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Abstract: This research identified the types of wave breaker on a non-overtoppable, smooth
and impermeable 1:10 slope under regular waves. Experimental tests were carried out in the
Atmosphere-Ocean Interaction Flume of the Andalusian Institute for Earth System Research
(University of Granada). Using the experimental space [log(h/L)–log(H/L)] and the alternate slope
similarity parameter [χ = log (h/L H/L)], a complete set of breaker types was identified. Four types of
wave breaker were then added to Galvin’s classification. Our results showed that the value of the
Iribarren number was not sufficient to predict the expected type of wave breaker on the slope. Except
for spilling and early plunging breakers, no biunivocal relationship was found between Ir and the
type of breaker. The data obtained in the physical model were further enriched with the results of
the flow characteristics and the wave energy transformation coefficients obtained with the IH-2VOF
numerical model on a 1:10 impermeable slope. This research study, presented in this paper, showed
that the Iribarren number is not a convenient wave breaking similarity parameter.
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1. Introduction

Sloping breakwaters are the most common coastal structure for the protection of ports and beaches,
because of their capacity to dissipate incident wave energy when interacting with the structure.

The transformation of the wave train propagating on an impermeable slope depends, among
other things, on the transport of turbulent kinetic energy (TKE) from the following sources: (a) wave
breaking causing advection and diffusion of turbulence, generating a vortex dependent on the breaking
type; (b) the armor layer whose vortex depends on the characteristic diameter of the armor unit; and
(c) the porous core whose turbulence scale depends on the grain size.

The research in [1] is based on the hypothesis that the Iribarren number (Ir = tan(α)/
√

H/L) [2]
helps to address the questions of whether a wave train will break on a slope, by decaying, voluting,
collapsing, or oscillating [3,4]. However, surprisingly, in the case of breakwaters, very little attention
has been paid to calculating wave dissipation as a function of the type of wave breaking on the slope.

In recent decades, several numerical and physical studies have studied the different types of
wave breaking on an impermeable slope. References [5–9] developed numerical models based on the
volume-averaged Reynolds average Navier–Stokes (VARANS) equations and using the volume of
fluid (VOF) method for measuring the free surface. References [7,8] performed an in-depth study of
plunging and spilling breakers. On the other hand, using numerical and mathematical models, ref. [9]
studied the differences between weak and strong plunging; Ref. [10] investigated the bore type of
breakers; Ref. [11] researched breaking waves on steep impermeable slopes for measuring run-up,
and ref. [12] studied plunging breakers.
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These studies provided the spatial-temporal progression of the wave, which is key information to
analyze the source of the experimental uncertainty, and to identify the transitions between the types
of wave breakers [3,4]. Particularly relevant for this research was the distinction between weak and
strong bore [13] and weak and strong plunging [7,12].

Nowadays, in coastal engineering, the flow characteristics of the waves (energy transformation,
stability, run-up, etc.) are determined by the application of semi-empirical formulas, most of which are
based on the Iribarren number [2]. It is implicitly conjectured that the value of the Iribarren number
determines the type of wave breaker [1,3,4] on the slope.

Following [14,15], the first aim of this paper was to verify that conjecture. The second was to
describe and analyze the dependence of the type of wave breaker on the relative depth (h/L) and wave
steepness (H/L), while propagating on a smooth, impermeable slope under regular wave train. For this
purpose, a physical test was carried out in the Atmosphere-Ocean Interaction Flume (CIAO) of the
Andalusian Institute for Earth System Research (IISTA-University of Granada).

The rest of the paper is organized as follows. Firstly, the experimental set-up and space are described.
Next, a series of pictures defining the types of wave breaker are shown. The types of breakers are
presented as a function of the relative depth and wave steepness. In addition, these results are discussed
and compared with the Iribarren number. Finally, the paper ends with the conclusions that can be
derived from this research.

2. Methodology

To study the influence of the different wave parameters and test conditions in the breaking
processes, tests were carried out in the Atmosphere-Ocean Interaction Flume (CIAO) of the Andalusian
Institute for Earth System Research (IISTA-University of Granada). This wave flume facilitates the
combined study of marine and atmospheric processes. The facility has two opposing piston-type
generating paddles, equipped with active systems to absorb reflection, and a closed circuit for wind
generation. A detailed description of the CIAO facility is given in Appendix A.

For this study, an impermeable ramp made of wood, with a slope angle of 1:10 (in the study area,
Figure 1) was used. Regular waves were generated with paddle 2. Two water depths were used,
h = 0.4 m and h = 0.5 m. A total of 19 tests were done, of which the conditions are summarized in
Table 1. Test conditions were chosen to cover the maximum experimental space [log(h/L) vs. log(H/L)]
to analyze the maximum types of breakers, with combinations of H and T, and then Ir was calculated.
Pictures of the waves were taken from the first waves approaching the slope.
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Figure 1. Diagram of the Atmosphere-Ocean Interaction Flume (CIAO) and wave gauge position
(measured in meters).

