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Abstract: The significance of small-strain stiffness (Gmax) of saturated composite soils are still of
great concern in practice, due to the complex influence of fines on soil fabric. This paper presents
an experimental investigation conducted through comprehensive bender element tests on Gmax of
marine silty sand. Special attention is paid to the influence of initial effective confining pressure
(σ′c0), global void ratio (e) and fines content (FC) on Gmax of a marine silty sand. The results indicate
that under otherwise similar conditions, Gmax decreases with decreasing e or FC, but decreases
with increasing FC. In addition, the reduction rate of Gmax with e increasing is not sensitive to σ′c0,
but obviously sensitive to changes in FC. The equivalent skeleton void ratio (e*) is introduced as
an alternative state index for silty sand with various FC, based on the concept of binary packing
material. Remarkably, the Hardin model is modified with the new state index e*, allowing unified
characterization of Gmax values for silty sand with various FC, e, and σ′c0. Independent test data for
different silty sand published in the literature calibrate the applicability of this proposed model.

Keywords: marine silty sand; small-strain stiffness; Hardin model; binary packing model

1. Introduction

The small-strain stiffness Gmax of marine deposits plays a fundamental role in liquefaction
potential assessment, site seismic response analyses, and the design of marine structures (e.g., pipeline,
immersed tunnel, caisson foundation) subjected to storm or earthquake loading [1–4]. Generally, Gmax

is defined as the stiffness of soil at small-strain level of 10−6, where the soil properties are considered to
exhibit pure elasticity. Hardin and his co-authors [5–7] conducted comprehensive studies on Gmax of
clean, uniform, quartz sands through well-controlled resonant column tests, and these investigations
indicated that the global void ratio e and initial effective confining pressure σ′c0 are considered to be the
most important ones among the various factors that may influence Gmax. Similar results were also
presented by Seed et al. (1986) [8], Youn et al. (2008) [9], Yang and Gu (2013) [10], and Payan et al.
(2016) [1].

While a large number of attempts have been carried out to characterize Gmax for clean sands,
systematic studies on silty sand with different fines content (FC) are relatively few, despite the fact
that naturally deposited sands are not clean, but contain a certain amount of fine particles [11–14].
A systematic study was first implemented by Iwasaki and Tatsuoka (1977) [11] to study the Gmax

influence factors of Iruma silty sand. Their results showed that Gmax decreased with increasing FC, and
at given e and σ′c0, Gmax exhibited a decreasing trend as uniformity coefficient Cu increasing. The state
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parameter of skeleton void ratio esk was introduced by Wichtmann et al. (2015) [12] to uniquely
characterize Gmax of silty sand. However, as discussed by Rahman et al. (2008) [13] and Yang and Liu
(2016) [14], the application of esk might contribute to underestimation of Gmax at high FC. Goudarzy
et al. (2017) [15] developed a new Gmax prediction method based on the binary packing state. A series
of bender element tests has been conducted on Ottawa sand with FC = 5%–20% by Salgado et al.
(2000) [16], the test results revealed that Gmax decreases dramatically with the increasing of FC at a
constant relative density and σ′c0. Salgado et al. (2000) [16] introduced a state parameter ψ to estimate
Gmax in the framework of critical state soil mechanics by taking account of the stress dependence.
However, compared with the Goudarzy et al. (2017) method [15], the introduction of state parameter
ψ requires determination of the critical state line, thus complicating the application of this method [16].

Many natural silty sands contain a significant amount of fines. This is particularly true for marine
deposits, which in most cases behave as composite soils. Therefore, study is needed on whether
the Gmax prediction method established for clean sand is also applicable to that of marine silty sand.
The main purpose of this study is to explore how FC, initial effective confining pressure (σ′c0), and global
void ratio (e) affect the Gmax of marine silty sand and whether the Gmax of silty sand can be predicted
within the established framework based on clean sand. In addition, the influence of parameters in the
Hardin model for Gmax prediction was discussed in a traditional way. In particular, the binary packing
state concept [17–19] is implemented to establish the modified Hardin model for evaluation of Gmax of
marine silty sand. For this purpose, a series of bender element tests were conducted on marine silty
sand with FC = 0%~30%.

