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Abstract: The paper describes an investigation of the hydrodynamic performances of a five-bladed
controllable pitch propeller, whose geometry was provided by Schiffbau-Versuchsanstalt (SVA)
Potsdam GmbH Model Basin. Both cavitating and non-cavitating regimes are numerically simulated
for different advance ratio coefficients. The numerical approach is based on a finite volume approach
in which closure to the turbulence is achieved through detached eddy simulation (DES). Propeller
open water (POW) characteristics are computed, and the numerical solutions are validated through
extensive comparisons with experimental data. In addition, the bi-phasic flow for the cavitating
regime is simulated, for which comparisons with the cavitation sketches are performed to check the
ability of the solver to estimate the cavitation extent. Grid convergence tests are performed for both
working regimes together with validation and verification checks, not only to size the level of the
numerical errors, but also to prove the robustness of the chosen numerical approach. Finally, a set of
final remarks will conclude the present research.

Keywords: propeller open water; cavitation; numerical simulation; DES turbulence model

1. Introduction

For a ship propeller the cavitation initiation may lead to a significant performance degradation and
can produce vibration and noise. In the early days of the past century, the propeller design milestones
focused on cavitation avoidance for the widest possible range of working conditions. Larger blade
areas for propellers operating at low revolutions seemed to be a proper choice in spite of the fact that
in many cases the propulsive efficiency was lowered due to the significant frictional losses associated
with a large blade surface. Reducing ship operating costs as well as lowering pollution determined an
overall enhancement of the efforts devoted to heightening the efficiency of the propulsion. Under such
circumstances, it became clear that a decrease of the margin of cavitation-free operation as well as the
allowance for some controlled amounts of cavitation on the propeller blades were expressly required.
Nevertheless, this new task had to be achieved only if the negative impacts of noise production and
propagation and vibration and erosion could be efficiently controlled.

Obviously, an accurate prediction of the cavitation behavior of the propeller, as a function of
loading conditions, is crucial in balancing difficult constraints in demanding design tasks. A propeller
should preferably be ensured that meets the requirements relating not only to its economic operation,
but also from the point of view of the comfort conditions on board in terms of noise and vibration
levels, prior to the ship construction. In failing to meet these conditions, the cost of manufacture and
repair can easily increase the cost of a ship project. Having these circumstances given, the propeller
design represents a challenging task in balancing properly different pros and cons within which it is
crucially important to accurately estimate the characteristics of cavitation and not only its existence or
extent. When analyzing numerically the cavitation, one should be aware of the co-existence of phase
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change and vortical structures that create a complex flow structure on the propeller since they both
involve very small-scale dynamics in time and space. From this viewpoint, a complete understanding
of the underlying physics becomes of crucial importance, either in preventing or in controlling its
occurrence and development on the propeller blades.

Historically, theoretical investigation of propeller behavior and its associated hydrodynamic
performances originates in the beginning of the previous century with the lifting line theory approaches
based on the concept of circulation and the Kutta-Joukowski theorem. Although not a straightforward
approach, the method was successfully used for predicting the lift and drag forces which were
developed by a series of wing sections that geometrically describe a propeller blade. Although based
on many assumptions which lowered its accuracy, the method provided more accurate predictions than
those based on the use of the empirical propeller diagrams. A step ahead was taken in addressing the
shortages of the lifting line-based methods in the 1950s by the lifting surface approaches, even though
the approaches could not be used for real ship propeller geometries due to insufficient computing
power at that time. The earliest lifting surface approaches were based on mode functions which
prescribed continuous distributions of surface singularities. At that time, the mode function approach
was the common procedure for solving lifting-line or two-dimensional common wing section problems.
For lifting surfaces that had to fit the propeller blades, the mode functions required a complicated
mathematical treatment, therefore their ability to describe arbitrary geometries was rather poor.
The second generation of lifting surface methods was developed around the late 1970s when sufficient
computer power became available. Mostly, these methods could handle arbitrary geometries, but could
not physically consider the true blade thickness, nor the propeller hub. Despite a theoretical inferiority,
vortex-lattice methods gave results of comparable quality to latter panel methods in benchmark tests
of the International Towing Tank Conference (ITTC) for propellers with moderate skew. A valuable
introspection of the lifting line and lifting surface theories as well as a comprehensive analysis of the
relation between the two is given in [1].

Real progress was made in the community when the boundary element methods (BEM) began to
be used to solve the problem. Because of its certain merits, the panel method seen as an implementation
of the BEM, quickly became a prevailing industry standard since it is simple to implement and accurate
enough in most of the predictions. Marine propellers operate behind the ship and are subject to a
non-uniform inflow due to the ship wake. Due to the spatial variation of the upstream conditions,
the propeller blades are subject to time-dependent inflow conditions causing an unsteady flow field
around the blades. This flow field is responsible for unsteady loads and often for the occurrence of
unsteady cavitation phenomena. The unsteady loads are important in the analysis of shaft vibrations,
and the unsteady pressure field is important for cavitation analysis and pressure fluctuations. Hsin [2]
was one of the first authors to carry out this analysis with a low-order BEM code. The method was also
applied to ducted propellers by Kinnas et al. [3]. The various approaches developed since then may
differ in the detailed numerical implementations, surface discretization used and, more importantly,
in the assumptions made for modeling the wakes behind the propeller blades. One of the most serious
problems that usually occurs when the BEM method is used is the accuracy with which the propeller
and wake surfaces can be reproduced by the panels used for discretization.

The most convenient way to represent a propeller is to use rectangular panels [4], which are
simple and easy to calculate, in spite of the fact that there will always be gaps between adjacent
rectangular panels. Obviously, poor panelization affects the accuracy of the calculations. As a remedy,
several improvements based on the B-spline schemes were gradually proposed to make the spatial
interpolation of the singular point of the panel elements more accurate and generate reasonable surface
meshes [5–7]. The hydrodynamic performance prediction when using the B-spline high-order panel
method led to a lower number of panels, therefore a higher computational efficiency. However,
the effect of the singularities on the numerical instability proved to be difficult to overcome in the
high-order methods. In contrast, a constant potential strength with an equal singularity density on a
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panel seems more stable in the numerical computation, therefore more studies are still required to find
the most appropriate, as comprehensively shown in [8].