Table 1. Summarized test conditions. Parameters H and T are input values, namely, the values given to
the generation system. Tz, L, HI and Ir represent the zero-upcrossing mean wave period, wavelength,
incident wave height, and Iribarren number, respectively, from the statistical analysis of the surface
elevation data.

tan(α) H(m) T(s) Tz(s) h/L HI/L Ir

1:10 0.005–0.3 0.98–4.8 1.1006–5.0114 0.0457–0.2804 0.0012–0.1002 0.367–3.15
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The free surface elevation was measured using four UltraLab ULS 80D acoustic wave gauges
placed along the flume before the ramp (Figure 1). These gauges have a maximum repetition rate of
75 Hz, a space resolution of 0.18 mm, a working range of 350 mm and a reproducibility of ±0.15%.
Video cameras were used in the study section for recording and photographing the breaking waves.

The values of HI and Tz used in the results were the r.m.s. wave height and the mean wave period
at the toe of the ramp. Those values were obtained from the statistical analysis of the recorded free
surface elevation time series by wave gauges 1, 2 and 3. In the analysis, the zero-upcrossing technique
of the time series was applied to obtain the individual wave heights and periods of the signal [16].

While the mean period coincided with the input period, the incident wave height was usually
lower than the input value [14]. L is the wavelength, calculated with the linear dispersion equation,
σ2 = gk tanh(kh), where σ is the angular frequency (σ = 2π/T); g is the gravity acceleration; k is the
wavenumber (k = 2π/L).

3. Results

3.1. Log-Transformed Experimental Space

Firstly, it was necessary to analyze the limits of wave generation in the flume tests. For that purpose,
Figure 2 shows the tests carried out on a 1:10 slope, plotted in the log-transformed experimental
space [14]. The logarithmic axes were used to assist in the visualization of the data. The sides of the
parallelepiped indicated the wave generation limits of the wave flume (maximum and minimum wave
height and period). This figure also shows the maximum wave steepness in the intermediate water
depth (constant depth) given by Miche’s equation (Equation (1)) [17].

HI/L = 0.14tan h(kh) (1)
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Figure 3. Types of breaker transitions at the CIAO flume for a 1:10 impermeable slope. ID Numbers 
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pairs of figures show the transition between: (a) and (b) surging and weak bore; (c) and (d) weak bore 

Figure 3. Types of breaker transitions at the CIAO flume for a 1:10 impermeable slope. ID Numbers
are used in Figures 2, 4 and 5 to identify the types of wave breaker in the experimental space. The pairs
of figures show the transition between: (a,b) surging and weak bore; (c,d) weak bore and strong
bore; (e,f) strong bore and strong plunging; (g,h) strong plunging and weak plunging; and (i,j) weak
plunging and spilling.
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3.2. Breakers Photographs

In what follows, the sequence of the type of wave breaker observed is shown with the pictures taken
during the experiments. The ID of each picture indicates the number of the test in the log-transformed
experimental space. Each test is represented by two pictures of the wave.

The sequence of the five photographs shows the transition between five types of wave breaker
observed on the plane impermeable 1:10 slope:

− ID 15: Surging—weak bore
− ID 16: Weak bore—strong bore
− ID 17: Strong bore—strong plunging
− ID 18: Strong plunging—weak plunging
− ID 19: Weak plunging—spilling

As can be observed, the difference between the weak and strong bore found by [13] (their Figures 5
and A1) are also observed in the physical test. In a weak bore, the front of the wave is unbalanced and
starts breaking from the bottom or nearby it. In a strong bore, there is an attempt to plunge, but, before
it can finish the plunge, the front “collapses”, thus developing a forward volume of water and bubbles,
which are highly turbulent.
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For plunging breakers, the top of the front wave turns over. In the strong plunging, the water falls
on the slope (or on a tongue of water), splashing and losing energy. In the weak plunging, the water
lands on the main wave, building a roller which propagates with the wave [18].

3.3. The Experimental Space and the Types of Wave Breaker

Figure 4 shows the same log-transformed experimental space with the experimental data, but in
this case, the other information is the following: (1) the different types of wave breaker: (2) vertical
red lines indicating constant values of the Iribarren number; and (3) slanting blue lines, showing the
transition between breaking types, following the constant relationship between h/L and H/L. This
relationship was found after analyzing the pictures and organizing the breaker types. Figure 4 clearly
illustrates that for a constant value of Ir, different types of breaking wave can be expected. For Ir = 2.5,
surging, weak bore, strong bore and strong plunging breakers could be possible. Thus, it cannot
be assumed that there is a biunivocal relationship between the Iribarren number and the types of
wave breaker.