2. Materials and Methods

2.1. Testing Apparatus

The measurement of shear wave velocity (Vs) or the associated Gmax was performed using a pair
of piezoceramic bender elements (BE) installed in the cell chamber of a dynamic hollow/solid cylinder
apparatus (HCA) [20], as shown in Figure 1. For each of the BE tests, a set of sinusoid signals from 1 to
40 kHz, rather than a single signal, was used as the excitation, and the received signals corresponding
to these excitation frequencies were examined in whole to better identify the travel time of the shear
wave, then, Gmax can be calculated as following [16].

Gmax = ρV2
s (1)
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2.2. Tested Materials

Nantong marine sand was used as clean sand and Nantong marine silt with sub-angular particles
was used as pure fines to investigate the effects of FC on the Gmax of silty sand. Figure 2 shows the
grain size distributions and scanning electron microscopy image of clean sand and pure fines, and the
material properties are given in Table 1. Although the ASTM D4253 [21] and D4254 [22] test methods
for the determination of minimum and maximum void ratios (emin and emax) are applicable to silty
sand with FC < 15%, these methods were also used for silty sands with FC ≥ 15% in order to provide
consistent measurements [23]. The clean sand was mixed with non-plastic Nantong silt (pure fines)
corresponding to various FC from 0% to 30% by mass. The emin and emax of the silty sand are shown in
Table 2.
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Figure 2. Scanning electron microscopy image and grain size distributions of clean sand, pure fines,
and marine silty sand with different fines content: (a) grain size distribution; (b) scanning electron
microscopy image.

Table 1. Index properties of clean sand and pure fines.

Clean Sand Pure Fines

Material Nantong sand Nantong silt
d50/mm 0.114 0.040
d10/mm 0.080 0.016
Cu 1.672 2.931
G 2.672 2.719
emax 1.262 1.481
emin 0.662 0.764

Table 2. Physical index of Nantong marine silty sand with different FC.

FC of Silty Sand (%)

0 10 20 30

emax 1.290 1.232 1.221 1.212
emin 0.731 0.587 0.431 0.364

G 2.669 2.680 2.690 2.701
d50 0.113 0.104 0.097 0.091
Cc 0.796 0.829 1.453 1.752
Cu 1.646 1.681 2.826 3.201
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2.3. Specimen Preparation, Saturation and Consolidation

The bender element tests were conducted on specimens with 100 × 200 mm (diameter × height),
and all specimens of the tested silty sands were prepared by the moist tamping method; considering this
method can ensure a very wide range of e for the specimens and contribute to preventing segregation
and enhancing uniformity [24], all specimens of the tested silty sands were prepared by the moist
tamping method using an under-compaction procedure. All samples were tested under saturated
rather than other conditions, as the former is more practical [14]; in order to saturate the specimen fully,
carbon dioxide flushing from bottom to top of the specimen was applied firstly; then, de-aired water
flushing followed immediately [19]; finally, back pressure saturation at the back pressure of 400 kPa
was used to guarantee Skempton’s B-value greater than 0.95 [25]. After saturation, all the specimens
were isotropically consolidated.

2.4. Testing Program and Process

For the bender element tests, the 10 kHz excitation signal was found to consistently yield a clear
arrival of the shear wave for both clean sand and silty sand with various FC, which is consistent
with the test results of Yang and Liu (2016) [14]. Figure 3 presents a set of typical received signals
captured from the bender element in different silty sand specimens. The first arrival time method
was introduced to determine the shear wave travel time in this study [26–28], and the zero after first
bump point corresponds to Point C marked in Figure 3, suggested by Yoo et al. (2018) [29] and Lee and
Santamarina (2005) [30], was selected as the shear wave arrival time.
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Figure 3. Shear wave signals in specimen for case ID: S11.

In order to investigate the influences of FC, e, and σ′c0 on Gmax of silty sand, FC = 0, 10, 20, and 30%
were considered, and three samples were prepared at different e for silty sand at a fixed FC. The Gmax

were measured subjected to σ′c0 at 100, 200, 250, 300, and 400 kPa in five stages, Table 3 details the
test conditions.

Table 3. Schemes of bender element tests for Nantong marine silty sand.