With the advent of both hardware power and new numerical methods, computational fluid
dynamics (CFD) research was focused on finding a solution for the Navier-Stokes and conservation of
mass equations written for the viscous flow. Although less efficient than the potential methods because
of the higher CPU costs, the viscous solvers proved to be by far more accurate. Moreover, they could
provide more information concerning the local flow features in areas otherwise impossible to be treated
in the potential-based methods. Different numerical techniques were sequentially developed to solve
the partial differential equations which describe the flow, out of which the finite volume seems to be the
most popular for the time being. An important issue of all these methods is the turbulence treatment.
Although the direct numerical simulation, in which the whole range of spatial and temporal scales of
the turbulence are resolved, is by far the most accurate, it still remains the least attractive one because
of its prohibitive computational costs. As an alternative, large eddy simulation (LES), in which the
smallest length scales, which are the most computationally expensive to resolve, are simply ignored by
filtering the governing equations, gained in popularity recently [9–11].

The easiest to implement and the cheapest method is based on averaging the turbulence
characteristics; the Reynolds averaged Navier-Stokes equations (RANS) differ only by the turbulence
model employed. Algebraic, zero- one- and two-equation models were proposed as a closure to the
RANS equations. The most popular ones are the explicit algebraic Reynolds stress model EARSM [12]
and the k−ω SST, which is based on the Menter’s model proposed in [13]. A special class between the
LES and the RANS approaches are the detached eddy simulation (DES) and delayed detached eddy
simulation (DDES) methods, which combine the advantages of the two [14,15]. The main advantage
of the viscous flow solution method is the possibility of a complete description of the flow features
for a wide spectrum of applications, ranging from simple propeller analyses at both model and full
scales [16–18] to self-propulsion in waves [19] or during maneuvers [20]. They can be relatively easy
to apply for various problems such as ventilation of the propellers [21–23], oblique flow [24–26],
wake analysis [27–29] and cavitation [30–33].

Within the above context, the present paper describes a numerical investigation aimed at clarifying
the details of the flow around the VP 1304 controllable pitch propeller, known in the naval architecture
community as the Potsdam propeller test case (PPTC). The work continues a previous study of the
author [34] which was devoted to the assessment of the scale effects on the P1727 (PPTC II) propeller.
In the present study, the numerical simulations are performed for both wetted and cavitating regimes
for a series of eight different advance ratio coefficients. The software package used to solve the task of
the present research is FineTM/Marine, whose main solver is ISIS-CFD, which is a finite volume based
one. Closure to turbulence is achieved through the DES model. A grid convergence test as well as
verification and validation computation will be provided. Comparisons with the experimental data
will also be given to size the appropriateness of the numerical approach and the robustness of the
flow solver.

2. Geometric Setup and Computational Meshes

2.1. Propeller Characteristics and Computational Conditions

The VP 1304 propeller is a five blades, significantly skewed, controllable pitch propeller designed
at Potsdam Model Basin and proposed as a benchmark case for the 2011 Symposium on Marine
Propulsors for which the experimental conditions as well as the measurement data were publicly
provided by the organizers. Two sets of complete computations are performed in the present study, i.e.,
firstly the non-cavitation regime then the cavitation one. In the first case, the fluid domain is unbounded,
whereas in the second one the propeller is placed in a cavitation tunnel with a square cross-section of
0.85 m × 0.85 m with rounded corners, as Figure 1b–e bear out. To help the reader easily understand
the computation settings, the figure also depicts the boundary condition formulations that will be
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discussed later in the paper. As Figure 1 shows, the whole propeller is considered in the numerical
simulations, regardless of the associated higher CPU costs. The reason for not considering only a
single blade is the need to avoid the periodic boundary condition, which leads to an unwanted slight
distortion of the solution, especially for the heavy loading working regimes. Seemingly, the solution
distortion is due to the periodic boundary condition, which is only first order accurate while the
solution at interior nodes is of a second order of accuracy.
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computations; (b): side view of the computational domain for the cavitation computation;
(c): computational domain for the cavitation computation—view from outlet; (d): same as
previous—view from inlet; (e): side view of the cavitation tunnel grid.

Being a controllable pitch propeller, the experimental model has a gap of 0.3 mm between the
roots of the blades and the hub. For reasons related to discretization convenience, that gap was simply
neglected in the numerical approach reported here.
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The main geometric particulars of the PPTC propeller are tabulated in Table 1, whereas the
computational conditions for both the non-cavitating and cavitating regimes are provided in Table 2,
in which ρ and µ are the density and dynamic viscosity of the working fluids, whereas the subscripts
“w” and “v” stand for water and vapor, respectively. The fluid properties correspond to a temperature
of 15.6 ◦C for the open water propeller (POW) computations. For the cavitation computations the
water temperature was 23.2 ◦C.

Table 1. Main particulars of the Potsdam propeller test case (PPTC) propeller.

Parameter Symbol Units Values

Diameter D [m] 0.250
Pitch ratio P0.7/D [–] 1.635
Area ratio AE/A0 [–] 0.779

Chord length c0.7 [m] 0.1042
Skew angle θ [◦] 18.837
Hub ratio dh/D [–] 0.300

Table 2. Experimental and computational conditions.

Computation Parameter Units Values

W/O
cavitation

ρw kg/m3 998.2
µw kg/m·s 1.003 × 10−3

W
cavitation

ρw kg/m3 997.44
ρv kg/m3 0.01927
µw kg/m·s 1.003 × 10−3

µv kg/m·s 8.8 × 10−6

For open water performance calculations, the propeller is arranged in a pulling configuration,
the same as in the open water experimental tests. The computational domain depicted in Figure 1a
is of a cylindrical geometry, whose diameter is five times the propeller diameter, while its length is
13.5 times the propeller diameter, out of which 4.5 diameters are upstream of the propeller, which is
considered as being enough to avoid the influence of the inflow boundary condition imposition on
the flow around the propeller. For all the calculations of the flow inside the tunnel, the propeller is
arranged in a pushing configuration. As said above, the cross-section of the computational domain is
0.85mx0.85m and the domain extends 4.5 propeller diameters at the upstream and 9 times the propeller
diameter at the downstream, as shown in Figure 1e.

2.2. Computational Grids

Several computational meshes are generated in the Hexpress mesh builder, which is an integrated
part of the FineTM/Marine software suite. Since the computations refer to two distinctive regimes,
the minimal grid generation requirements are substantially different. That is, because of the differences
between the non-cavitating and cavitating flow set-up, in the first case only restrictions related to the
propeller surface and its potentially relevant surroundings are imposed. However, for the simulation
of the propeller placed inside the cavitation tunnel, the conditions change since the tunnel solid walls
must be taken into consideration as well. Four different grids are generated for each computational case,
so that the grid convergence test can be performed. The finest grid for the non-cavitation computations
consists of 63.48 M cells, whereas the coarsest consists of 8.27 M cells. In the following, the four grids
will be identified as coarse, medium, fine and very fine, respectively.