3.4. Influence of the Breaker Types in the Flow Characteristics

Figure 5 shows sigmoid functions fitted to the values of the bulk dissipation (D*) and the total water
excursion [(Ru + |Rd|)/HI], being Ru and Rd the run-up and run-down respectively, versus the alternate
slope similarity parameter (χ = log[h/L H/L]). Those data were calculated numerically using the
IH-2VOF numerical model [5] on a smooth impermeable 1:10 slope (further information of the model
and the test can be found in Appendix B. The tests are fully described in [14,15]). A sigmoid function
was fitted to the numerical data and then, with the χ value of the experimental tests, the value of the
dissipation was obtained from the sigmoid function. The figure highlights the relationships between
the types of wave breaker and the flow characteristics and the wave energy transformation on the slope.
The relationship with the reflection coefficient can be estimated from the bulk dissipation K2

R = 1−D∗.
For impermeable and non-overtoppable slopes, it mimics the wave energy dissipation behavior.

4. Discussion

The previously mentioned results showed that small changes in the relative depth and wave
steepness can alter the type of wave breaker, and consequently change the flow characteristics on the
slope. It is important to highlight that the types of wave breaker were found to be strongly dependent
on the slope angle ([14,15]) and thus their location in the experimental space, (h/L) and (H/L). The results
in Figure 3 are representative of the types of breaker on an impermeable 1:10 slope.

The analysis of the photographs and videos taken at the wave flume showed that the characteristics
of each transition between the different breakers were the following:

1) Surging—Weak bore: The wave trains oscillates (like a standing wave), generating no turbulence
in the profile. The period of the water rising and falling along the slope is considerably larger
than the wave period.

2) Weak bore—Strong bore: The inclined plane becomes more vertical and collapses in the middle
or bottom of the water column.

3) Strong bore—Strong plunging: There is no volute. There is an inclined plane, mixing water and
air bubbles.

4) Strong plunging—Weak plunging: The wave volute impacts the slope, hits it and bounces back.
5) Weak plunging—Spilling: The wave volute begins, but disappears in turbulence before it impacts

the slope.

As reflected in the results, the wave breaking process determined the flow characteristics (run-up,
run-down, stability . . . ), as well as wave energy transformation on the slope. Three regimens were
found: (i) a reflective regime caused by surging breakers; (ii) a dissipative domain caused by spilling
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and weak plunging breakers; (iii) a transition regime where strong and weak bores, and strong plunging
are the most plausible type of wave breaker.

Reference [2] proposed the value of Ir = 2.3 to identify the change of wave energy transformation:
for Ir >2.3, the flux of reflected wave energy was larger than the energy dissipation. Later, [19]
showed that for Ir ≈ 2.3, the period of the up-rush and down-rush on the slope and the period of the
incident wave were approximately equal. In the experiments in this study, these “quasi-resonant”
conditions occurred during the transition between strong plunging and strong bore. The variability of
the observed flow characteristics was significant, depending on the type of wave breaker [15].

The use of the experimental space could help to develop the experimental design. It made it
possible to forecast the types of breaker, as well as the variability of the flow characteristics, wave
energy transformation, and structure stability. The types of wave breaker identified previously in the
numerical computation [15] were verified with the physical breakers observed in the CIAO flume.
For that purpose, the application of the alternative slope parameter (χ) was relevant. Thus, with a
smaller number of tests, a wide range of results were obtained. The time of the physical experiments
was also decreased; and even more importantly, costs were lowered.

5. Conclusions

The objective of this research was to identify the types of wave breaker on a non-overtoppable,
smooth, and impermeable 1:10 slope under regular waves. Experimental tests were carried out in the
CIAO flume of the IISTA. From this study, the following conclusions can be drawn:

1) Six types of wave breaker were observed in the flume experiments: surging, weak bore, strong
bore, strong plunging, weak plunging and spilling. Four of them were classified as follows [4]:
surging, bore (collapsing), plunging, and spilling. The differences between weak—strong bore [13]
and strong—weak plunging were explained by [8,12].

2) The alternate slope similarity parameter (χ) [14,15] enabled us to forecast the type of wave
breaker. It depends on the slope. The results of this study (Figures 3 and 4) were obtained on a
1:10 impermeable slope.

3) It was found that the value of the Iribarren number is not sufficient to forecast the expected type
of wave breaker on the slope. Except for spilling and early plunging breakers, there is not a
biunivocal relationship between Ir and the type of breaker.

