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Abstract: Aquaculture site selection, like most site suitability analyses, requires the assembly and
combination of multiple variables. Geographic information systems GIS and multi-criteria evaluation
(MCE) based approaches are commonly used for aquaculture site selection and demonstrate the
integration of various information sources relevant for siting aquaculture. These analyses, however,
tend to be one-time and result in a fixed site suitability plan. Within a dynamic marine environment
experiencing potential regime shifts, a siting support tool that integrates new and evolving spatio-temporal
data has benefits. This paper presents a flexible Voronoi cell-based GIS model for marine aquaculture
siting. Rather than a one-time specification of suitable locations, the approach uses similarity measures
on the characteristics of Voronoi cells to find cells with similar characteristics. We calculate a weighted
aquaculture site tenure value for Voronoi cells that have been or are occupied by aquaculture farm
sites. High scoring cells suggest suitable sites and serve as targets for similarity queries. We apply the
approach to a case study on the coast of Maine using an R Shiny application to demonstrate the use
of the framework for finding sites with similar characteristics.

Keywords: aquaculture; site selection; GIS; spatio-temporal data integration; Voronoi cell-based

1. Introduction

Aquaculture production is expected to increase globally in response to expanding populations,
growing demand for fish protein [1], and decreasing wild-catch fisheries [2]. The United States
(US) enjoys a unique position for growth in its marine production. A recent Food and Agriculture
Organization (FAO) study noted it among the top countries with the potential for profitably expanding
marine aquaculture production [3]. Conflicts across limited coastal space may serve as a limiting factor
to this growth potential. Identifying available areas that are suitable has thus become a critical concern
for supporting and expanding aquaculture [4]. Indeed, the importance of the site selection process has
been widely recognized in recent reports and research publications [5,6].

Numerous studies have used geographic information systems (GIS) and multi-criteria evaluation
(MCE) for aquaculture siting and demonstrate the integration of many different data layers covering
the spectrum from physical to economic to social factors [6–13]. The majority of these studies approach
siting as a one-time analysis that specifies fixed areas as suitable for aquaculture. In a setting in which
the environment and availability of data are changing, a flexible approach to siting that can take
advantage of new data and changing conditions seems appropriate. This paper presents a GIS-based
framework designed to support the integration of current data collection efforts and to accommodate
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new data sources as they become available. We do not use the framework to specify site suitability
directly. Rather, our approach allows users to explore sites with similar characteristics and we use
existing farm sites to drive this exploration. We ground our approach on the idea that cells that are
currently occupied by farm sites, especially over an extended period of occupancy, indicate sites
with suitable physical characteristics. We calculate a measure of time-weighted farm occupancy for
cells to suggest suitable site characteristics and allow interactive exploration for cells sharing similar
physical characteristics.

This approach overcomes four key limitations of previous approaches. First, one-time analyses
and fixed site suitability plans may not comfortably accommodate changing conditions. Second,
one-off analyses are limited to currently available data without a pathway to incrementally refine
analyses as new data become available. Third, input data is often restricted to static spatial layers.
Finally, MCE requires the reclassification of all input variables to a common scale and assignment of
weights to indicate the relative importance of different factors.

GIS-based models that support the integration of multiple geospatial data sets have become
go-to tools for the analysis and identification of suitable site conditions. Nath et al. [7] were early
advocates of GIS analysis for aquaculture siting and the use of GIS for aquaculture siting has continued
to grow [6,8,10–15]. These studies demonstrate the combination of a range of data sets reflecting
the requirements of different species, culture systems, and local context compiled as spatial layers.
Most apply multi-criteria evaluation (MCE) techniques to connect individual criteria using additive or
multiplicative models—with or without weights to indicate the importance of factors and obtain a
suitability index or score for sites. Results typically take the form of suitability maps that designate
the spatial distribution of areas with different levels of suitability for aquaculture production. In the
next sections, we review some recent aquaculture siting studies that focus on shellfish aquaculture to
document the state of current approaches.