The finest grid for the cavitation computation consists of 73.148 M cells, while the coarsest contains
11.927 M cells. They will be identified similarly with the first set of computations. For the sake of
consistency, the discretization settings around the propeller are maintained at the same values as for
the open water grid. The only difference that is allowed between the two computational cases regards
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the boundary layer close to the solid walls of the tunnel when the cavitation case is computed. Figure 2
depicts six different views: the grids around the open water propeller, Figure 2a-c, and around the
propeller working in the cavitation tunnel, Figure 2d-f. As shown in the figure, the grid is mostly
unstructured in both cases, a fact that simplified the discretization in the areas where the geometry is
either discontinuous, see Figure 1a,b, or in the proximity of the edges and the tips of the blades. Special
requirements such as smoothness, clustering and orthogonality inside the viscous boundary layer are
imposed. Aside from that, in certain regions of the computational domain, such as the wake of the
tips and the roots, additional refinement is imposed so that the accuracy of released vortices not be
affected by the numerical dissipation. Computations in the wetted propeller case are performed by
using a rotating frame method, whereas the cavitation simulations employ a sliding grid technique.
The sliding grid denoted by SG in Figure 2e was built so that the grids near the sliding interface are
almost structured. The grid refinement around the interface was carefully controlled so that no jump
in cell size across the interface was allowed.
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Figure 2. Computational mesh on the PPTC propeller. (a): side view detail; (b): mesh in the
longitudinal plane of symmetry; (c): transversal mesh in the propeller plane seen from the suction side;
(d): viscous boundary layer on the cavitation tunnel walls; (e,f): details of the sliding grid used for the
cavitation computation.

In both cases the minimum grid size is chosen so that the resulting y+ remains below 0.25
everywhere on the propeller surfaces. This condition led to a maximum cell dimension of 10−6 m
measured normal to the solid walls. A number of 41 layers of cells are placed inside the viscous
boundary layer of the propeller in both computational cases, whereas on the solid walls of the cavitation
tunnel only 22 layers are used because of the limitations imposed by the existing hardware resources,
as depicted in Figure 2d. The growth ratio of the cells through the inflation layers is 1.15 for all solid
surfaces of the propeller in both cases, whereas a ratio of 1.2 is imposed for the tunnel walls.

3. Numerical Approach

The ISIS-CFD viscous flow solver, part of the Numeca Fine-MarineTM software package, is
employed in the present research. The solver is based on the finite-volume method for constructing
the spatial discretization of the transport equations on mostly unstructured grids. The simulation is
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performed in a global approach in which the momentum and mass conservation equations are solved.
Closure to the turbulence is achieved through the shear stress transport DES model, which provides
the accuracy of LES for highly separated flow regions and computational efficiency of RANS in the
near-wall regions. Fluxes are built using the AVLSMART bounded difference scheme, which is based
on the third order QUICK scheme. The velocity field is obtained from the momentum conservation
equation and the pressure field is then solved from the mass conservation constraint transformed
into a pressure equation. The entire discretization is fully implicit and second order accurate both
in space and time, according to which an implicit scheme is applied for the discretization in time,
whereas a second order three-level time scheme is used for the time-accurate unsteady computation.
Computations are performed in two successive steps. At first, the viscous flow is computed based on
the k−ω SST turbulence model and it runs until the solution stabilizes within 1% limit of variation in
the last 10% of the computational time. Six iterations for a time step are imposed for this first set of
runs. Secondly, the computation is restarted after the turbulence model is switched to the DES for a
few more seconds until the final convergence. At this stage, the imposed number of iterations per time
step is augmented to 16.

For the open water simulations, the boundary conditions are of Dirichlet type. That is, a Dirichlet
condition is imposed for the incoming velocity at the upstream boundary and on the exterior boundary,
as well as for the pressure at the outlet. However, when the flow around the propeller placed in
the tunnel is computed, the Neumann condition, in terms of the pressure (∂p/∂n = 0), is imposed
at the downstream boundary, as shown in Figure 1d. The no-slip condition is used on all the solid
boundaries of the propeller, whereas the wall function is imposed on the cavitation tunnel walls.
In ISIS-CFD the choice of default free-stream values is ω∞ = λU∞/D, µt∞ = 10−3µt, K∞ = µt∞ω∞/ρ,
where D is the propeller diameter and U∞ is the incoming velocity at the far inlet. λ is a factor of
proportionality, which is recommended to be between 1 and 10. These limits are compatible with the
values recommended for boundary layer flows, therefore λ = 10 was chosen [34]. Since free-shear
layers are more sensitive to small free-stream values of ω∞ and larger values of ω are imposed in the
free-stream, at least λ = 40 for mixing layers, increasing up to λ = 80 for round jets. Wall boundary
conditions are taken as K = 0 and ω = 60µ/βρ(∆y)2, where ∆y is the distance of the first point away
from the wall and such that y+ < 1.

Various approaches to cavitation modeling have been proposed so far. Obviously, the most
commonly used ones are based on the volume of fluids (VOF) approach, coupled with a model for the
exchange from a liquid to vapor phase (vaporization) and vice versa (condensation). These models
are commonly referred to as homogenous multiphase models. In the present case, the numerical
model is based on the resolution of a transport equation in which source terms are added to model the
vaporization and condensation of the liquid/vapour co-existent phases.

The Sauer, Merkle and Kunz models are implemented in the ISIS-CFD solver. Since in the
Sauer model the nuclei density, which is unknown a-priori, has to be provided, the model has been
disregarded. The justification for the choice resides in the fact that the accuracy of the inputs is
significantly subject to a fortunate choice rather than to a consistently motivated reason. Under such
circumstances, the only remaining choice was between the Merkle and Kunz models for which the
input data are the liquid product coefficient, liquid destination coefficient and cavitation reference
length. Based on previous numerical simulation achievements of the author [32], the Kunz model is
chosen for the numerical simulation [35]. Basically, the ISIS-CFD solver considers the cavitation as
being based on the resolution of a transport equation similarly to what is done for free surface, although
the significance of the sheet surface is completely different to that which concerns the water waves.
In this particular case, the source terms, whose mathematical expression is given in [35], are used in
modelling the vaporization and condensation of the two phases.
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4. Results and Discussion

In the following, the computed solutions will be presented and discussed separately for each of
the two cases considered, i.e., non-cavitating (wetted) and cavitating working regimes.