ID FC/% Dr/% e ρ (g/cm3) b Value e* σ′
c0

/kPa

S1 0 35 1.076 1.286 0 1.286

100
200
250
300
400

S2 0 50 0.973 1.352 0 1.352
S3 0 60 0.890 1.412 0 1.412
S4 10 35 1.009 1.334 0.321 1.155
S5 10 50 0.934 1.386 0.321 1.075
S6 10 60 0.883 1.424 0.321 0.953
S7 20 35 0.936 1.348 0.454 1.189
S8 20 50 0.947 1.382 0.454 1.077
S9 20 60 0.824 1.475 0.454 0.998
S10 30 35 0.948 1.386 0.555 1.248
S11 30 50 0.865 1.448 0.555 1.152
S12 30 60 0.792 1.506 0.555 1.042
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3. Results and Discussion

3.1. Factors Influencing Maximum Shear Modulus

Figure 4 present the comprehensive view of the measured Gmax values of silty sand with different
FC, e, and σ′c0. A remarkable finding from the figure is that FC, e, or σ′c0 all has a significant impact on
Gmax, the increase of e will significantly reduce Gmax for silty sand at different FC and σ′c0. Furthermore,
in each plot, the five trend lines describe the effect of e on Gmax, and the range of trend lines revealed
the influence of varying σ′c0. Under otherwise similar conditions, Gmax decreases with increasing e
or FC, but increases with increasing FC. The existing explanation that: as e increases, the dense state
changes from compact to loose, which reduces the amount of force chain between particles, contribute
to a attenuation in the stiffness of silty sand; while at a fixed e, the amount of sand grains composed of
soil skeleton is constant as FC increases, a certain amount of grains participate in the composition of soil
skeleton, and the grain contact area increases, eventually leading to an increase in Gmax. In addition,
the relationship between Gmax and e is insensitive to σ′c0, but obviously sensitive to FC. According to
Yang and Liu (2016) [14], there is a linear function relationship between Gmax with e for Toyoura silty
sand, and the void ratio dependence appears to be similar to silty sand with different FC. Incorporating
the test results in the study, an obvious soil-specific relationship between Gmax and e can be found,
and a more comprehensive study needs to be conducted for addressing this concern.
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For silty sand at a specific FC, given that Gmax is dependent on both e and σ′c0, e must be taken
into account when quantifying the impact of σ′c0. Therefore, a void ratio function F(e) was introduced
to characterize the influence of e on Gmax:

F(e) =
(c− e)2

1 + e
(2)

where c is a soil-specific fitting parameter dependent on the particle shape—2.97 for angular particles
and 2.17 for rounded particles [5,15]. Considering that the particles of marine silty sand are angular
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(Figure 2b), c = 2.97 was used. An empirical relation for Gmax prediction, incorporating material,
particle shape, e and σ′c0, was proposed originally by Hardin and Black (1966) [5], then a more general
form was developed based on the research of Iwasaki and Tatsuoka (1977) [11], Seed et al. (1986) [8],
Youn et al. (2008) [9], Yang and Gu (2013) [10], Wichtmann et al. (2015) [12], and Payan et al. (2016) [1]:

Gmax = A
(c− e)2

1 + e

(
σ′c0

Pa

)n

(3)

where A = material constant depends on soil type; Pa = atmospheric pressure (≈100 kPa); n = stress
exponent, the values of n typically distribute between 0·35 and 0·6 for silty sand. Iwasaki and Tatsuoka
(1977) [11] and Yang and Liu (2016) [14] present a common phenomenon that the stress exponent n is a
soil-specific constant.

In order to explore the distribution of A and n values, the Gmax values of silty sand are plotted
as function of σ′c0/Pa and F(e) in Figure 5. Under otherwise identical conditions, Gmax increases with
increasing in normalized effective confining stress σ′c0/Pa and void ratio function F(e). In addition,
R-square of the Hardin model are all greater than 0.9, which means that the Hardin model can
characterize the influence of e and σ′c0 on Gmax of silty sand at a specific FC well. However, for a specific
silty sand, the exponent n is insensitive to FC and e, which is consistent with the results demonstrated
by Iwasaki and Tatsuoka (1977) [11] and Yang and Liu (2016) [14]. The exponent n, reflecting the
incremental rate of Gmax due to the enhancement of σ′c0, is highly dependent on the types of silty
sand and present as a soil-specific constant. Using the generalized nonlinear regression model for
the test data of marine silty sand tested in this study and six silty sands compiled from the literature,
the soil-specific constant n is closely related to the synthesizing material parameter Cs

u ·Cf
u of sandy soils

(as shown in Figure 6). It is seen that n increases with the increase of Cs
u ·Cf

u, indicating a logarithmic
function relation. The soil-specific constant n can be determined empirically by the following equation:

n = 0.086 ln
(
Cs

u ·C
f
u

)
+ 0.302, R2 = 0.98 (4)
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f
u.

