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Abstract: In this study, we report the response of phytoplankton community composition to cold
and warm interannual events affecting the waters off the Baja California Peninsula from 2007 to
2016 based on data obtained from a single marine station (31.75◦ N/116.96◦ W). Included variables
were satellite chlorophyll a, sea surface temperature (MODIS/Aqua), upwelling intensity, and field
data (phytoplankton pigments, inorganic nutrients, light penetration). Phytoplankton pigments
were determined by high performance liquid chromatography, and CHEMTAX software was used
to determine the relative contributions of the main taxonomic groups to chlorophyll a. Our results
confirm the decrease in phytoplankton biomass due to the influence of the recent Pacific Warm
Anomaly (2014) and El Niño 2015–2016. However, this decrease was especially marked at the surface.
When data from the entire water column was considered, this decrease was not significant, because
at the subsurface Chla did not decrease as much. Nevertheless, significant changes in community
composition occurred in the entire water column with Cyanobacteria (including Prochlorococcus)
and Prymnesiophytes being dominant at the surface, while Chlorophytes and Prasinophytes made
a strong contribution at the subsurface. Analysis of the spatial distribution of SST and satellite
chlorophyll a made it possible to infer the spatial extension of these anomalies at a regional scale.

Keywords: phytoplankton community composition; phytoplankton pigments; Chemtax; MODIS;
Pacific Warm Anomaly; El Niño; California Current System

1. Introduction

Phytoplankton comprise the main primary producers in the ocean worldwide and play a
fundamental role in aquatic ecosystems. In particular, the taxonomic composition of phytoplankton
determines the trophic structure of the pelagic ecosystem and the transfer of organic matter through
these trophic levels or to deeper ocean layers [1]. For this reason, its biodiversity is considered to be a
key factor for ecosystem functioning and services, and the monitoring of its variability is considered
necessary to mitigate or manage changes resulting from anthropogenic pressures [2]. Recent studies
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based on satellite-derived chlorophyll data have shown a global phytoplankton decline over the last
century [3,4] that has been associated with global warming and an increase in stratification that isolates
surface waters from cool, nutrient-rich deeper water [3]. This has also been suggested to be a potential
mechanism altering phytoplankton community composition through an increase in the proportion of
small-sized groups [5,6], with consequences in higher trophic levels and fisheries [7].

Off the Baja California Peninsula (México), seasonal and interannual oceanographic variability
is related to the influence of the southern component of the California Current System (CCS). At the
surface (<100m), the low salinity Subarctic Waters of the California Current (CC) flow equatorward,
while the California Undercurrent (CUC) flows poleward along the continental slope characterized by
high salinity and high nutrient concentration [8]. Northwesterly winds prevail most of the year [9],
leading to coastal upwelling that intensifies during spring and summer [8]. In addition, positive
wind stress curl generates Ekman pumping that brings the CUC to the surface [8]. These processes
determine the variability of phytoplankton biomass and community composition [10,11], as well as
the biomass of organisms at higher trophic levels [12]. Interannual events such as El Niño or La Niña
are known to disrupt this overall pattern, through their influence on upwelling intensity. In general,
warm events promote the weakening of upwelling and a deepening of the nutricline, hence reducing
the input of nutrients and leading to a decrease in phytoplankton biomass [10,13,14]. This has been
associated with a drastic decrease in diatom abundance, with a consequent increase in the proportion
of small cells, i.e., pico- and nanoplankton [15–17]. In contrast, cold events promote the shallowing of
the nutricline, as well as high phytoplankton biomass and primary production, particularly favoring
diatom growth [10,16].

During 2013, a warm anomaly started to develop in the northeastern Pacific Ocean, gradually
affecting waters off the US west coast and the Baja California peninsula, México, from May 2014
throughout 2015 [18]; this event was named “The Blob” [19] or, more recently, the Pacific Warm
Anomaly [20]. While this warm anomaly occurred in the NE Pacific Ocean, the warmest tropical
Pacific sea surface temperature (SST) anomalies on record evolved from late spring 2015, triggering
a strong El Niño event [21,22]. In the California Current System, SST anomalies reached record
amplitudes exceeding three standard deviations (~3 ◦C) [23,24]. The influence of these events on
various biogeochemical variables in the coastal zone off California (USA) and Baja California (México)
has been documented in several studies [14,25–27]. The most noticeable consequences included
the increase of water column stratification [14], strong negative anomalies in chlorophyll a (Chla)
concentration [14,28] and primary production [29], as well as changes in the taxonomic composition at
higher trophic levels. For example, the intrusion of foreign species into the Southern California region
was observed, along with the increased abundance of some fishes, crustaceans, tunicates, and other
gelatinous zooplankton, some of which are considered to be markers of El Niño events [23]. Moreover,
the comparison of irradiance and nutrient concentrations during warm events versus those in previous
years [29] revealed that, although these variables were similar, productivity decreased. These authors
suggested that changes in the species composition of primary producers may account for this decrease.

Many of these investigations [14,25,26,28] reported the effect of these warm anomalies on sea surface
temperature and phytoplankton biomass from the SCC southern region using information obtained
from remote sensors. However, off the Baja California Peninsula, only the work of Linacre et al. [30]
and Jiménez-Quiróz et al. [31] reported results regarding phytoplankton biomass and its taxonomic
composition in consideration of field data from the entire water column; however, their work was
based on a reduced number of cruises and a short period of time.