4.1. Wetted Propeller

4.1.1. Grid Convergence Test

Four different computational grids consisting of 8.27, 15.98, 31.09 and 63.48 million cells respectively,
are considered in the following to host the grid convergence test computations. Let these grids be
denoted by coarse, medium, fine and very fine for the convenience of a proper identification of each
computational case. The thrust and torque coefficients are computed for a series of eight advance
ratios ranging from 0.6418 to 1.6563 and compared with the corresponding experimental data [36], as
tabulated in Tables 3 and 4. In all computations the rate of revolution is kept constant at a value of 600
rpm, whereas the inflow speed corrected at experiments with idle torque and gap force is varied to
achieve the different advance ratios.

Table 3. Grid convergence test for the thrust coefficient. Wetted propeller case.

Parameter KT

J 0.6418 0.8021 0.961 1.1212 1.283 1.4422 1.6021 1.6563

EFD 0.6084 0.517 0.4293 0.3354 0.246 0.1576 0.0491 0.009

CFD

Coarse 0.5772 0.4906 0.4085 0.3215 0.2364 0.1514 0.0471 0.0086
|ε| % 5.12 5.11 4.84 4.14 3.89 3.93 4.02 4.47

Medium 0.5821 0.4960 0.4123 0.3235 0.2392 0.1533 0.0476 0.0087
|ε| % 4.32 4.07 3.95 3.54 2.77 2.72 2.98 3.35

Fine 0.5891 0.5010 0.4165 0.3267 0.2417 0.1546 0.0480 0.0087
|ε| % 3.17 3.09 2.98 2.58 1.76 1.91 2.17 2.91

Very
fine 0.5973 0.5271 0.4198 0.3397 0.2435 0.1551 0.0483 0.0092
|ε| % 1.82 1.95 2.21 1.28 1.02 1.59 1.63 2.22

Table 4. Grid convergence test for the torque coefficient. Wetted propeller case.

Parameter 10 KQ

J 0.6418 0.8021 0.961 1.1212 1.283 1.4422 1.6021 1.6563

EFD 1.3669 1.1994 1.0399 0.8606 0.6832 0.5029 0.2678 0.1786

CFD

Coarse 1.2973 1.1397 0.9876 0.8235 0.6505 0.4801 0.2563 0.1693
|ε| % 5.09 4.98 5.03 4.31 4.78 4.54 4.28 5.23

Medium 4.8645 4.7624 4.8127 4.1410 4.5998 4.3788 4.1336 5.0140
|ε| % 4.43 4.37 4.32 3.92 3.77 3.55 3.42 4.13

Fine 1.3221 1.1615 1.0065 0.8342 0.6620 0.4879 0.2600 0.1725
|ε| % 3.28 3.16 3.21 3.07 3.11 2.99 2.92 3.42

Very
fine 1.3291 1.1682 1.0111 0.8412 0.6657 0.48845 0.2607 0.1731
|ε| % 2.77 2.60 2.77 2.25 2.56 2.87 2.65 3.08

For the sake of consistency, all the computations employ the DES turbulence model and all the
reported solutions are computed for 25 s physical time when the propeller has already performed 250
complete rotations. All the parallel computations are performed on 120 processors, which means that
for the finest grid case, a number of about 529,000 cells are computed on each processor.



J. Mar. Sci. Eng. 2020, 8, 297 9 of 26

Automatic mesh refinement is performed based on sensors placed next to solid walls and inside
the wake. Special attention to the quality criteria such as orthogonality, smoothness and clustering
inside the areas next to the solid boundaries is paid during the generation process. Areas of rather
heavy clustering are placed around the blade edges and tips and hub and shaft, as depicted in Figure 2.
Aside from that, an annular volume of grid refinement is generated in the wake of the propeller,
therefore in the region where large gradients of the flow parameters are expected to occur. In the
immediate proximity of the propeller, the grid lines perpendicular to the wall are refined substantially
to maintain a y+ value less than unity for the first layer of grid cells.

All the computations are performed on a high-performance computer with 624 Intel E5 2680 v3
processors with 12 cores with a frequency of 2.5 GHz and 3.3 GHz for the turbo boost regime. In the
very fine mesh computational case, an average of 0.205 millisecond per mesh point was necessary.
As said before, each simulation is performed for 25 s, out of which the rotational acceleration time
done on a half sinusoidal law is imposed for two seconds. A time of 15 to 17 s is sufficient to achieve
the convergence of both thrust and torque computed coefficients.

The variation of the computed errors of the numerical solutions compared to the experimental
data [36] is depicted in Figure 3a for the thrust coefficient and Figure 3b for the torque coefficient.
The reason for reporting the solutions in the abscissae to the cubic root of the number of cells of a given
computation is that when using an unstructured grid it is difficult to define another relevant parameter
to describe locally the grid resolution.
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Obviously, the general trend of the solutions shows that with the increase of the accuracy of the
discretization, the errors are monotonically decreasing, a fact that is sustained by the theory of numerics.
Nevertheless, there are some advance coefficients for which variation slope does not wholly sustain
the above statement, a fact which is not generally in conflict with the general rule of the monotonic
decrease of the computational error with the increase of the discretization accuracy. As an overall
conclusion based on Figure 3, the reader may notice that the grid convergence test sustains not only
the consistency of the numerical model used in the present study, but also the robustness of the solver.

The grid uncertainty is further evaluated by following the methodology described in [37] for
monotonic convergence. The verification and validation will be carried out only for the J=1.283 case,
which produced the smallest error of the thrust coefficient compared to the experimental data. Let the
four meshes considered in the grid convergence computations be denoted by M1 . . . M4, where M1
corresponds to the coarse mesh and M4 to the very fine one. The grid ratio (rG), the associated
relative error between the KT computed on the very fine mesh M4 and the fine mesh M3, ε43%KT4,
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the ratio between the estimated order of convergence and the theoretical order of convergence, pG/pGth,
the grid uncertainty, UG%M4, the experimental uncertainty, UD%D, and the validation uncertainty,
Uv%, are tabulated in Table 5. pG,th in Table 5 is the theoretical order of accuracy, which is the

order of convection scheme, whereas the validation uncertainty is UV =

√
(UG%M4)

2 + (UD%D)2.
The relative error between the solution computed on the finest mesh M4 and the experimental data for
the thrust coefficient is smaller than the Richardson-based validation numerical uncertainty, therefore
the KT prediction can be considered as being validated. A similar conclusion can be withdrawn for KQ.

Table 5. Verification and validation for the thrust and torque coefficients computed for J = 1.283.