A study for hanging culture of scallops in Funka Bay, Japan [8] used GIS and MCE with eleven
criteria organized into three sub-models (biophysical, social–infrastructural, and constraints). The study
required reclassifying these criteria to suitability scores ranging from 1 to 8 (most suitable), multiplied
by a weight and summed for a final score. The authors noted the limits of their study in that several
environmental parameters that influence scallop growth and survival such as dissolved oxygen, salinity,
pH, wave height, water movement (tidal flow), fouling/disease/predators, pollution, and access to
seed, were not available. A similar study for scallop aquaculture [16] included climate event indices;
a monsoon index (MOI), and Oceanic Niño Index (ONI) integrated into the aquaculture site-selection
model (SASSM) to assess climate variations on suitability. The authors noted that study limitations
included missing variables; salinity, dissolved oxygen, and freshwater discharge, and constraints
of satellite remote-sensing data, which only account for changes in surface waters. They suggested
incorporating numerical model data to get temperatures with depth to better correspond with the
hanging culture of scallops.

Two off-shore studies [9,11] document the use of GIS and MCE for oyster and mussel cultivation.
Longdill et al. [9] demonstrated the use of different satellite imagery that included Advanced Very
High-Resolution Radiometer (AVHRR) (1 km) sea surface temperature (SST) data, and Chlorophyll-a
data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) at 4 km and 1 km resolutions, noting
that these represented the best available spatial and temporal data sets at the time. They used
Parameter-Specific Suitability Functions (PSSFs) defined for each variable to convert the raw data to
aquaculture suitability scores. They noted the advantage of the PSSF method over binary suitability
scoring of 0 or 1 but also the level of subjectivity involved. Brigolin et al. [11] combined multiple spatial
layers including MODIS satellite sea surface temperature and Chlorophyll-a concentration, current
velocity from the NEMO ocean model, wave height from the SWAN model, and bathymetry. They used
an MCE approach in which they normalized criteria, assigned a weight to each one, then aggregated
the criteria to obtain a Suitability Index (SI) score. The SI scores were then assigned to 5 suitability
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classes: 0–0.25, very low suitability; 0.25–0.35, low suitability; 0.35–0.50, medium suitability; 0.50–0.75,
high suitability; >0.75, very high suitability.

A recent study [13] used GIS and MCE for bivalve marine aquaculture siting in the Baía Sul,
Florianópolis, Santa Catarina State, Brazil. They aimed to overcome some previous modeling
limitations identified as (1) arbitrary representation of aquaculture sites with well-defined boundaries;
(2) modeling of spatial factors based exclusively on reclassification procedures; (3) lack of inclusion
of different perspectives among stakeholders. The study identified 25 variables with input from
several stakeholders which were converted to continuous maps to characterize the study area. While
nominally continuous, several spatial layers were interpolated from point observations and thus
subject to interpolation inaccuracies. The authors used the Analytical Hierarchy Process (AHP) [17] to
generate weights for each variable which were then summed in an MCE analysis.

Several studies demonstrated the combination of GIS and MCE based approaches with various
models (hydrodynamic, growth, biodepositional) [10,11,18]. Silva et al. [10] used a three-stage approach
that included regulatory and social constraints, an MCE approach to determine suitability followed by
a detailed site analysis using the FARM model [19]. Their study recognized temporal variability by
interpolating maps of seasonal means and excluding areas that appeared as seasonally unsuitable. Final
site suitability was obtained by combining legal and social constraints with MCE to generate suitability
scores. The FARM model was applied to selected areas to assess potential production, socio-economic
profits, and negative and positive environmental externalities. They noted limitations in their final
suitability map due to subjectivity in assigning suitability ranges for factors. Newell et el. [18] used
ShellGIS with ShellSIM [20], the shellfish growth model connected with a hydrodynamic flow model to
allow the specification of a culture system and a specific species. This study had a dynamic component
based on the hydrodynamic model with a focus on production capacity (stocking density that allows
the sustainable harvest of shellfish to be maximized) but less consideration for broader siting criteria.
Brigolin et al. [11] used the integration of MCE results with growth and depositional models to examine
different scenarios and generate associated suitability maps rather than a single map solution.

These studies all noted data limitations and challenges in combining data of different spatial and
temporal resolutions. They also all used some form of MCE with slightly different strategies to reduce
the subjectivity in setting thresholds and assigning weights. The other similarity among these studies
is that the results were fixed suitability maps.