In 2007, the coastal monitoring program ANTARES Baja California (ABC) was established in this
region as part of the Latin-American ANTARES network (https://antaresiaiproject.wordpress.com/).
The ANTARES network comprises a series of ground stations with the general objective of studying
long-term changes in coastal ecosystems in sites around Latin America, with the aim of distinguishing
those whose changes are due to natural variability from those whose changes are due to external
perturbations (anthropogenic effects). To achieve this goal, in situ data from coastal stations and
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satellite data from the region are shared among members and with the public. In the present work, we
analyze data regarding phytoplankton pigments and taxonomic composition collected over ten years
of observations (2007 to 2016). The station is located in the continental slope around 10 km off Todos
Santos Bay (northern Baja California, México). Satellite-derived chlorophyll a concentration at a higher
temporal resolution was used to complement in situ information, and satellite-derived sea surface
temperature (SST) and upwelling intensity were taken into account to explain temporal tendencies.
The results of this work will contribute to the understanding of the response of coastal ecosystems of
the California Current System to these and other interannual events and will provide insight into how
ocean warming can alter marine food webs.

2. Materials and Methods

2.1. Sampling Procedure

The study site is located 10 km off Bahía de Todos Santos (Ensenada, Baja California, México)
at 31.75◦ N and 116.96◦ W (Figure 1), on the continental slope where water depth is about 700 m.
The observation period ranged from May 2007 to February 2016, with 40 sampling days (Table 1).
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Figure 1. Location of the study site (Antares station). A regional view of the study area is shown to
the right.

Water samples were collected with GoFlo bottles from the surface to around 40–60 m depth.
During the first two years (2007 to 2008), sampling depths were chosen based on the fluorescence profile
measured with a CTD, and samples were collected at the surface, above the subsurface fluorescence
maximum, at the fluorescence maximum, and below it. This maximum was always located at depths
between 30 and 40 m. During subsequent years, sampling depths were fixed at: the surface, 10,
30, 40, 50 and 60 m. Secchi disk readings (SD) were used to calculate the attenuation coefficient for
downwelling irradiance (Kd) and euphotic zone depth (Ze) following the equations Kd = 1.7/SD and Ze
= 4.6/Kd [32]. Immediately after collection, 50 mL of water was filtered through 25 mm GF/F filters and
the filtrate was transported in ice to the laboratory. At the laboratory, samples were stored frozen from
one to six months before analyzing inorganic nutrients (NO3+NO2, H4SiO4, and PO4) using a Skalar
(Skalar Analytical B.V., Breda, The Netherlands) automated nutrient analyzer [33]. The remaining
water sample from each depth was immediately transferred to 3.78 L amber high-density polyethylene
Nalgene bottles (Thermo Scientific) and kept in a shaded place in the ship for transportation to the
laboratory (2 to 3 h). Potential degradation of pigment samples due to handling and transportation
was previously tested, with no significant degradation being observed.
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Table 1. Sampling dates at Antares BC station. The sequential numbering in bold is used for reference
in the tables in the supplementary material.

Year Date Year Date Year Date

2007

1. 28 May

2010

14. 12 May

2013

28. 12 March
2. 26 June 15. 31 August 29. 16 May
3. 4 September 16. 27 October 30. 28 August
4. 9 October 17. 26 November 31. 3 October

2008

5. 15 July

2011

18. 12 January 32. 28 November
6. 2 September 19. 5 May

2014

33. 21 January
7. 1 October 20. 15 June 34. 13 March
8. 6 November 21. 25 August 35. 17 June

2009

9. 16 January 22. 13 October 36. 29 July
10. 26 March

2012

23. 21 February 37. 6 November
11. 18 April 24. 27 July

2015
38. 10 March

12. 28 May 25. 30 October 39. 22 October
13. 30 July 26. 24 November 2016 40. 11 February

27. 7 December

Once in the laboratory, 2 L of seawater was filtered using positive pressure (10 to 15 mmHg)
through 25 mm GF/F filters; afterwards, filters were placed folded in half in aluminum foil and stored
in liquid nitrogen until being tested for phytoplankton pigments using HPLC.

2.2. HPLC Pigment Analysis

Samples from 2007 to 2011 were analyzed at the Primary Productivity Laboratory (PPL) of the
Faculty of Marine Science (Universidad de Baja California) using a Varian ProStar HPLC system
following the methodology of Barlow et al. [34]. Five milliliters of acetone-trans-b-apo-8/-carotenal
solution were added to frozen filter samples (25 mm) in centrifuge tubes. To enhance extraction,
samples were sonicated for 10 s, centrifuged at 3000 rpm for 10 min, and then stored overnight in
a freezer. Supernatants were filtered through PTFE membrane filters (0.2 µm pore size) to remove
filter residues and cell debris. Prior to injection to the HPLC, 300 µL of the extract were mixed with
300 µL of 1M ammonium acetate buffer; 200 µL of the extract–buffer mixture was injected into the
chromatography column. Pigments were separated at a flow rate of 1 mL min−1 by a steep linear
gradient using a Varian ProStar binary pump set as follows (minutes; % solvent A; % solvent B): (0; 75;
25), (1, 50; 50), (20; 30; 70), (25; 0; l00), (32; 0; 100). Solvent A consisted of 70:30 (v/v) methanol: l M
ammonium acetate; solvent B was 100% methanol. The column used was an Alltech absorbosphere C8,
3 µm, and 150 × 4.6 mm maintained at 25 ◦C.