Parameters rG
ε43%KT4

or ε43%KQ4
pG/pG, th UG%M4 UD%D UV%

KT 2.042 0.740 1.023 1.583 1.0 1.872
10 KQ 2.042 0.550 1.023 1.583 1.0 1.872

4.1.2. Propeller Performances and Flow Analysis

Having carried out the grid convergence test, in the following only the solutions computed on the
very fine grid will be reported and discussed. Prediction of thrust and torque realized by the propeller
is performed first. The computed propeller performance coefficients are tabulated in Table 6 for all the
advance ratios and compared with the corresponding experimental data reported in [36]. The level
of errors is limited to 2.22% for the thrust coefficient and to 3.08% for the torque coefficient. A slight
underestimation of the thrust may be seen for almost all the advance ratios. In spite of that fact, it is
worth mentioning that the computed and experimental curves almost overlap and their slopes are
practically coincident, as depicted in Figure 4. Things are rather similar for the torque coefficient,
although the level of the errors is slightly higher. Seemingly, the reason behind the differences is related
to the small values of the torque, a fact that sometimes brings numerical difficulties, although all the
computations reported here were performed in double precision. The highest level of errors for the
open water efficiency coefficients reaches a value slightly larger than 5% for the highest advance ratio,
at which the thrust and torque have the lowest values over the domain, as Figure 4 bears out.

Table 6. Comparison between the open water propeller performance coefficients measured
and computed.

J KT |ε|% 10KQ |ε|% ηO |ε|%

EFD CFD EFD CFD EFD CFD

0.6418 0.6084 0.5973 1.8245 1.3669 1.3291 2.7654 0.4550 0.4593 0.9451
0.8021 0.5170 0.5271 1.9536 1.1994 1.1682 2.6013 0.5500 0.5763 4.5636
0.9610 0.4293 0.4198 2.2129 1.0399 1.0111 2.7695 0.6310 0.6353 0.6768
1.1212 0.3354 0.3397 1.2821 0.8606 0.8412 2.2542 0.6950 0.7210 3.6061
1.2830 0.2460 0.2435 1.0163 0.6832 0.6657 2.5615 0.7350 0.7473 1.6459
1.4422 0.1576 0.1551 1.5863 0.5029 0.4884 2.8733 0.7190 0.7292 1.3853
1.6021 0.0491 0.0483 1.6293 0.2678 0.2607 2.6512 0.4670 0.4726 1.1849
1.6563 0.0090 0.0092 2.2222 0.1786 0.1731 3.0795 0.1330 0.1402 5.1355

The numerical solutions reported here are very similar to those reported in [38], even though the
solvers were different and the closure to turbulence was achieved by using different models. Moreover,
the present solutions are in a good agreement with most of those reported in [39], where various
solvers were used to solve the benchmark case of the PPTC propeller by 14 attendees of the symposium.
That is, the same trend was noticed in the concluding remarks of the final report of the symposium,
which noticed that the numerical solutions reported by most of the participants slightly underestimated
the thrust and torque coefficients as well.
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Figure 4. Propeller performance diagrams. Comparison between the numerical solutions and
experimental data provided in [36].

In terms of pressure distribution on the blades, the present computation revealed that the highest
values correspond to lower advance ratios, i.e., for heavier loading conditions, as expected. For instance,
the non-dimensional pressure computed for J = 0.6418 depicted in Figure 5 unveils rather strong
gradients inside the regions around the tips and mid chord of the roots on both sides of the propeller.
The same high gradients are located on both leading and trailing edges of the suction side, shown in
Figure 5b, which is not the case on the pressure side where the distribution looks more uniform, except
for a limited area which extends between the relative radii of 0.6 and 0.7.
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suction side.

Obviously, the accuracy of the numerical solution strongly depends of the fineness of the spatial
discretization. Although not presented here because of limited space reasons, systematic computations
have proven that the best matching between the measured and computed pressure coefficients at
all the relative radii between the hub and the tip of the propeller were obtained on the finest grids.
As mentioned above, the severe restrictions imposed on the cells clustering on the solid surfaces,
required by the DES turbulence model, led to a y+ well below unity, as proven in Figure 6, which bears
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out its distribution on each side of the propeller. A maximum value for around the upper part of
the leading edge, in the order of 0.3, can be distinguished in the figure. The high resolution of the
discretization had to be correlated with small enough time-stepping so that the Courant-Friedrichs-Lewy
condition is satisfied. The time-step size for all the simulations reported here is less than 5 × 10−5 s,
so that the Courant numbers could be kept below unity regardless of the value of the oncoming flow
velocity. Needless to say, the small time-step value led to high CPU time costs. However, they were
finally justified by the good agreement with the available experimental data provided in [36].
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Figure 6. y+distribution on the propeller blades computed at J = 0.6418. (a): pressure side;
(b): suction side.

Definitely, the pressure field developed in the wake is always strictly related not only to the
pressure distribution on the propeller blades and hub, but also to the vortical structures released
by them downstream. This can be clearly seen in Figure 7, which shows the non-dimensional
pressure field computed in the longitudinal plane of symmetry of the computational domain for
J = 0.6418 and J = 1.4422, respectively. p and p0 in Figure 7 are the instantaneous and atmospheric
pressure, respectively.

The vortices are represented by the non-dimensional iso-surfaces of the second invariant of the
velocity gradient colored by the normalized streamwise velocity, i.e., the component parallel to the
free-stream velocity. The locations of the cores, regardless of their intensities, correspond to areas
of lower local pressures, as expected. In terms of intensity, Figure 7 proves that the propagation is
dependent on the advance coefficients, i.e., as the advance coefficient increases, the extension of the
vortices increases, and the wake remains co-linear with the incoming flow. It is also observed that
the pressure intensity in the surrounding areas of the core of the vortex slightly decreases for higher
advance coefficients.

The pressure distribution on the longitudinal plane of symmetry has to be related to the other
hydrodynamic parameters that describe the flow mechanism. In order to do that, Figure 8 proposes a
comparison of the vorticity fields, whereas Figure 9 shows the non-dimensional streamwise velocities
drawn for the same two advance coefficients of J = 0.6418 and J = 1.602, respectively. u and U0 in
Figure 9 represent the instantaneous axial velocity and the incoming flow velocity. The comparison
between these figures supports a primary conclusion. To simulate the onset and progression of the
vortical structures it is mandatory to use a very fine grid around and in the wake of the propeller.
Otherwise, the numerical diffusion will be so large that the onset and progression of these vortices
is destroyed by the artificial numerical diffusion. To reduce the need for prohibitive computational
resources, an automatic grid refinement based on a regularized version of the Hessian of the pressure
is employed in this study.
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(b): J = 1.602.