With these challenges in mind, we aimed for an approach that could overcome some of them.
A study [6], recognizing the issues with MCE, proposed an approach based on concepts from species
distribution modeling (SDM). Their study used the locations of pangasius farms in the Mekong Delta
in Vietnam as indicators of suitable sites in two different species distribution models; Mahalanobis
Typicality and Maxent. The results of the SDMs do not imply suitability directly but rather indicate the
similarity of locations to input farm sites. This approach has the advantage of avoiding subjective
weight assignments and the need to normalize and reclassify multiple variables.

Our approach builds on the use of current aquaculture farm information as indicators, and in
a sense, validation, of suitable conditions. In support of this strategy, we note that [11] found an
alignment of current mussel farms with the zones they characterized as highly suitable. We incorporate
the length of tenure of an aquaculture farm as a supporting indicator of site suitability.

Further objectives of our study were to accommodate diverse spatio-temporal datasets and
development of an evolving and richer database over time; and shift from explicit, one-time mapping
of site suitability to interactive map exploration of suitability based on similarity measures.

2. Materials and Methods

Maine has an active and growing marine aquaculture industry. The first official aquaculture lease,
a mussel farm, was approved in 1973. Nearly a decade later, the first finfish aquaculture lease was
approved, and finfish operations dominated Maine’s aquaculture production for much of its early
history. Recently, however, the shellfish sector (mainly eastern oyster, Crassostrea virginica) and marine
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algae are showing rapid increases. Coastal Maine now has over 800 active aquaculture leases and
short-term licenses for various shellfish and marine algae species. Challenges for siting aquaculture in
Maine are the growing diversity in cultured species and costly data collection and analysis for a long
and complex coastline (estimated at around 5600 to 8000 kilometersincluding offshore islands).

Under Maine’s current regulatory structure, aquaculture siting decisions are made on a case by
case basis by the state’s Department of Marine Resources (DMR). Maine has two aquaculture lease
types; Standard and Experimental, and a Limited Purpose Aquaculture license (LPA), that provide
legal rights and protections to grow marine species in coastal waters. Each type specifies different
property rights to its holder and indicates which marine species can be grown, and the duration and
the renewability of the lease/license (see Table 1). The LPA licenses are intended to support low-cost
test operations that may then be converted to standard leases.

Table 1. Maine aquaculture lease and license characteristics [21,22].

Lease/License Type Size Limit Duration Renewal Notice
Distance

Scoping
Session

Public
Hearing

Standard Lease ≤4 km2 20 years Yes 304 m Yes Yes
Experimental Lease 016 km2 1–3 years No d 304 m a Maybe b Maybe c

Limited Purpose License ≤37 m2 1 year Yes 91 m No No
a The Maine DMR notifies the municipality, state, and federal agencies, shorefront property owners within 1000 m
of the proposed site, and other interested parties at least 30 days prior to the public hearing. b Scoping sessions are
at the discretion of the Maine DMR. c Yes if five or more comments are raised during the public comments period or
the Maine DMR requests a public hearing. d Renewable if the experimental lease is designed for research purposes.
Information from Maine DMR [21] and Maine Revised Statutes Annotated 12 [22].

The application process is decentralized with the initial siting choice proposed by the applicant.
An application requires consideration of environmental concerns, other marine uses, and community
reactions as obtained through scoping sessions and public hearings. The final decision rests with the
Maine DMR Commissioner, based on a set of objective legal criteria. Specifically, a lease may not
“unreasonably interfere” with riparian owners’ land access, navigation, fishing, or other uses, support
of ecologically significant flora and fauna, or public use or enjoyment within 304 m of government
managed or conserved beaches, parks, docks, and land, and cannot have an “unreasonable impact”
due to noise or light [21,22].

Marine aquaculture applications require that DMR scientists visit proposed site locations to verify
site conditions. All standard and some experimental lease applications also require DMR scientists to
use video to document the bottom environment, including plants and animals, and summarize the
information in a report. Further, these applications also require that the DMR notify the municipality,
state and federal agencies, shorefront property owners within 304 m of the proposed site, and other
interested parties regarding the public comment period, the public hearing (a town-hall-style meeting),
and opportunities to intervene.