Samples from 2012 to 2014 were analyzed at the Ocean Ecology Laboratory (NASA Goddard
Space Flight Center, Greenbelt, MD, USA) using the protocols by Van Heukelem and Thomas [35]
and Thomas [36]. Samples from 2015 and 2016 were analyzed at the PPL laboratory using the same
methodology and equipment. Pigments were extracted using 100% acetone, with Vitamin E as internal
standard. As in the previous method, samples were sonicated for 10 s, centrifuged at 3000 rpm for 10
min, and then stored at −20 ◦C for 24 h. Supernatants were filtered through PTFE membrane filters (0.2
µm pore size) to remove filter residues and cell debris. Extracts were filtered using 0.2 µm Acrodisc
filters; filtrates were placed in the autosampler of an HPLC Agilent 1260 system equipped with an
Eclipse Column XDB C8 (Agilent, Santa Clara, CA, USA). A gradient of three solvents was used;
solvent A was 70:30 methanol:28 mM TbAA (pH 6.5), solvent B was 100% methanol, and solvent C
was 100% acetone.

Pigment standards were obtained from Sigma-Aldrich and DHI (Denmark); pigment concentration
in samples was determined using a Lambda 10 spectrophotometer (Perkin Elmer, Waltham, MA,
USA) for samples from 2007 to 2011, and an UV-VIS Cary 100/300 spectrophotometer (Agilent, Santa
Clara, CA, USA) for samples collected thereafter. A total of 18 pigments were detected above the
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quantification limits and ten were used for taxonomic purposes; these are listed in Table 2, along with
their respective abbreviations and the respective phytoplankton group.

It is necessary to mention that the change in methodologies during the sampling period was made
because the first equipment (Varian) had to be replaced, and the migration to the new method was
carried out in collaboration with the Ocean Ecology Laboratory. We are aware of the problems that
could arise as a result of this, and to minimize the differences in pigment detection, we worked with
the authors of both methods to be sure that the data were comparable. The method of Barlow et al. [34]
is recognized as being precise and accurate for measuring the main phytoplankton pigments [37].
In Hooker et al. [37,38], the results of a series of intercalibration exercises are presented, comparing these
(and other) methods. One of the recommendations from these activities was the use of a commercial
and common source for the standard of pigments used for HPLC calibration. This was done in our
work, i.e., we used the same pigment source (DHI) for both methods. Additionally, both methods
use a C8 HPLC column, which ensures that the same pigments will be detected, and their separation
will be achieved. For this reason, we consider the change in method not to have significantly affected
our results.

2.3. CHEMTAX Analysis of Pigment Data

The relative abundance of phytoplankton groups contributing to chlorophyll a (Chla) was
calculated using the CHEMTAX v1.95 chemical taxonomy software [39] from the class-specific
accessory pigments and Chla (for the pigment concentrations used as input, refer to Tables S1 and S2
in Supplementary Material). Based on the main taxonomically significant pigments determined in this
study, ten phytoplankton groups were considered (Table 2): Bacillariophytes (diatoms), Dinophytes
(dinoflagellates), Prymnesiophytes, Chlorophytes, Prasinophytes, Cryptophytes, Chrysophytes and
Cyanobacteria (including Prochlorococcus). The initial pigment ratios for the major algal classes were
obtained from Araujo et al. [40], which in turn was based on Higgins et al. [41] and Jeffrey et al. [42]
(Table 3). These ratios were selected because they have been used for different oceanographic regimes
and a diverse phytoplankton community, and will thus be able to represent the conditions observed
along our time series. The abundance of dinoflagellates was based on the pigment Peridinin, which
represents what Higgins et al. [41] calls Type-1 dinoflagellates and corresponds to autotrophic or
mixotrophic dinoflagellates. Some studies [43] have considered that the inclusion of Chlorophytes
in the CHEMTAX analysis may lead to confusion with Prasinophytes, since both classes share Chlb,
while prasinoxanthin is a pigment unique to Prasinophytes. However, we had samples where Chlb
was present while praxinoxanthin was not, so we considered both classes separately in our analysis.

Table 2. Distribution of major taxonomically significant pigments in algal classes [42].

Pigment Abbreviation Group

Monovinyl Chlorophyll b Chlb Chlorophytes, Prasinophytes
Chlorophyll c3 Chlc3 Prymnesiophytes, many Bacillariophytes

Divinyl Chlorophyll a DVChla Prochlorococcus
Fucoxanthin Fuco Bacillariophytes, Prymnesiophytes

Peridinin Peri Dinophytes
19′Butanoyloxy fucoxanthin 19′But Chrysophytes, Prymnesiophytes
19′Hexanoyloxy fucoxanthin 19′Hex Prymnesiophytes

Alloxanthin Allo Cryptophytes
Zeaxanthin Zea Cyanobacteria, Prochlorococcus, Chlorophytes

Prasinoxanthin Pras Prasinophytes

The results were analyzed based on data from the surface and at a depth of 40 m; CHEMTAX was
run separately for each depth, using the same initial pigment ratios, according to Wright et al. [44].
This was done under the assumption that pigment ratios would vary with light availability [41].
In addition, a series of 64 tables of output ratios was generated by multiplying each ratio in the initial
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table by a random function [44]. The average of the best six output matrices (i.e., those with the lowest
residual root mean square errors or RMSE) was taken as the optimized result (Tables S3 and S4 in
Supplementary Material).

Table 3. Initial pigment ratios used in CHEMTAX analysis.