It has been shown by the author in [16,17] that the anisotropic two-equation EARSM non-linear
turbulence closure performs better than the linear isotropic k−ω closure with a significant increase of
the vorticity and extension of the vortices predicted, with even new structures detected. However,
the DES-SST model which is employed in this research proves to behave better since it is able to
predict more intense and sustainable vortices, as also mentioned in [40]. This statement is sustained by
Figures 8 and 9. The magnitude of vorticity shown in Figure 8 is expressed in s−1. Both the axial velocity
and vorticity manifest periodic pulses that correspond to the cores of the vortices. Their intensity
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decreases in the wake because of the viscous dissipation. Strong tip-released structures are shed in the
wake, correlating with local maxima of turbulent kinetic energy. The good agreement between the
velocity and vorticity is explainable since they derive from the other. Because the hybrid LES model
DES-SST only works with no-slip conditions for velocity on the solid boundaries, it proves to be more
reliable since it does not employ any wall functions.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 14 of 25 
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The acceleration of the flow right behind the propeller determines a slight reduction of the radial
position of the vortex cores. Further downstream, the helices formed by the tip vortices become stable
and remain located on a circular cylinder. In the DES-SST approach, the tip vortices are maintained
much further in the wake, which is not the case with the RANS models, which yields tip vortices but
they vanish more or less rapidly in the wake depending on the level of anisotropy associated with the
turbulence model. These remarks were also made in [40,41].

Regardless of the advance ratio, the trajectory of the tip vortex in the longitudinal plane
inclines towards the hub on the whole, suggesting a contraction of the trajectories of the tip vortices,
which becomes more significant when the advance ratio decreases. The helical pitch of the vortices is
constant, a fact that suggests that no numerical dissipation takes place. This is a merit of the solver,
which indicates suitable conservation properties, and also of the mesh clustering downstream of the
tips, which proves to be non-dissipative. The intensity of the vortices gets weaker further in the
propeller wake, a fact which is seemingly due to the viscous interaction with the rest of the fluid. As a
result, the vortical structures either vanish, as Figure 10 bears out, or simply collapse into each other
within an area of distortion. Figure 10a shows the vortices computed at an advance coefficient of
J = 1.4422, whereas Figure 10b shows the solution computed for J = 1.602. Both solutions are drawn
at T = 25 sec., therefore when the propeller has already made 250 complete rotations. For higher
advance coefficients, with the increase of the downstream distance, the propeller trailing vortex wake
restores gradually to the free-stream flow and the fluctuation of the circumferential distribution of
axial velocities becomes weaker, as depicted in Figure 9. A secondary vortex system is released by the
trailing edges of the blade roots. The junction between the blade and hub determines the occurrence of
a horseshoe-like vortex of a lower intensity than the tip vortex, which is therefore washed away in the
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downstream. The mechanism of its generation and development was formerly described in detail
in [42,43], therefore no more discussion will be made herein.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 15 of 25 
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In the following, an analysis of the wake based on several detailed comparisons with the LDV
measurements reported in [44] is proposed as an additional validation of the computational method.
Five relative radii ranging from r/R = 0.7 to r/R = 1 are considered in the polar representation of the
wake depicted in Figure 11 for two different distances measured from the propeller center towards the
downstream, namely x/D = 0.1, shown in Figure 11a, and x/D = 0.2 in Figure 11b.

The figure shows the angular variation of the axial wake computed as w = u/Uo, whereas θo is
the rotation angle of the propeller. Both numerical solutions refer to T = 25 sec. The experimental
data are represented by solid lines, whereas the numerical solutions by symbols. At first glance,
one may notice that the agreement with the LDV data is rather good despite the differences induced
by the data filtering. This statement is valid for most of the data. Seemingly, this is the merit of
the fine discretization around the blades as well as of the efficiency with which the automatic mesh
refinement works.

Nevertheless, there are some differences which can be seen in the correspondence of the
blade tips. This may suggest the need of extending the comparative analysis to the other wake
components. Consequently, the tangential and radial wake distributions will be subjected to study in
the following figures.

Figures 12 and 13 show comparisons between the computed and measured tangential and radial
wakes computed for a blade at two different axial locations, i.e., x/D = 0.1 and x/D = 0.2, respectively.
Numerical solutions are drawn with lines, whereas the experimental data provided in [44] with
symbols. For the sake of similarity with the experimental data, the circumferential wake distribution is
given within the range of −50◦ ≤ θ ≤ 22◦ only, which is a sector that completely covers the first blade.
The tangential wake is defined as wτ = Ut/U0, whereas the radial one as wr = Ur/U0. Ut and Ur

are the tangential and radial components of velocity. Axial velocities are positive in flow directions
and radial velocities are positive for increasing radii, while tangential velocities are positive for the
direction of rotation. The solutions are reported for the relative radii of 0.7, 0.9, 0.97 and 1.0 for both
axial locations. They all refer to T = 25 sec.
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J. Mar. Sci. Eng. 2020, 8, 297 17 of 26

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 17 of 25 

 

courtesy of Lars Lubke at Schiffbau-Versuchsanstalt (SVA) Potsdam [45]) at x/D=0.1 and x/D=0.2, 

shown in Figures 14 and 15, respectively. It is worth emphasizing that the agreement is satisfactory 

although both comparisons reveal that the numerical solution is slightly over-predicting the 

extension of the axial wake at both locations considered. Nonetheless, the magnitude of the numerical 

solution is below the measured data within a limited region strictly confined to the blade tip, as also 

seen in Figures 12d and 13d. 

  
(a) (b) 

  
(c) (d) 

Figure 13. Comparisons between the wake components measured [44] and computed at x/D=0.2. (a): 

r/R=0.7; (b): r/R=0.9; (c): r/R=0.97; (d): r/R=1.0. 

  
(a) (b) 

Figure 14. Comparison between the normalized axial velocities measured [44] and computed at 

x/D=0.1. (a): measured values; (b): computed values. 

Figure 13. Comparisons between the wake components measured [44] and computed at x/D = 0.2.
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The comparisons made for x/D = 0.1 shown in Figure 12 reveal an overall satisfactory agreement
between the numerical solution and the experimental data [44]. However, small differences can
be observed around the tip of the blade for the axial wake computed at r/R = 1.0. Although the
experimental data show some spare points due probably to the filtering, the numerical solution seems
to slightly under-predict the wake intensity. This fact may suggest either an insufficiency of the grid
resolution in that region or a failure of the solver in capturing properly the separation that takes place
there. In either case, more detailed investigations are obviously required to get a better understanding
of the reason for that local discrepancy.