Protection of benthic marine flora and fauna, especially protected and threatened species, is a
socio-ecological constraint that has governed historical and recent siting of aquaculture in Maine.
The U.S. Army Corps of Engineers requires that all Limited Purpose Aquaculture licenses and lease
applications be sited outside delineated eelgrass zones and requires that potential loss of any other
benthic vegetation be declared [22]. As a result, most existing aquaculture in Maine is sited above mud
or sandy substrate.

Figure 1 illustrates the distribution of aquaculture lease and license (LPA) sites along the Maine
coast as of 2019. Finfish aquaculture is primarily limited to the northern third of the state. The mid-coast
region is dominated by shellfish aquaculture, with seaweed aquaculture recently beginning to show
distribution over the full coastal range. For this study, we focus on the midcoast region which is the
most active.

Comprehensive, uniform data coverage with a high level of detail is not easy to achieve for
Maine’s long coastline. Partial coverage of the coast however does exist in the form of different



J. Mar. Sci. Eng. 2020, 8, 96 5 of 16

data sets, collected by different groups, for different purposes. Our strategy was to develop a data
integration framework that could accommodate these different data sets and that could fill gapsas new
data become available with time. The integration framework we developed partitions coastal estuaries
into what we call “characterization zones” based on a set of current point-based data observation
stations. Different spatio-temporal datasets (time series) collected by various agencies or groups are
summarized for each of the characterization zones. The history of aquaculture farm occupation further
characterizes each zone Figure 2 diagrams this approach.
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J. Mar. Sci. Eng. 2020, 8, 96 6 of 16

We demonstrate the framework for a set of currently available spatial-temporal data collections
(summarized in Table 2). The Department of Marine resources collects water quality samples routinely
along the coast of Maine at over 2800 fixed locations. This data collection effort started in 1990,
continues to the present and into the foreseeable future. Each station is observed at least once a month
during favorable weather months (Mar-Nov). Standard 100 mL samples are collected at stations
located a few meters from shore with a field observation taken on water temperature followed by
lab-based measurements for salinity and a fecal coliform score. These stations and their observation
record form one of the longest and most consistent data collection efforts along the coast.

Table 2. Data sets used for characterizing Voronoi cells.

Source Type Variables Temporal
Coverage

Temporal
Frequency

Spatial
Resolution Spatial Coverage

DMR water
quality samples

Point
observations

Salinity, temperature,
fecal coliform 1990-present monthly point Points spaced along

the entire coast

LOBO buoys Point
observations

Salinity, Temperature, colored
dissolved organic matter
(CDOM), Chlorophyll a,

dissolved oxygen (DO), nitrate
photosynthetically active

radiation (PAR), current speed
and direction, turbidity, pH

2013–2019 hourly point 6 study sites

Ocean buoys Point
observations

Salinity, Temperature, colored
dissolved organic matter

(CDOM) Chlorophyll a, current
speed and direction, turbidity,
wind speed, wind direction,

wave height

2013–2019 20 min point 6 study sites

Landsat 8 Satellite
imagery

Sea surface temperature,
Chlorophylla, turbidity 2013–present

16-day pass,
cloud cover
dependent

30 m Coast wide

FVCOM Hydrodynamic
model

Sea level, current speed,
salinity, temperature 2014 Hourly Varying

(10–300 m) Coast wide

The Sustainable Ecological Aquaculture Network (SEANET), a 5 year, $20 million NSF funded
project, identified six study sites distributed along the Maine coast. For each of these study sites, data
have been collected or generated through deployed buoys, satellite imagery, and ocean circulation
models. Land Ocean Biogeochemical Observatory (LOBO) buoys were deployed in six study sites
for at least one growing season. The LOBO buoys sample 13 variables on an hourly basis. As part of
SEANET, additional ocean monitoring buoys were deployed on the offshore perimeter of estuaries.
These monitoring buoys sample on a twenty-minute interval on 14 variables that include temperature
and salinity among others (see Table 2). These deployed buoy locations cover the period from 2013 to
2019. Landsat-8 Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) provide an
enhanced data source with a relatively high spatial resolution for coastal regions. Under SEANET,
Landsat 8 satellite imagery was assembled and processed to derive sea surface temperature (SST),
Chl a, and turbidity [23]. This imagery data set covers from 2013 onward.