Group/Pigment Chlb 19′but 19′hex Allo Fuco Peri Zea DVChla Chlc3 Pras Chla
Diatoms 0 0 0 0 0.62 0 0 0 0 0 1

Dinoflagellates 0 0 0 0 0 0.56 0 0 0 0 1
Prymnesiophytes 0 0.05 0.42 0 0.27 0 0 0 0.17 0 1

Chlorophytes 0.32 0 0 0 0 0 0.03 0 0 0 1
Cryptophytes 0 0 0 0.38 0 0 0 0 0 0 1
Prasinophytes 0.70 0 0 0 0 0 0.06 0 0 0.24 1
Cyanobacterias 0 0 0 0 0 0 0.64 0 0 0 1
Prochlorococcus 0 0 0 0 0 0 0.39 1 0 0 0
Chrysophytes 0 0.35 0 0 0.52 0 0 0 0 0 1

2.4. Satellite Data and Climatic Indices

Daily L1b MODIS/Aqua images were obtained from the NASA Ocean Color Data webpage (http:
//oceandata.sci.gsfc.nasa.gov/). These were processed at 1 km spatial resolution for Chla concentration
using SeaDAS V7. SST was calculated based on the MODIS R2014.0 decision tree. Monthly composites
were constructed and average Chla (ChlaSAT) and SST were recorded from a 3× 3 pixel box centered at the
location of the station for the time series analysis from January 2007 to December 2016. SST and ChlaSAT

anomalies were calculated as [(xi − x)/std], where x is the average and std the standard deviation.
The influence of upwelling intensity on phytoplankton biomass and composition was explored by

analyzing data on monthly anomalies of the coastal upwelling index obtained from the Pacific Fisheries
Environmental Laboratory (https://www.pfeg.noaa.gov/products/PFEL/modeled/indices/upwelling)
for 30◦ N 119◦ W, the location nearest to our study station.

The Pacific Decemberadal Oscillation index (PDO) is defined as the leading principal component
of North Pacific monthly sea surface temperature anomaly. Major changes in northeast Pacific marine
ecosystems have been correlated with phase changes in the PDO [45]: warm periods boosted biological
productivity in Alaska, but reduced productivity off the west coast of United States, while cold PDO
periods showed the opposite north–south pattern for marine ecosystem productivity. This index was
used to evaluate those events that affect the Northern Pacific, and was obtained from the Joint Institute
for the Study of the Atmosphere and Ocean (JISAO) (http://research.jisao.washington.edu/pdo/).

2.5. Statistical Analysis

The significance of the differences in the composition of the phytoplankton community with
depth was evaluated using the nonparametric Wilcoxon Rank-Sum Test for two independent samples
with α = 0.05 [46,47]. Since the number of data in our study are higher than 10 (n > 10), we used
the Kruskall-Wallis decision table to determine Hcrit [48]. The hypothesis of equality is rejected if
Hcalc > Hcrit. The same analysis was used to compare different periods of the time series.

To explore the relation between environmental variables and the contribution of phytoplankton
groups to Chla, we used the Spearman correlation coefficient (rS) [48]. To accept or reject hypothesis H0

(rS = 0), the value rS was compared with the value rcritical based on the degree of freedom (df = n − 1)
and the error α (0.05). rcritical was the minimum significant value of rS. If rS > rcritical, H0 was rejected
and rS was statistically significant.

3. Results

3.1. Satellite Data and Climatic Indices

SST variability was characterized by a clear seasonal pattern (Figure 2a), with minimum values
being observed between January and March. An evident warming trend was observed from 2013 to

http://oceandata.sci.gsfc.nasa.gov/
http://oceandata.sci.gsfc.nasa.gov/
https://www.pfeg.noaa.gov/products/PFEL/modeled/indices/upwelling
http://research.jisao.washington.edu/pdo/
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2016, with the minimum temperature for the entire time series in 2015 being almost 3 ◦C higher than
the minimum temperature in 2013 (data not shown).

ChlaSAT showed a clear seasonal pattern (Figure 2a), with maximum positive anomalies being
observed between March and June. There was a noticeable decreasing trend in these peaks, from the
highest in April 2008 to the lowest in December 2014. Indeed, the anomalies remained negative for
longer than a year (November 2013 to March 2015). Positive anomalies were observed again in April
and May 2015, when ChlaSAT anomalies reached up to two standard deviations. These then dropped
to negative values, before starting to increase until December 2016.

In general, positive values of upwelling index anomalies (Figure 2b) were recorded during the
first half of the year (from March to June), with the maximum of the entire time series being recorded
in March 2008; these were followed by a decrease in upwelling intensities, with minimum values
occurring during 2010, when negative anomalies prevailed. In 2011 and 2012, positive anomalies were
also observed in April and May, but after October 2013, upwelling anomalies decreased sharply and
remained negative until November 2015. Mostly negative PDO anomalies were observed (Figure 2b)
from 2007 to 2013, followed by positive values that prevailed in coincidence with the increase in SST
and negative ChlaSAT.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 8 of 20 
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anomaly (black line, unit m3.s−1 per 100 km of coastline) and Pacific Decemberadal Oscillation (PDO,
gray area).