4) A relationship was found between the breaker types and flow characteristics and the wave energy
dissipation on the slope. These results could be useful and relevant information for the design of
mound breakwaters.
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Appendix A. Atmosphere-Ocean Interaction Flume

The Atmosphere-Ocean Interaction Flume (CIAO) is part of the Environmental Fluid Dynamics
Laboratory and focuses on the study of the coupling processes between the sea and the atmosphere.
The marine atmospheric boundary layer (ABL) and the oceanic boundary layer (OBL) are full of small
and large scale flow processes. The vertical dimensions of the ABL (on the order of 500 m), the OBL
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(on the order of 50 m) and the swell (on the order of 5 m) are small compared to the general height of
the atmosphere and ocean. In contrast, boundary layer turbulence and waves play a major role on a
large scale, as they regulate the functioning of the earth’s climate and weather systems. The coupling
of the atmosphere and the ocean through these processes is particularly important and affects many
scientific disciplines: climate prediction, wave breaking, bubble and spray generation, etc.

This is why the CIAO flume covers a large part of the processes involved in the coupling between
the ABL and the OBL, and therefore has the capacity to simulate them:

1) Wave generation:

- By means of a generation system with paddles and electric actuators, in both directions
- By wind, either in the direction of the swell or in the opposite direction

2) Generation of currents, in both directions
3) Wave breakage
4) Rain generation
5) Heat exchange processes in the air-water interface
6) Behavior of different density biphasic fluids: lagoons and reservoirs

Thus, the new facility will provide the ability to study:

1) Consequences on ABL and OBL of processes such as wave generation or breaking
2) Heat balances in the boundary layers
3) Particle dynamics, droplet formation
4) Wave and wind actions on structures: offshore platforms, wind farms and offshore wind turbines
5) Wave power generation
6) Relations between heat exchange and life development: formation of ecosystems

Characteristics of the Flume

The CIAO flume has three main components:

1) A wave generation system (wave flume), of 1 m width and 0.70 m water depth design, 15 m
length and the possibility of generating waves of a period of 1–5 s and up to 25 cm high.

2) A closed circuit wind generation system (wind tunnel), 24 m long and capable of generating
winds of up to 12 m/s.

3) A double current generation system, to generate currents at double height, with a maximum
generated current speed of 0.75 m/s.

The three components are reversible and independent, so that all phenomena can be simulated in
equal or opposite directions of propagation, giving the equipment great versatility.

In addition, the equipment has a series of auxiliary systems that make it unique worldwide:

1) Rain generation system, from 75 to 300 mm/h, with water temperature variation between 10
and 30 ◦C.

2) Sediment collector for transport tests.
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Stokes equations (VARANS) in a two-dimensional domain. These equations are obtained when the 
RANS equations are integrated in a control volume. The volume of fluid (VOF) method is followed 
to compute free surface. Wave conditions are introduced in the model, imposing a velocity field and 
a free surface time evolution on one side of the numerical domain. The IH-2VOF model has been 
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Figure A1. Atmosphere-Ocean Interaction Flume (CIAO) pictures. (a) Inside of the flume with the
ramp installed without water; (b) Scheme of the flume provided by the manufacturer (VTI S.L.).

Appendix B. Numerical Model IH-2VOF

The IH-2VOF numerical model [5] is based on the volume-averaged/Reynolds averaged
Navier–Stokes equations (VARANS) in a two-dimensional domain. These equations are obtained
when the RANS equations are integrated in a control volume. The volume of fluid (VOF) method is
followed to compute free surface. Wave conditions are introduced in the model, imposing a velocity
field and a free surface time evolution on one side of the numerical domain. The IH-2VOF model has
been widely validated [20–25].

The current-wave flume of the IISTA laboratory was reproduced in the numerical model.
The numerical set-up was calibrated by [24] and it is formed by a uniform grid on the y-axis,
with a grid cell size of 0.5 cm, and horizontally (on the x-axis) grid with three regions: (i) a center
region, 5 m long, containing the breakwater section with the finest resolution and a cell size of 1 cm;
two regions (ii) at the beginning and (iii) at the end of the numerical wave flow, with a cell size of 2 cm.
The total number of cells in the numerical domain was 1304 × 162. Active wave absorption was used
at the generation boundary.

A non-overtoppable, smooth and impermeable 1:10 slope was tested under regular waves
(Figure A2). Tests were performed, setting the value of T and increasing H to cover the maximum
number of Iribarren numbers (always Ir > 1.5). Water depth was kept constant at h = 0.35 m. Tests
conditions are summarized in Table A1.
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Table A1. Summarized test conditions for the numerical model.

tan(α) H(m) T(s) Tz(s) h/L HI/L Ir

1:10 0.002–0.14 1–2.2 0.8–2.19 0.09–0.36 0.0008–0.06 0.45–4.007
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