Another SEANET effort supported the development of three-dimensional hydrodynamic models
for the Maine coast. These models are based on unstructured-grid Finite Volume Coastal Ocean
Model (FVCOM), which has the advantage of accurately following complicated coastlines by using
unstructured triangle elements [24–27]. The model domain covers a wide shelf area in mid-coast Maine
and major estuaries including the Kennebec River, Androscoggin River, Sheepscott River, Damariscotta
River, Medomak River, and St. George River. The unstructured mesh allows a large model domain in
the estuaries with spatial resolution as high as 10 m within the estuaries. The model has simulated the
entire year of 2014. Outputs include two-dimensional hourly data for sea level and three-dimensional
hourly data for temperature, salinity, and current velocity. Model outputs have been validated using
observational data sources that included the LOBO buoy time series data.
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The Department of Marine Resources has partitioned the coast of Maine into 45 growing areas for
the management of shellfish harvesting (See Figure 3). These growing areas generally correspond to
individual estuaries or bays. As these have official governmental standing, these form our top-level
partition and unit of analysis.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 8 of 17 
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We next partition the bays or estuaries within each of the Growing Areas into Voronoi cells [28]
using the fixed locations of monitoring stations (DMR, LOBO, Ocean Monitoring stations). These
Voronoi cells form our characterization zones. The defining characteristic of Voronoi cells is that they
are the areas closer to a given point than any other point in a generating set (see Figure 4). Voronoi
cells thus represent a proximity zone for each data monitoring station. Other important attributes
of Voronoi cells are that they are computationally easy to generate, and they can be updated locally.
If a new observation station is added, the Voronoi partition can be updated locally without having to
recompute the entire partition [29]. Given Maine’s convoluted coastline, we had to modify standard
Voronoi cell construction based on Euclidean distance to one based on the shortest path distances
within the water. We used the Cost Allocation function within ESRI ArcGIS Pro (version 2.3) with
an input cost layer that assigned a minimal cost to water areas (e.g., 1) and a high cost to land areas
(e.g., 500) which effectively restricted cost distance paths to water areas.

The Voronoi cells become the characterization zones for various physical variables pertinent to
aquaculture siting. For each Voronoi characterization zone, we summarize the available time-series
data as quantiles. The point-based data observation stations which define the Voronoi zones contribute
their associated times series towards characterizing their respective zones. For spatially extensive data
types such as satellite imagery raster layers or hydrodynamic models results, we aggregated values
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to the Voronoi characterization zones. Landsat 8 derived raster layers for sea surface temperature
(SST), Chl a, and turbidity were overlaid with the Voronoi zones and quantiles were computed for each
variable and each zone. Similarly, FVCOM model generated layers were overlaid with the Voronoi
zones and quantiles were generated for each variable and each zone. Figures 5 and 6, respectively,
illustrate examples of Landsat derived sea surface temperature and FVCOM salinity data overlain with
the Voronoi zones. The values of Landsat pixels or FVCOM grid points falling within each Voronoi cell
are summarized and stored as quantiles.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 9 of 17 
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that lease/license persistence at a site may indicate higher suitability. As an example, a cell with five 
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Figure 6. FVCOM model results summarized as a monthly mean (August mean salinity) associated
with Voronoi cells in New Meadows River Estuary. All modeled values within a Voronoi cell are
summarized as quantiles. Imagery base map sources: Esri, DigitalGlobe, Earthstar Geographics,
CNES/Airbus DS, GeoEye, USDA FSA, USGS, Aerogrid, IGN, IGP, and the GIS User Community.

We note that quantiles can be generated for different temporal granularities (e.g., months, seasons)
depending on a desired or appropriate temporal resolution. For this case study, we demonstrate
monthly-based quantiles. Given the current data sets, a Voronoi cell can have up to 12 monthly
DMR salinity, temperature, and fecal coliform score quantile vectors, 12 monthly Landsat SST, Chl a,
and turbidity quantile vectors and 12 monthly FVCOM temperature, salinity, and current velocity
quantile vectors.