It is worth noting that the addition of FC will obviously alter the material-specific fitting parameter
A, which describe the increment ratio of Gmax/F(e) caused by the increasing of (σ′c0/Pa)n (Figure 7),
and a fairly good exponential relationship can be given as following:

A(FC) = A0 × exp(m · FC) (5)

where, the value of A0 represents the parameter A for clean sand (FC = 0%) in the Hardin model,
m is the fitting parameter and the value of m is −1.52 for Nantong silty sand. It is worth noting that
care should be exercised when the Hardin model is directly used for predicting the Gmax of silty sand,
considering the sensitivity of the A to FC. Therefore, a modified Hardin model needs to be explored for
unified charactering Gmax of silty sand with different FC.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 8 of 13 
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3.2. Modified Hardin Model Based on Binary Packing Model

The binary packing state concept [17,31] is adopted herein to interpret the behavior of granular
soil. For the binary packing system, the FCth has been introduced to distinguish the difference of
“coarse-dominated behavior” from “fines-dominated behavior” for silty sand with various FC [32,33].
The FCth can be determined empirically by semi-experience formula [13]:

FCth = 0.40×
(

1
1 + exp(0.5− 0.13 · χ)

+
1
χ

)
(6)

where χ = ds
10/df

50 is the particle size disparity ratio, ds
10 is the grain size at 10% finer for clean sand,

df
50 is the grain size at 50% finer for pure fines.
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As FC increases, fines may come in between the contact of sand grains and participate in the
force chain. Thus, the effect of fines on the force transfer mechanism is considered by introducing an
alternative equivalent skeleton void ratio e* [31,34], as defined by Equation (7).

e∗ =
e + (1− b) · FC
1− (1− b) · FC

(7)

The physical meaning of b is the fraction of fines that participate in the force chain between soil
grains and 0 ≤ b ≤ 1. Equation (7) is based on coarse-dominated behavior soil fabric, this meaning b
requires FC < FCth. Rahman and his co-authors developed a semi-empirical relation to predict the
parameter b [13,15,35]:

b =

{
1− exp

(
−µ

(FC/FCth)
nb

k

)}(
r×

FC
FCth

)r

(8)

where r = 1/χ, and k = 1 − r0.25, µ and nb are the fitting parameters which depend on the specific soil
type. The experimental results, presented by Lashkari (2014), suggested that a µ of 0.30 and nb of 1.0
satisfy a large dataset and were later verified with new datasets. Goudarzy et al. (2016) acknowledged
that these parameters might vary for different types of soil, the µ and nb value were optimized in
Equation (8) to obtain the maximum value of R2. It has been well recognized that e*, instead of e,
can well capture various aspects of the mechanical behavior of silty sand [36]. Notably, the binary
packing state parameter has been introduced to uniquely quantify the critical state line, steady state
line, and liquefaction resistance, etc. of the silty sand with different FC. Hence, an effort has been made
to investigate whether e* determined by Rahman’s approach can better characterize Gmax by replacing
e with e* in Equation (3):

F(e∗) = (c− e∗)2/(1 + e∗) (9)

Figure 8 show the relationship between Gmax, F(e*), and normalized effective confining stress
(σ′c0/Pa)n of silty sands. Despite the variation in FC, e, or σ′c0 of the specimens, all of the test data points
are located in a narrow surface, which means that e* appears to adequately capture the effects of FC, e,
and particle gradations when FC < FCth. Therefore, the modified Hardin model based on the binary
packing state parameter can be established:

Gmax = A∗
(c− e∗)2

(1 + e∗)

(
σ′c0

Pa

)n

(10)

A* = 59.3 MPa and R-square = 0.938 for Nantong silty sand, n was determined using Equation (4).
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Figure 8. The modified Hardin model for Nantong marine silty sand with different FC in
Gmax-F(e*)-σ′c0/Pa space.
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To validate the accuracy of the modified Hardin model, the comparison between the predicted
Gmax in Equation (10) and the measured Gmax are presented in Figure 9. Almost all of the data pairs
are close to the bisecting line, with the errors within 10%, indicating that the measured and predicted
Gmax values are basically consistent. Considering the complexity of the effect of fines and man-made
errors, such an error is acceptable. Therefore, the modified Hardin model can be used to predict the
Gmax of silty sand when FC < FCth in a simple yet reliable way.
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Figure 9. Comparison of the measured Gmax and the predicted Gmax using the modified Hardin model.