A similar conclusion may be drawn from Figure 13, which depicts the same comparisons of the
wake components measured [44] and computed at x/D = 0.2. Comparing Figure 12 with Figure 13,
one may notice that because of the viscous dissipation, the wake intensity decreases as the distance
from the propeller increases, a fact that confirms the expectations. The conclusions above are sustained
by the comparisons of the normalized axial velocities computed and measured [44] (pictures provided
courtesy of Lars Lubke at Schiffbau-Versuchsanstalt (SVA) Potsdam [45]) at x/D = 0.1 and x/D = 0.2,
shown in Figures 14 and 15, respectively. It is worth emphasizing that the agreement is satisfactory
although both comparisons reveal that the numerical solution is slightly over-predicting the extension
of the axial wake at both locations considered. Nonetheless, the magnitude of the numerical solution
is below the measured data within a limited region strictly confined to the blade tip, as also seen in
Figures 12d and 13d.
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4.2. Cavitating Propeller

The simulations reported in the present subsection will be performed in a cavitation tunnel (see
Figure 1b–e), which is based on a numerical model that differs from the one used previously in terms
of the boundary condition formulation. Simulating the flow on a new computational domain, a new
grid convergence test is therefore required. Moreover, since additional equations that describe the
bi-phasic flow are to be solved, the discretization requirements are rather different from those above.
For the validation of POW performances of the propeller working in the cavitation tunnel, four more
computational grids with a number of cells varying from 12.98 M to 97.34 M are further generated at
this step. Aside from the clustering criteria imposed on the walls of the cavitation tunnel, the present
grids are also clustered inside the areas where the cavitation is expected to occur. For the simulations
reported in the present section of the paper the no-slip boundary condition is imposed for all the solid
walls of the cavitation tunnel. The thickness of the first layer of cells is chosen so that the y+ < 1 on
the propeller surfaces, and the adaptive mesh refinement is used in all cases. The time-step value is
set to 10−5 s so that the Courant number should be less than 0.3. Eight advance coefficients ranging
from 0.7676 to 1.5708 are considered for the grid convergence test, as tabulated in Tables 7 and 8.
Table 7 contains the validations for the thrust coefficients, while Table 8 tabulates the corresponding
data for the torque coefficients. All the computations are performed for a rotation speed of 1500 rpm,
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therefore the advance coefficients result from the variable advance velocity which is imposed for each
computation. The experimental data used for comparisons are provided in [46].

Table 7. Grid convergence test for the thrust coefficient. Propeller working in cavitation tunnel.

Parameter KT

J 0.7676 0.8851 1.0132 1.1432 1.2467 1.3776 1.4875 1.5708

EFD 0.493 0.4363 0.3708 0.3057 0.2492 0.1837 0.1187 0.0633

CFD

Coarse 0.4697 0.4140 0.3529 0.2930 0.2395 0.1765 0.1139 0.0611
|ε| % 4.72 5.11 4.84 4.14 3.89 3.93 4.02 3.47

Medium 0.4712 0.4188 0.3568 0.2947 0.2413 0.1783 0.1155 0.0616
|ε| % 4.42 4.02 3.78 3.61 3.17 2.93 2.72 2.61

Fine 0.4744 0.4225 0.3603 0.2980 0.2433 0.1796 0.1162 0.0620
|ε| % 3.77 3.17 2.84 2.53 2.38 2.21 2.14 2.02

Very
fine 0.4791 0.4247 0.3619 0.2992 0.2447 0.1808 0.1169 0.0626
|ε| % 2.82 2.65 2.41 2.12 1.82 1.59 1.53 1.13

Table 8. Grid convergence test for the torque coefficient. Propeller working in cavitation tunnel.

Parameter 10 KQ

J 0.7676 0.8851 1.0132 1.1432 1.2467 1.3776 1.4875 1.5708

EFD 1.224 1.1018 0.9693 0.8361 0.7194 0.5795 0.4472 0.3326

CFD

Coarse 1.1668 1.0524 0.9273 0.8009 0.6893 0.5555 0.4297 0.3202
|ε| % 4.67 4.48 4.33 4.21 4.18 4.14 3.91 3.73

Medium 1.1698 1.0537 0.9307 0.8042 0.6930 0.5589 0.4319 0.3215
|ε| % 4.43 4.37 3.98 3.82 3.67 3.55 3.42 3.35

Fine 1.1839 1.0670 0.9401 0.8113 0.6988 0.5633 0.4355 0.3245
|ε| % 3.28 3.16 3.01 2.97 2.86 2.79 2.62 2.43

Very
fine 1.1864 1.0697 0.9415 0.8131 0.7004 0.5650 0.4362 0.3253
|ε| % 3.07 2.91 2.87 2.75 2.64 2.51 2.45 2.18

As far as the thrust coefficient is concerned, the absolute errors vary from 1.13%, which corresponds
to J = 1.5708 for the very fine grid, to 5.11% for J = 0.8851 on the coarse grid. The situation is similar for
the torque coefficient. Thus, the absolute errors vary from 2.18%, which corresponds to J = 1.5708 for
the very fine grid, to 4.67% for the J = 0.7676 flow regime computed on the coarse grid. The variation
of the computed errors of the numerical solutions compared to the experimental data [46] is depicted
in Figure 16a for the thrust coefficient and Figure 16b for the torque coefficient, in which the trend of
the monotonic decrease of the error levels with the increase of resolution is straightforward.

The computed propeller performance coefficients are tabulated in Table 9 for all the advance
ratios and compared with the corresponding experimental data reported in [46]. The level of errors is
limited to 2.82% for the thrust coefficient and to 3.07% for the torque coefficient. Based on the grid
convergence test, the propeller diagram for the finest grid is proposed in Figure 17, in which the good
agreement between the experimental data and the solutions reported here is shown. Nonetheless, it is
worth noticing that for all the values of the advance coefficient the numerical solution is below the
measured data.
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Figure 16. Grid convergence test for the propeller working in cavitation tunnel. Computational error
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Table 9. Comparison between the open water performance coefficients measured and computed for
the propeller working in the cavitation tunnel.