For each Voronoi characterization zone, we further calculate a normalized aquaculture farm tenure
value. Normalized tenure for a cell is calculated as a function of the number of marine aquaculture
farms and their duration in the cell. The formula for normalized cell tenure (NCT) is

NCTi =

∑
j T j
ni

Ai
(1)
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where Tj is the tenure for lease j, ni is a number of farms in cell i, and Ai is the area of cell i. This function
gives greater weight to longer tenure leases or persistent license renewals with the reasoning that
lease/license persistence at a site may indicate higher suitability. As an example, a cell with five one-
year leases would have an NCT numerator of 1 whereas a cell with a single five-year lease would have
a value of 5. Figure 7 illustrates NCT values for the New Meadows and Damariscotta River estuaries.
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We used R Shiny [30] to implement this framework. Our R Shiny application displays the Voronoi
partitions for an estuary and can display associated values as choropleth maps. The opening display
shows NCT values for the Voronoi characterization zones that have been occupied by aquaculture farms.

Within the R Shiny application, the Voronoi characterization zones can be queried to identify cells
with similar characteristics. This query functionality employs cosine similarity measures between
the quantile vectors associated with each Voronoi characterization zone. For example, all Voronoi
characterization zones containing DMR observed variable quantiles can be assessed for similarity on
their monthly salinity, temperature, and fecal coliform quantiles.

We used species distribution models (SDM) (Maxent and Mahalanobis Typicality) as a basis to
evaluate NCT value alignment with model predicted site suitability scores. SDMs are primarily used to
predict species locations based on correlations with selected environmental variables. Falconer et al. [6]
used SDMs creatively to extrapolate aquaculture site suitability using farm sites to represent species
occurrence data. We ran SDMs on two midcoast estuaries with the most aquaculture farm sites using
the R package dismo [31]. For each model, the current aquaculture farm site coordinates were used to
represent species occurrence data (there is no consideration for the duration). Environmental predictor
variables for the models were selected to take into account limiting factors for shellfish growth. These
included the following quantile values associated with the Voronoi cells: upper quantile of temperature
for summer months, lower quantile of temperature for winter months, the lower quantile of salinity
for summer, and median salinity for winter. High concentrations of fecal coliform affect the quality
of shellfish or marine algae. Fecal coliform scores can spike in summer months due to heavy rain



J. Mar. Sci. Eng. 2020, 8, 96 11 of 16

events thus we used the upper quantile of fecal coliform scores in summer. Landsat derived sea
surface temperature [23] was also used with the same quantiles as DMR water temperature observation.
The predictor variables were converted to raster layers to create a raster stack. We used a function
in the dismo package [31] to sample random points as background data. We extracted values from
the raster stack for occurrence points and random background points. These data were input to SDM
models to predict aquaculture suitability. Models were evaluated based on Area Under the Receiver
Operator Curve (AUROC or AUC score for short).

Using SDM predictions as measures of suitability [6], we regressed them against our time-weighted
aquaculture farm site density (NCT) values. We used quantile regression to fit SDM and NCT values
as higher densities of aquaculture sites are expected in regions with high suitability [32].

3. Results

3.1. R Shiny Application

The results of this work are a GIS-based framework that supports aquaculture lease or license
site evaluation by prospective farmers. We implemented the framework as an R Shiny web
application (see https://rshiny.spatialmsk.com/CosSim/). Instead of generating static suitability maps,
the developed framework supports interactive queries on the Voronoi characterization zones. Given the
characterization of a Voronoi cell, users can search for cells sharing similar profiles. As an example use
of the framework, a user can select a Voronoi characterization zone with a high NCT value (indicating
high farm occupancy and/or long tenure). The application returns a list of Voronoi characterization
zones ranked on their similarity to the selected cell.