3.2. Nutrients and Light

Nitrate plus nitrite concentration (hereafter called nitrate) ranged between non-detectable levels
and as high as 23.8 µM with higher values at higher depths (Figure 3a). Peak concentrations were
recorded between the years 2008 and 2010. In particular, in 2008–2009, concentrations above 1 µM
were observed even at the surface. The depth at which nitrate concentration is equal to 1 µM can be
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considered as the depth of the nitracline and an indication of upwelled waters [49]. Nitracline became
deeper after 2010, and at the end of 2013, nitrate concentrations attained their minimum levels, with
the nitracline shifting from 15 to 30 m, similar to in 2007.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 9 of 20 
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Figure 3. Time series of (a) nitrate concentration (µM); the white line indicates the 1 µM isoline, which
represents the nitracline depth, and black dots indicates sampling depths; (b) silicate concentration
(µM); (c) chlorophyll a concentration (mg m−3); black circles indicate the depth of the euphotic zone
(m) and values off scale are shown below. White areas indicate periods when no data were obtained.

Silicate concentration ranged between 0.28 and 22.8 µM (Figure 3b), with maximum values
observed below 30 m. Similar to nitrate, maximum concentration was recorded between the years 2008
and 2010 (Figure 3a). It was mostly in 2009 that concentrations above 5 µM were observed across the
entire water column. After 2010, surface silicate levels dropped, and 5 µM concentrations shifted from
depths of 20 to depths of 30 m, reaching their minimum values in 2013. Notably, contrary to nitrate, an
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increase in silicate concentrations at the surface was recorded during the last two days of sampling,
exhibiting values as high as 7 µM.

Variability in light penetration across the water column was evaluated by analyzing the depth of
the euphotic zone (Figure 3c). From 2007 to 2009, light penetration varied between 24 and 43 m, while
after 2010 it always remained deeper than 35 m, peaking from 2013 to 2016, with a depth of up to 90 m
in November 2014.

3.3. Chlorophyll a Concentration and Phytoplankton Community Composition

Chla ranged between 0.02 and 3.25 mg m−3, and peak concentrations were observed mostly at
depths between 30 and 40 m (Figure 3c). Between 2007 and 2009, Chla values above 0.5 mg m−3

were observed at depths between 10 and 40 m (Figure 3c), when nitrate concentrations above 1 µM
were observed closer to the surface (Figure 3a). This was particularly important between the end
of 2008 and mid-2009, when nitrate concentrations were higher than 2 µM at the surface, while
silicate concentrations were above 4 µM (Figure 3a,b). From the end of 2009 to 2010, surface Chla
decreased slightly, with values lower than 0.4 mg m−3; higher concentrations were only observed
between 30 and 40 m. However, for June and October 2011, surface Chla increased again to values
higher than 0.5 mg m−3, which was related to a slight increase in nitrate concentration. In particular,
in October 2011, a strong phytoplankton bloom of Lingulodinium polyedrum (dinoflagellate) was
observed in Todos Santos Bay [50]. We took a sample close to the Todos Santos Islands, and surface
Chla concentration was 24.13 mg m−3. This bloom also influenced the Antares station, and was
characterized by a surface Chla of 2.05 mg m−3, a dominance of L. polyedrum, and the highest peridinin
concentration (dinoflagellate marker) of the entire time series (Table S1). After 2013, Chla at the surface
decreased further (<0.3 mg m−3), coinciding with the decrease in nitrate and a deeper euphotic zone.
The maximum subsurface concentration also moved deeper in this period, and Chla maintained values
above 0.5 mg m−3, reaching up to 1 mg m−3 in March 2015 at 35 m.

The temporal and vertical variability of taxonomic groups was analyzed based on the surface and
40 m (Figure 4). Diatoms, dinoflagellates, Chrysophytes and Cyanobacteria (including Prochlorococcus)
were recorded on virtually all sampling days, indicating that they were all permanent components
of the local phytoplankton community. However, differences were observed with respect to their
contribution to Chla with depth and time. A statistically significant difference between surface and
40 m was confirmed for diatoms, Chlorophytes, Cryptophytes, Prasinophytes, Cyanobacteria and
Prochlorococcus (Table 4). In general, the proportion of Cyanobacteria at the surface was higher than
at 40 m. On average, it comprised 15% of the community at the surface, while it was at 8% at 40 m,
being absent at this depth on many sampling days. The contribution of diatoms was mostly higher at
40 m than at the surface, with an average proportion of 34% at 40 m, while at the surface, it was 22%.
When observed, Chlorophytes and Prasinophytes had a higher contribution to Chla at 40 m, as well,
with an average of 16% against of 4% at the surface. Nevertheless, changes with time were noticeable
(Figure 4).
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Figure 4. Percentage contribution of each phytoplankton group derived from CHEMTAX at (a) surface
and (b) 40 m depth (or depth of maximum concentration prior to 2008). Black diamonds indicate Chla
(mg m−3) concentration (right axis); in (a) the dashed gray line indicates ChlaSAT (mg m−3). Data source
for these graphs are shown in Tables S5 and S6 in Supplementary Material.

Table 4. Results of the nonparametric Wilcoxon Rank-Sum Test for two independent samples applied to
evaluate the significance of the differences in phytoplankton community composition (surface vs. 40 m).
Number of data (n) and the calculated H (Hcalc) are shown for each layer; Hcalc was compared with
Hcrit = 3.841 (α = 0.05). Groups with a significant difference between the surface and 40 m (Hcalc > Hcrit)
are indicated in bold.

