface integrals are approximated through a sum of surface terms evaluated at the midpoint of
every face. Furthermore, the volume terms are considered constant in each Di. As a result, the spatial
terms are computed based on the following equation.

~RDi '
N f

∑
f

(
~Fc − ~Fv

)
f

∆S f − Di~Sq (A2)

The inviscid fluxes are computed through the approximate Riemann solver of Roe [54].
As mentioned in Section 2, the eigenvalues of the inviscid Jacobian depend on the density field.
For this reason, the preconditioned matrix Γ is used in the evaluation of fluxes. The preconditioned
Jacobian Ac is defined as

Ac =
∂~Fc

∂~Q
= ΓΓ−1 Ac = ΓAc (A3)

where Γ is the preconditioned matrix (9) and Γ−1 is the inverse matrix. The matrix Ac is given by
Equation (A4).

Ac =


0 nx ny nz 0

nx ρm (nxu + ∆V) ρmnyu ρmnzu u∆V∆ρ

ny ρmnxv ρm
(
nyv + ∆V

)
ρmnzv v∆V∆ρ

nz ρmnxw ρmnyw ρm (nzw + ∆V) w∆V∆ρ

0 αlnx αlny αlnz ∆V

 (A4)

The convective fluxes are computed, at a face f , using the Roe approximate Riemann solver as

~Fc, f =
1
2

(
~Fc

(
~QR

)
+ ~Fc

(
~QL

))
− 1

2
Γ
∣∣∣Ac

∣∣∣
f

(
~QR − ~QL

)
(A5)

The indices ·R, ·L denote the right and the left state of the face, as defined by the normal vector.
The Jacobian matrix is computed based on the absolute values of the eigenvalues of the system.
Specifically, let R−1 be the matrix constructed by arranging the left eigenvectors of Ac in a column
wise order, R be the matrix constructed by arranging the right eigenvectors in a row wise order and∣∣Λ∣∣ be the diagonal matrix constituted by the absolute values of the eigenvalues, then the Jacobian
matrix can be written as ∣∣Ac

∣∣ = R−1∣∣Λ∣∣R (A6)

The inviscid Jacobian of Equation (A6) is computed based on the Roe averaged quantities at face
f , given by (A7).

~v =

√
ρR~υR +

√
ρL~υL√

ρR +
√

ρL
(A7)
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The eigenvalues of the Jacobian matrix Ac are given by equation (A8). The eigenvalues have
similar form as in the case of the compressible equations. The difference is the pseudo-sound speed
does not depend on the flow characteristics, but on the choice of β parameter and the hyperbolic
definition of the equations is valid only during pseudo-time iterations.

λ1,2,5 = Vn −Vg

λ3 = Vn − c−
Vg

2

λ4 = Vn + c−
Vg

2

(A8)

In previous equations, c is the artificial sound speed, where in case of two-phase flows, is defined
as

c =

√
β +

(
Vn −

Vg

2

)2
(A9)

Finally, the eigenvectors of the Jacobian (A3) are given by Equations (A10) and (A11).

R =



0 0 −ρmcm ρmcp 0

x1 x2 nx +
uλ3

β
nx +

uλ4

β
0

y1 y2 ny +
vλ3

β
ny +

vλ4

β
0

z1 z2 nz +
wλ3

β
nz +

wλ4

β
0

0 0 0 0 1


(A10)

R−1 =



1
ρmcg

[nx (wy2 − vz2) +

ny (uz2 − wx2) +

nz (vx2 − uy2)]

1
cg

[
β
(
nzy2 − nyz2

)
+

∆V (wy2 − vz2)]

1
cg

[β (nxz2 − nzx2) +

∆V (uz2 − wx2)]

1
cg

[
β
(
nyx2 − nxy2

)
+

∆V (vx2 − uy2)]

0

1
ρmcg

[nx (vz1 − wy1) +

ny (wx1 − uz1) +

nz (uy1 − vx1)]

1
cg

[
β
(
nyz1 − nzy1

)
+

∆V (wy1 − vz1)]

1
cg

[β (nzx1 − nxz1) +

∆V (wx1 − uz1)]

1
cg

[
β
(
nxy1 − nyx1

)
+

∆V (vx1 − uy1)]

0

− 1
ρm 2c cg

(β + λ4Vn)
1

2c cg
βcpnx

1
2c cg

βcpny
1

2c cg
βcpnz 0

1
ρm 2c cg

(β + λ3Vn)
1

2c cg
βcmnx

1
2c cg

βcmny
1

2c cg
βcmnz 0

0 0 0 0 1



(A11)

In the preceding equations cm, cp and cg are expressed as

cm = c−
Vg

2
, cp = c +

Vg

2
, cg = β + Vn∆V (A12)

while for the unit vectors ~x1 = (x1, y1, z1) and ~x2 = (x2, y2, z2) should hold ~x1 ·~n = ~x2 ·~n = ~x3 ·~n = 0.
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