For any Voronoi cell selected by a user, the application reports a similarity to all other cells. Users
are typically not interested in similarity scores to all zones, just the top few. The application thus
accommodates fast interactive filtering of the similarity scores from most to least similar through a
slider widget. Through the slider, the user can set a similarity threshold and cells with values above
the threshold are highlighted on the map. Similarity scores can also be viewed in a table in rank order.
Instead of using high NCT scoring cells as targets, users can target specific species. With current farm
sites symbolized on the map by species type, a user can, for example, select a cell occupied by mussel
farms and find cells most similar in their environmental profile to the test cell. Figure 8 illustrates a
screenshot of the Shiny interface.
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the application reports the most similar zones based on the underlying physical properties. The most
similar cells are highlighted in red on the map.

https://rshiny.spatialmsk.com/CosSim/
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3.2. SDM Modeling and NCT Comparison

The results of the SDM models are shown in Figure 9. The raw values of the models score
the Voronoi characterization zones on similarity to cells containing farm sites. The results of the
Mahalanobis distance model indicate the degree to which the values of environmental variables at a
location are typical of conditions at a farm site. Similarly, the Maxent output can be interpreted as
predicted probability of suitable conditions for the modeled species. High scores indicate the most
similar sites and by extension the most suitable sites. We interpret these results in a qualitative sense.
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models at Damariscotta. Scores apply to Voronoi cells. The results show a general agreement on site
similarity /suitability between the models.

Area under the receiver-operator curve (AUC) is a common measure of predictive accuracy for
SDM. For the AUC values (see Table 3), the rule of thumb is 0.5–0.7 low, 0.7–0.9 moderate, >0.9 high.
The Mahalanobis and Maxent models fall in the moderate range which is likely due to the small sample
size used for this test. In terms of the max true positive rate (TPR)/sensitivity and true negative rate
(TNR)/specificity, Mahalanobis performs best. The performance of the SDM models was not the most
important outcome. Rather our objective was to use the model results to get general measures of
suitability for comparison to our normalized cell tenure (NCT) values. The quantile regression of
NCT and SDM scores (see Table 4) showed significant correlations which tended to be highest at the
highest quantiles.

Table 3. Results from the species distribution modeling (SDM) assessment.

Model AUC COR max TPR+TNR

Mahalanobis Distance 0.72 0.08 1.00
Maxent 0.69 0.27 0.74
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Table 4. Results of the top three quantiles (70th, 80th, 90th) for the quantile regression of the normalized
cell tenure (NCT) values on SDM model scores. Results of the quantile regression indicate that our
NCT values are well correlated with the SDM modeled suitability scores.

SDM
Quantile Regression Slope

70th Pr 80th Pr 90th Pr

MAXENT 0.47 0.0006 0.58 0.000001 0.8 0.000001
MD 5.97 0.016 9.14 0.0015 11.28 0.00011

4. Discussion

This study investigated a new GIS-based framework for evaluating aquaculture site suitability.
The approach uses Voronoi cells adapted to partition coastal estuaries into characterization zones.
One objective of the developed framework was to support the integration of current data observation
efforts along the coast as well as accommodate new data collection going forward. The Voronoi cells are
built around current point-based observation stations. Our starting data collection points are the stations
monitored by the Maine DMR. The SEANET LOBO observation sites were added to this set as they
were deployed over the study period. There is thus flexibility within the framework to add observation
points and increase the spatial resolution of the characterization zones over time. For the highly
crenulated midcoast region of Maine, adjacent estuaries can exhibit quite different behaviors so having
comprehensive observation coverage becomes critical relative to smoother coastlines. Comprehensive
coverage of the coastline by the Maine DMR water quality observation stations made them a practical
starting point. While Maine has a relatively dense observation network for constructing the proposed
framework, any coastal region with a deployed monitoring network or considering one, could take
advantage of this framework.

Our rationale for using Voronoi partitions was based on the diversity of data types to be integrated
and because they are proximity-based and tend to be compact. To combine any geospatial data sets
with different spatial resolutions, some common spatial unit must be adopted which typically requires
some compromise on scale. Combining diverse resolution raster data generally involves converting
all layers to the coarsest spatial resolution (pixel size). To integrate point-based observations then
involves interpolating points to a raster representation as in [13]. Raster representations have the
seeming advantage of finer spatial resolution and more comprehensive spatial coverage but have
attendant disadvantages. They can be more subject to missing values and in the presence of high
spatial autocorrelation where adjacent values are very similar, they impose a higher storage cost for
little to no information gain. For this study, the Voronoi cell sizes ranged from 0.4 to 3.1 km2 with a
median value of 48 sq km. The degree of spatial autocorrelation in sea surface temperature (SST) based
on 30 m pixels was very high (Morans I = 9). The estimated range (correlation distance) for a fitted
variogram for SST was 4000 m, which closely matches the median cell dimension. There was thus little
loss in spatial detail in employing Voronoi cells and a processing and storage advantage.