Group nsurf n40m Hcalc Group nsurf n40m Hcalc

Diatoms 26 25 4.065 Prasinophytes 9 16 71.157
Dinoflagellates 25 27 0.037 Cyanobacteria 24 22 4.739
Prymnesiophytes 25 27 0.141 Prochlorococcus 20 22 7.536
Chlorophytes 12 20 240.06 Chrysophytes 23 24 3.833
Cryptophytes 17 23 16.507

From 2007 to 2009, diatoms and dinoflagellates (Figure 4) dominated the community with a stronger
contribution of diatoms at 40 m. Dinoflagellates tended to dominate at the surface on most sampling
days, but were occasionally absent at 40 m, although the statistical significance of the differences
between depths was not confirmed. After 2009, the contribution of diatoms and dinoflagellates was
highly variable (although the frequency of our observations also decreased), and Prymnesiophytes
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started to be detected with a higher contribution at the surface. In particular, it was remarkable that on
May 2011, the phytoplankton community was entirely dominated by Prymnesiophytes, despite this
being related to a very low Chla concentration (0.1 mg m−3). Furthermore, on the following sampling
day (October 2011), a 60% contribution by dinoflagellates was observed, along with the highest surface
Chla of the whole study period, when the L. polyedrum bloom was observed. From the end of 2012
to 2016, two main patterns emerged. At the surface, an increase of Cyanobacteria, Prochlorococcus
and, eventually, Chrysophytes was observed; and at 40 m, Chlorophytes and Prasinophytes gradually
increased their contribution until the end of the study period, with a Chlorophytes peak (55%) observed
on the last day of sampling, while Prasinophytes peaked (50%) on the sampling day before (October
2015). It is worth noting that both Chlorophytes and Prasinophytes were rarely observed during the
previous sampling days, especially from 2010 to 2012. To integrate and compare the information during
these periods, the descriptive statistics of the variables analyzed (satellite and in situ) are presented in
Table 5. In addition, the statistical significance of the differences among periods was confirmed for
diatoms, Prymnesiophytes and Chlorophytes, which were also followed by significant differences in
SST, ChlaSAT, nitrates, phosphates and Ze. It has to be noted that while in situ Chla did not change
significantly from one period to another, ChlaSAT did, decreasing by almost three times from the first to
the third period.

Table 5. Average, range (minimum and maximum) and number of data (n) for in situ and satellite data
measured by period. The concentration of each phytoplankton group is expressed in mg/m3; numbers
in parentheses indicate the percent contribution of each group to the entire community; numbers for
groups that contributed above 20% are marked in bold. Variables indicated with an asterisk (*) showed
significant statistical differences between time periods.

2007–2009 2010–2012 2013–2016

Average Range n Average Range n Average Range n
Groups

Diatoms* 0.21
(46%)

0.03–0.79 21 0.051
(12%)

0–0.47 20 0.08
(15%)

0–0.51 22

Dinoflagellates 0.12
(26%)

0.01–0.92 21 0.12
(27%)

0–1.22 20 0.033
(6.3%)

0–0.29 22

Prymnesiophytes* 0
(0%)

0–0.01 21 0.125
(29%)

0.01–0.78 20 0.069
(13%)

0.01–0.23 22

Crysophytes 0.024
(5.3%)

0–0.19 21 0.06
(14%)

0–0.51 20 0.07
(13%)

0–0.33 22

Cryptophytes 0.014
(3.1%)

0–0.09 21 0.016
(3.6%)

0–0.09 20 0.033
(6.3%)

0–0.16 22

Chlorophytes* 0.025
(5.5%)

0–0.21 21 0.01
(2.3%)

0–0.13 20 0.126
(24%)

0–0.91 22

Prasinophytes 0.008
(1.8%)

0–0.07 21 0.01
(2.3%)

0–0.14 20 0.039
(7.4%)

0–0.3 22

Cyanobacteria 0.036
(7.9%)

0–0.29 21 0.027
(6.2%)

0–0.12 20 0.033
(6.3%)

0–0.17 22

Prochlorococcus 0.02
(4.4%)

0–0.08 21 0.02
(4.6%)

0–0.09 20 0.045
(8.5%)

0–0.19 22

Chla (mg m−3) 0.40 0.04–3.25 55 0.34 0.02–2.07 63 0.44 0.04–2.03 60
Satellite

SST (◦C)* 17.28 14–21.7 36 16.94 14.4–21.3 36 18.72 14.3–23.6 48
ChlaSAT (mg m−3)* 1.32 0.26–6.54 36 0.63 0.17–2.25 36 0.50 0.16–2.05 48

Nutrients (µM) and Ze (m)
[NO3+NO2]* 5.24 0.09–23.8 70 4.91 0.07–21 70 2.44 0–11.65 65