J KT |ε|% 10KQ |ε|% ηO |ε|%

EFD CFD EFD CFD EFD CFD
0.7676 0.4930 0.4791 2.82 1.224 1.1864 3.07 0.492 0.4923 0.06
0.8851 0.4363 0.4247 2.65 1.1018 1.0697 2.91 0.558 0.5581 0.02
1.0132 0.3708 0.3619 2.41 0.9693 0.9415 2.87 0.617 0.6172 0.03
1.1432 0.3057 0.2992 2.12 0.8361 0.8131 2.75 0.665 0.6656 0.09
1.2467 0.2492 0.2447 1.82 0.7194 0.7004 2.64 0.687 0.6877 0.10
1.3776 0.1837 0.1808 1.59 0.5795 0.5650 2.51 0.695 0.6954 0.05
1.4875 0.1187 0.1169 1.53 0.4472 0.4362 2.45 0.628 0.6287 0.11
1.5708 0.0633 0.0626 1.13 0.3326 0.3253 2.18 0.476 0.4760 0.01
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For a better accuracy of the numerical solution of the cavitating working condition, in the
following, all the computations will be performed on the very fine grid only. Propeller performances
and cavitation extension evaluations are carried out for three different cavitation numbers. Computed
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solutions will be compared with the cavitation sketches drawn at SVA Potsdam and provided courtesy
of L. Lubke. Thrust identity is imposed in order to replicate the same tunnel measured flow conditions.
The non-cavitating thrust coefficients are imposed at 0.387, 0.245 and 0.167, with prescribed cavitation
numbers, respectively 2.024, 1.424 and 2.000. The cavitation number is defined as

σn =
pre f − psat

0.5·ρl·(nD)2

where pre f is the reference pressure, i.e., the pressure at the outlet, psat is the saturation pressure, ρl is
the liquid density and n and D are the rotational velocity and the diameter of the propeller, respectively.
The three different cavitating flow regimes determined by the cavitation number σn are defined by
varying the value of pv because pre f and ρl are kept constant. For reasons related to the similarity with
the experiments [46], all the simulations reported here will be referred to as 2.3.1–2.2.3. In all the cases,
the inflow velocity is left free to alter for matching the thrust equivalence.

4.2.1. Propeller Cavitation Simulation for σn = 2.024 (test case 2.3.1 in [46])

The first simulation is performed for a cavitation number of 2.024, for which the input data used
for experiments [46] are tabulated in Table 10.

Table 10. Cavitation observations. Test case 2.3.1 in [46].

Parameter Symbol UM Value

Advanced coefficient J [-] 1.019
Thrust coefficient (non-cavitating) KT [-] 0.387
Cavitation number σn [-] 2.024
Number of revolutions n [s−1] 24.987

A comparison between the numerical solution and the cavitation sketch of the experiment reported
in [46] is depicted in Figure 18. For the computed solution, the comparison reveals that a stable
and narrow sheet cavity is observed on the suction side of the blade, a fact which is confirmed by
the experiment. At the outmost radius, the sheet cavity merges into a tip vortex cavity. In addition,
a cavitation sheet is observed along the blade root with a maximal extension which corresponds
to the mid-chord of the root, as observed in the experiments. No hub cavitation is numerically
detected. The mean shape and extent of the root cavitation, as well as the tip and hub vortex cavitation,
are captured well. The tip vortex cavitation extending far behind the propeller is successfully captured.
Despite the good resemblance between the simulation and the experiment, one may notice that an
additional thin cavitation sheet, which was not seen during the experiments, develops around the
higher relative radii of the trailing edge of the numerical solution. Moreover, the numerical model
seems to be unable to predict the bubble cavitation at the trailing edge of the root.
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The computed solution reveals a tip vortex cavity which is released by the trailing part of the 
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Figure 18. Comparison between the computed cavitation extension for σn = 2.024 and the
experimental cavitation sketch [46] reproduced with the permission of L. Lubke (SVA). (a): computation;
(b): experiment.

4.2.2. Propeller Cavitation Simulation for σn = 1.424 (test case 2.3.2 in [46])

The second simulation is performed for a cavitation number of 1.424, for which the input data
used for experiments [46] are tabulated in Table 11.

Table 11. Cavitation observations. Test case 2.3.2 in [46].

Parameter Symbol UM Value

Advanced coefficient J [-] 1.269
Thrust coefficient (non-cavitating) KT [-] 0.245
Cavitation number σn [-] 1.424
Number of revolutions n [s−1] 24.986

The computed solution reveals a tip vortex cavity which is released by the trailing part of the blade
and a substantial root cavitation which starts around the mid-chord on the suction side, as depicted
in Figure 19. The comparison with the experimental cavitation sketch emphasizes a satisfactory
agreement between the theoretical and experimental approaches. Nevertheless, one may notice again
the inability of the numerical solver to capture the cavitation bubbles, neither on the blade nor in the
wake of the trailing edge of the root. This could be due either to the cavitation model employed or to
an insufficient grid resolution in those areas. Obviously, more systematic studies are required to clarify
the reasons for the difference.
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4.2.3. Propeller Cavitation Simulation for σn = 2.000 (test case 2.3.3 in [46])

The last numerical simulation is performed for a cavitation number of 2.200, for which the input
data used for experiments [46] are tabulated in Table 12.

Table 12. Cavitation observations. Test case 2.3.3 in [46].

Parameter Symbol UM Value

Advanced coefficient J [-] 1.408
Thrust coefficient (non-cavitating) KT [-] 0.167
Cavitation number σn [-] 2.000
Number of revolutions n [s−1] 25.014

At this loading and cavitation number, a narrow stable sheet cavity is observed on the pressure
side of the blade around its leading edge, together with a rather weak root cavitation, as shown in
Figure 20a. A rather short pigtail vortex tip cavitation develops in the blade trail. Aside from that, a
slight hub cavitation is detected around the trailing edge of the blade root. Comparing the numerical
solution with the experimental sketch, it may be noticed that the computed cavitation sheet extends to
the root of the blade, more than was observed in the cavitation tunnel. In spite of this fact, the overall
agreement is more than satisfactory.
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(b): experiment.

5. Concluding Remarks

The paper describes a thorough investigation of the hydrodynamic performances of the PPTC
I propeller. The flow is numerically simulated by integrating in time the unsteady Navier-Stokes
equations in which closure to the turbulence is achieved by means of a modified DES-SST approach.
The ISIS-CFD solver, part of the Numeca FineTM/Marine package, uses the finite volume of fluid
approach. All the parallel computations were performed on 120 processers. Non-cavitating and
cavitating flow regimes were computed for a significant range of advance coefficients, and the
comparisons with the available experimental data validated the numerical solutions. Grid convergence
tests were performed, and the computed solutions proved not only a satisfactory accuracy of the
numerical approach, but also the solver robustness. Based on the discussions provided in the preceding
sections, the following conclusions may be put forward:

− extensive comparisons with the available experimental data have proven the accuracy of the
numerical treatment;

− the automatic grid refinement based on a regularized version of the Hessian of the pressure
allowed convergence achievement at a reasonable CPU cost;
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− flow analysis of the non-cavitating propeller working regime revealed that the hybrid DES-SST
turbulence model allows very good progression of the vortical structures in the wake;

− comparisons of the numerical solution with the LDV measurements revealed that the numerical
solution slightly under-predicted the intensity of the radial and tangential wake components and,
on the other hand, it insignificantly over-predicted its axial component;

− the Kunz cavitation model was able to provide a satisfactory estimation of the cavitation sheet
extension but failed in capturing the bubble cavitation.
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