Many of the data sets we used had missing values in time. The Landsat 8 satellite imagery derived
products which offer high-resolution spatial coverage, suffer from sporadic temporal coverage due
to the 16-day repeat cycle and frequent cloud coverage. The DMR sampling data had less frequent
coverage in winter months and the LOBO buoys were not deployed in winter months. By using the
Voronoi cells to create time-based summaries of different variables from different sources we limited
the impact of missing values. As the Voronoi cells are proximity-based, we might expect that quantiles
on the same variable (but from different sources) assembled for the Voronoi characterization zones
to be comparable and substitutable. Comparisons among quantiles for a subset of test cells showed
a high overlap. The overlap of distributions of the same variables from different sources within a
Voronoi cell was exploited to avoid missing variable quantiles and also provided a basis for quality
and validation checks.
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The Voronoi characterization zones provide a basis for integrating on-going time-series-based
physical data. The variables employed in this case study represent examples of dynamic physical
variables that change seasonally and may show interannual variation. For this case study, we
summarized time series as monthly quantiles, but seasonal or other time-based summaries including
time-based anomalies are possible within the framework.

The Voronoi characterization zones served to integrate diverse time-based physical data sets.
As a GIS-based framework, the Shiny application can incorporate additional spatial data layers to
indicate constraints that might apply. Within the application, layers could be added to indicate
ecological constraints such as the presence of eel grassbeds, marine protected areas, or other use
constraints such as navigation channels, moorings, or other fishing grounds.

Our approach shares similarities with [6] in that we use the spatial patterns in current aquaculture
farm sites as implicit evidence of suitability with the addition of farm duration at a site. The set of
past and current aquaculture farm sites indicate locations that have passed muster on governmental
regulations and constraints and the addition of duration suggests some indication of production viability.
We use mapped NCT scores to help users identify cells reflecting suitable physical characteristics.
Instead of designating suitability explicitly, our application supports exploration for cells sharing
similar physical characteristics to cells occupied by farm sites. The application currently uses cosine
similarity based on monthly quantiles for temperature, salinity, Chl a, and current velocity.

Similarity-based queries have been applied in several application areas where specific selection
criteria can be challenging to express. Examples include image and document search where users supply
an example and are returned a ranked list in response. Specification of aquaculture site suitability
shares similar difficulties in expression. MCE models require the reclassification of all input variables
to some common scale (e.g., 1 “highly unsuitable,” 2 “unsuitable,” 3 “intermediate,” 4 “suitable,” and
5 “highly suitable”). For physical variables such as temperature and salinity, the specification of hard
boundaries on suitability ranges tend to be subjective and vary with species. Fuzzy reclassification
allows a continuous scale from 0 to 1 but can complicate interpretation. The use of similarity measures
avoids the need to specify hard thresholds on continuous variables and the variable reclassification
and weighting typically required in MCE models.

A similarity search relies on specifying a target. In our application, farm-site occupied cells
perform this service. Our NCT scores capture the time dimension (how long leases or licenses have
persisted in a cell) for display on a map. To evaluate NCT scores as representative of site suitability, we
regressed them on SDM model results (a surrogate measure of suitability). Using quantile regression,
the results indicate a high correlation in the upper quantiles suggesting high agreement with the
highest SDM scores. With results indicating that site similarity can reasonably replicate suitability as
demonstrated in [6], we opted to employ cosine similarity metrics to assess site similarity in place of
the more complex SDM modeling.

A final advantage of the similarity-based approach is that it is not bound to particular species.
Prior aquaculture siting studies assembled, reclassified, and weighted variables to be pertinent for
specific species requirements. By displaying aquaculture farm sites by cultured species type on the
map, users are supplied with search targets by species type.

Rather than supporting just a one-time analysis, we think that this application has the potential to
continue to grow as a siting support tool. The open-ended framework that supports the addition of
new data and new farm sites as they are approved suggests a trajectory in which data supporting the
application can become stronger over time.
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