H4SiO4 6.24 0.06–22.8 70 2.79 0.03–18.5 70 4.78 0.4–15.8 65
PO4* 0.87 0.14–2.17 70 2.45 0.21–1.45 70 0.45 0.22–1.18 65

Ze* 34 24–43 12 51 35–62 14 63 32–89 11

3.4. Relationship between Phytoplankton Groups and Environmental Variables

The evaluation of the relationship between the contribution of each phytoplankton group to Chla
and environmental variables was performed in three steps, first using the entire data set (surface
and 40 m), and then separately for data from the surface and 40 m. The environmental variables
considered for the analysis with the entire dataset were nutrient concentrations. For the evaluation
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of the data from the surface, the data also included SST, upwelling index, and Ze. Finally, for data
from 40 m, instead of Ze we used the percentage of light at 40 m (%Ez), which was determined
using the expression %Ez = 100e−Kd.z. The results are presented in Table 6, but only for those
relationships that were considered to be statistically significant. The groups that exhibited a statistically
significant correlation with some of the environmental variables included diatoms, cyanobacteria
and Prochlorococcus. However, differences were observed depending on depth. When the entire
dataset was used, diatoms were positively correlated with the three nutrients, while cyanobacteria
were inversely correlated with them. When only the data from the surface were used, no significant
relationship was observed. Finally, at 40 m, diatoms were positively correlated with nitrates and
phosphates, while they were strongly and inversely correlated with light (%Ez). Cyanobacteria were
again negatively correlated with the three nutrients, although rS was even higher than in the previous
analysis (all data). Finally, at this depth, the genus Prochlorococcus exhibited a negative correlation with
nitrates and a positive correlation with light (%Ez). Considering that an increase in SST, a decrease
in nutrient concentration, and an increase in Ze were observed along the study period, along with a
consequent decrease in %Ez (Figure 3), the correlations between these variables were also analyzed. It
was observed that nutrient concentrations at 40 m were negatively correlated with %Ze (except for
silicate) and SST, which implies that warmer periods were associated with a deeper euphotic zone and
oligotrophic conditions.

Table 6. Results of the statistical analyses performed to evaluate the relationship between environmental
variables and the contribution of phytoplankton groups to Chla, using the Spearman correlation
coefficient (rS). Only the statistically significant rS are shown (α = 0.05), considering that rcritical (n = 46)
= 0.246, rcritical (n = 24) = 0.353 and rcritical (n = 23) = 0.344.

Phytoplankton Group Environmental Variable rS n

All data
Chla [NO3+NO2] 0.422 46

Diatoms
[NO3+NO2]

H4SiO4
PO4

0.431
0.490
0.436

46

Cyanobacteria
[NO3+NO2]

H4SiO4
PO4

−0.455
−0.412
−0.415

46

Surface
Chla [NO3+NO2] 0.421 24

40 m

Diatoms
[NO3+NO2]

PO4
%Ez

0.421
0.481
−0.609

23

Cyanobacteria
[NO3+NO2]

H4SiO4
PO4

−0.658
−0.641
−0.535

23

Prochlorococcus [NO3+NO2]
%Ez

−0.419
0.629 23

%Ez [NO3+NO2]
PO4

−0.503
−0.550 23

SST
[NO3+NO2]

H4SiO4
PO4

−0.518
−0.494
−0.472

23
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4. Discussion

Data recorded over ten years in the southern region of the CCS (California Current System)
evidenced the existence of significant changes in the composition of the phytoplankton community that
could be related to various interannual events that affected the study area. From the summer of 2007 to
the early months of 2009, the CCS was affected by a La Niña condition [51], which for our study site
was associated with negative PDO values, the highest upwelling intensities, and the strongest ChlaSAT

anomalies of the entire study period (Figure 2). Previous works [10,51] have also reported ChlaSAT

concentrations at levels of almost 7 mg m−3 during an intense and persistent upwelling event that
prevailed from April to May in southern California and northern Baja California. Vertical turbulence is
expected to increase during these events, favoring the input of nutrients and boosting the proliferation
of larger phytoplankton cells such as diatoms and dinoflagellates [52], which was observed in our data.
In particular, it was during these years that nitrates and silicates showed their highest concentrations,
which were especially boosted during 2009, as a result of a shallower nutricline (Figure 3). As a
result, diatoms (and to a lesser extent dinoflagellates) experienced their highest contribution to Chla,
in comparison with the following years. The role of nutrients (in particular nitrate) in the increase
in Chla and diatoms was supported by the statistical analyses, particularly their relationship with
their contribution at 40 m. It has to be recalled that the growth of diatoms is favored not only by high
nutrient concentrations, but also by lower light levels [53], which explains their higher abundance at
deeper zones of the water column and their negative correlation with %Ez (Table 5).

The year 2010 was considered to be a transition period from a short–lived El Niño (2009–2010)
to a La Niña event, which was associated with intense upwelling throughout the CCS in summer
2010, coupled with unusually cool conditions [54]. At our study site, this period was associated with
a decrease in diatoms and an increase in Prymnesiophytes in both surface and deep samples, along
with lower abundances of dinoflagellates; a pattern that remained until 2012. Nitrate concentrations
were still high at the surface at the beginning of this period, although average silicate concentration
decreased, which may explain the decrease in diatoms. Bjorkstedt et al. [54] also reported a resurgence
of crustacean zooplankton off northern Baja California in 2010 and 2011; thus, top–down control of
diatom abundance cannot be ruled out. However, it was also from 2010 to 2012 that the frequency of
sampling decreased, which could have affected our results. Furthermore, it is interesting to note the lack
of Prymnesiophytes from 2007 to 2009, as previous studies based on microscopy observations [15,55]
or chemotaxonomy [56] have reported their presence in different periods. In our study, the abundance
of Prymnesiophytes was estimated by considering pigments Chlc3, 19′But, 19′Hex, and fucoxanthin,
which only represent Prymnesiophytes types 6, 7 and 8 [42]. As a consequence, the occurrence of
other types of Prymensiophytes could not be revealed on the basis of our analysis. Furthermore,
during 2010 and 2011, Prymnesiophytes, along with Chrysophytes, characterized a community
dominated by nanoflagellates, which comprised an average of 43% of the community (Table 5).
Almazán–Becerril et al. [56] suggested that a community shift from diatoms to Prymnesiophytes occurs
subsurface in the waters off northern Baja California when nutrient concentrations start to decrease
after a strong upwelling period, which will boost the development of smaller–sized groups such as
Prymnesiophytes (and/or Chrysophytes), which could explain their increase after the strong upwelling
period observed previously.