Given the complexity of material properties, further work to validate the applicability of the
modified Hardin model evaluation Gmax by using experimental data is worthwhile. The similar Gmax

testing series were carried out on four types of silty sand by Goudarzy et al. (2016) [15], Salgado et al.
(2000) [16], Chien and Oh (1998) [37], and Thevanayagam and Liang (2001) [38]. Table 4 presents the
physical index properties and fitting parameters of Nantong marine silty sand tested in this study and
four silty sands using compiled data from the literature. Best fitting values of µ and nb in Equation (8)
are 0.27~0.34 and 0.89~1.08, and the R-square value of the modified Hardin model for experimental data
compiled from the literature are all over 0.9, which means the modified Hardin model can characterize
Gmax for different types of silty sands well. It should be noted that A* for different types of silty sand
presents an obvious soil-specific diversification. In addition, as shown in Figure 10, a power function
relationship between A* and the synthesizing material property parameters ln(erange(s)·Cu(s)·χ) was
established:

A∗ = 54.6×
[
ln

(
erange(s)·Cu(s)·χ

)]−0.43
(11)

Table 4. Physical index properties and fitting parameters of silty sands considered in this study.

Data from Material
Index Properties In Equation (8) In Equation (10)

erange(s) Cu(s) χ µ nb A* R2

This study Nantong sand + Nantong silt 0.60 1.67 2.0 0.32 0.94 62.1 0.932
Goudarzy et al. (2017) Hostun sand + Quartz powder 0.35 2.01 63.3 0.33 1.05 30.3 0.943
Salgado et al. (2000) Ottawa sand + Sil-co-Sil 0.30 1.48 11.8 0.34 0.92 44.7 0.895
Chien and Oh (1998) Yunling sand + Yunling silt 0.55 1.69 2.17 0.27 1.08 64.9 0.883
Thevanayagam and
Liang (2001) Foundary sand + Sil-co-Sil 0.19 1.69 17.1 0.29 0.89 43.2 0.902

Note: erange(s)—void ratio range of clean sand (=emax − emin); Cu(s)—uniformity coefficient of clean sand; µ and
nb—fitting parameters in Equation (8); A*—fitting parameter in Equation (10); R2—coefficient of determination for
Equation (10).

Thus, the modified Gmax prediction method based on the binary packing model can be established
by combining Equations (4), (10), and (11), only considering basic indices of the clean sand and pure
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fines. It is worth noting that the application of the binary packing model should not be limited to
the evaluation of Gmax. Existing test results show that e* presents a unified correlation with static
liquefaction characteristics [39], drained and undrained triaxial compression behaviors [40], critical
strength [41], liquefaction strength [42], etc., of silty sand, and the proposed procedure in this paper
provides a significant improvement in the evaluation of the above mechanical properties in geotechnical
engineering practice.
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4. Conclusions

In order to investigate how e, FC and σ′c0 alter the Gmax of marine silty sand, comprehensive
bender element tests were performed under isotropic consolidation, and a modified procedure based
on the Hardin model was established to predict the Gmax. The main obtained results are summarized
as follows.

(1) Under otherwise similar conditions, Gmax decreases with decreasing e or FC, but decreases with
increasing FC. In addition, the reduction rate of Gmax with e increasing is not sensitive to σ′c0,
but obviously sensitive to changes in FC.

(2) For a specific FC, the traditional Hardin model can well characterize the influence of e and σ′c0
on the Gmax of silty sands. The stress exponent n does not appear to be sensitive to changes
in FC and e, but sensitive to changes in the types of silty sand. In addition, the soil-specific
constant n increases with increasing Cs

u · Cf
u and shows a logarithmic function. However, the

material-specific fitting parameter A in the Hardin model is sensitive to FC. The traditional Hardin
model cannot incorporate the influence of FC on Gmax of marine silty sand.

(3) e*, instead of e, can be an appropriate proxy to characterize the Gmax of marine silty sand with
various FC. The modified Hardin model, established in the framework of the binary packing
model, allowing unified characterization of Gmax values for silty sands, only considering basic
indices of the clean sand and pure fines. The predicted errors are within 10% for the Nantong
marine silty sand tested. Independent test data in the literature validate the applicability of this
modified model.
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