The winter of 2012–2013 to early 2016 comprised the onset of the Pacific Warm Anomaly and El
Niño 2015–2016 [57]. Positive PDO anomalies prevailed from 2014 to the end of the study period,
while SST anomalies increased from January 2014, peaking in August 2015, coinciding with the
negative upwelling anomalies that developed especially during 2014 and 2015. The most outstanding
characteristic of this period in terms of phytoplankton taxonomic composition was the increase in
Chlorophytes and Prasinophytes, which started to be observed at 40 m in the last three months of 2012,
peaking on the last sampling day in 2016. Prochlorococcus also showed an almost two–fold increase
in their contribution to Chla during the same period in comparison with previous years, although
it was mainly at the surface, along with Cyanobacteria and Chrysophytes. In low–nutrient ocean
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environments, phytoplankton are typically dominated by cyanobacteria, specifically Prochlorococcus
and Synechococcus [58]. However, pico and nanoeukaryotic taxa (Chlorophytes, Prasinophytes and
Chrysophytes) can also be important in these systems, and they, along with cyanobacteria, were
observed to contribute significantly to primary production in our study area [59]. In particular, our
study emphasizes that, among the eukaryotic community, Chlorophytes and Prasinophytes are groups
that must be included, as they are characteristic of these warm and low–nutrient periods. They
are green flagellates that belong to the pico (<2 µm) and nanoplankton cell size (>2 and <20 µm),
and Prasinophytes in particular have been reported to be very abundant and diverse in coastal and
open oceanic waters [60]. Some studies have related the increase of Chlorophytes to mesotrophic or
moderate oligotrophic conditions [58], while others [61] have suggested that the primary determinant
of the interannual variability of Prasinophytes is nutrient input caused by deep convective mixing.
However, this may not be the cause of their increase in our region, because it was associated with more
oligotrophic conditions and stronger stratification. Indeed, a strong deepening of the thermocline
from July 2014 to January 2016 associated with the deepening of the California Current and the
weakening of upwelling events was observed in a hydrographic line located from near the location of
our station to around 200 km off the coast [24]. This is consistent with the period at which our data
showed a deeper nutricline, the lowest nitrate concentration of the entire time series and the increase
of these eukaryotic groups, effects that probably extended offshore. However, differences in the spatial
(and vertical) distribution of these groups have also been attributed to differences in specific taxa and
clades [62], which cannot be addressed using pigment–based methods. Future studies need to address
the taxonomic diversity of these groups and their role in trophic food webs, in consideration of their
higher contribution during these warm events.

It is important to analyze not only the temporal evolution of these recent warm events, but also
their spatial distribution, which makes it possible to understand how our observations of the changes
in phytoplankton community composition can be extrapolated to a regional scale. To summarize this
analysis, the spatial distribution of SST and ChlaSAT from 2012 to 2016 was examined along the coast
of southern California (USA) and Baja California (Figure 5), which constitutes the South zone of the
California Current System [63]. To do that, we chose the month of September, in consideration of the
fact that it was during this month that the effects of the Pacific Warm Anomaly and El Niño was noticed
as stronger with respect to average temperature in the upper layer of our study site [24]. The anomalous
northward intrusion of waters with SST above 24 ◦C during 2014 and 2015 was observed along the
coast, reaching Point Conception (USA), particularly during 2015, when ChlaSAT concentrations below
0.2 mg/m3 extended north of 32◦ N. This intrusion has been related [24] to a poleward flow of a
near–surface countercurrent that intensifies during these warm periods and advects tropical and
subtropical waters to the north. Indeed, another study performed to the south of the Baja California
peninsula (between 20◦ and 23◦ N) in June 2015 [64] observed a significant decrease in phytoplankton
biomass and an increase in the contribution of Chlorophytes at the subsurface fluorescence maximum
in comparison with other seasons and years. This was related to both a stronger influence of tropical
and subtropical waters and a stronger thermal stratification associated with the 2015–2016 El Niño.
This may indicate that the increase of Chlorophytes and Prasinophytes in our data could be the
result of the advection of these tropical waters and that this phytoplankton community structure
followed further north of our study site as long as these warm waters prevailed. Interestingly, another
study [29] off Southern California (USA) reported that at similar irradiance and nutrient concentrations,
productivity decreased during these recent warm events in comparison with previous years. These
authors speculated whether these variations had resulted from changes in species composition. Our
study suggests that this may be a feasible explanation.
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5. Conclusions

Our study illustrates the relevance of maintaining continuous time series studies involving both
remote sensing and information derived in situ to address changes that are currently affecting the
oceans worldwide, and which could influence the functionality not only of primary producers, but
also of the entire food web. In particular, our results confirm the decrease in phytoplankton biomass
due to the influence of the recent warm events, as observed in other regions of the California Current
System. However, two main points emerged. The first is that this decrease was especially observed
at the surface, in the observation based on satellite data. However, when data from the entire water
column (in situ data) was considered, this decrease was not significant, because at the subsurface, Chla
did not decrease as much. Nevertheless, significant changes in community composition occurred in
the entire water column.
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