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Abstract: A non-stationary extreme value analysis of 41 years (1979–2019) of global ERA5 (European
Centre for Medium-Range Weather Forecasts Reanalysis) significant wave height data is undertaken
to investigate trends in the values of 100-year significant wave height, H100

s . The analysis shows that
there has been a statistically significant increase in the value of H100

s over large regions of the Southern
Hemisphere. There have also been smaller decreases in H100

s in the Northern Hemisphere, although
the related trends are generally not statistically significant. The increases in the Southern Hemisphere
are a result of an increase in either the frequency or intensity of winter storms, particularly in the
Southern Ocean.
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1. Introduction

The investigation of temporal (long-term and seasonal) and spatial variabilities of metocean
parameters, such as the significant wave height, Hs, is of significant importance, especially in times of
climate change. Long-term changes in oceanic winds, and the waves they generate potentially have
important implications for coastal and offshore engineering, coastal flooding and shoreline erosion,
shipping and ship routing and the physics of air-sea interaction and climate change.

Studies of trends in mean and upper percentile values of wave height over the last 41 years have
been undertaken using in-situ buoy data [1–3], hindcast and reanalysis models [3–6] and satellite
remote sensing data [2,7,8]. These studies show small increases in mean significant wave height and
stronger increases in upper percentiles over the last 30 years. These trends vary regionally with the
largest increases in the Southern Hemisphere. Future projections of global values of mean Hs using
ensembles of wave models forced by climate model winds [5] also project that mean conditions will
increase in the future, particularly in the Southern Ocean.

Although changes in mean and upper percentile Hs are important, it is the changes in extreme
values (e.g., 100-year return period) which are critical for engineering applications. Determination of
changes in such statistical values, both for the historical period and for future projections, is challenging
both for measurement systems and models. Young et al. [9] attempted to estimate changes in the
100-year return period wind speed and significant wave height over the historical period of satellite
altimeter data (25 years). Although there was significant variability in the resulting trends, the results
suggested there had been a positive trend in extremes over the period of the data. Projections of changes
by 2100 for 100-year return period Hs were undertaken by Meucci et al. [10], using an ensemble of
climate models. They found increases in the Southern Ocean of between 5% and 10% over this period.

Extreme Value Analysis (EVA) which is used to estimate, for example, 100-year return period
values, traditionally involves the analysis of a time series of values which is assumed stationary. That is,
there is no significant trend over the duration of the time series. In order to reduce the confidence
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limits on the estimated values, it is desirable to have as long a time series as possible. These two
requirements potentially conflict, particularly in a period of climate change. That is, as the time series
increases in duration, the likelihood that it is stationary decreases. As a result, a range of alternative
approaches has been used in an attempt to address the issues and obtain statistically significant results
from shorter time series. These approaches include: fitting the extreme value probability distribution
to all the data rather than just extremes (the Initial Distribution Method) [11] and “pooling” data from
either an ensemble of model results [12,13] or over adjacent spatial regions [14]. A further approach
is to relax the requirement that the time series is stationary and undertake a non-stationary extreme
value analysis [15].

Long-duration reanalysis datasets which assimilate altimeter data into model hindcasts, such as
ERA5 [16], have been shown to have skill in estimating extreme Hs [13]. In this study, we apply a
non-stationary extreme value analysis [15] to ERA5 data over the period 1979–2019 to determine global
distributions of the 100-year return period significant wave height and also estimate trends in these
extreme values over this period. We believe this is the first such study that has applied a widely
accepted EVA approach to the estimation of changes in historical extreme value Hs.

The arrangement of the paper is as follows. Following this Introduction, Section 2 provides a
brief review of extreme value analysis applied to ocean waves, including non-stationary approaches.
The datasets used and the approaches applied are described in Section 3, followed by the results in
Section 4. The results are discussed in Section 5, followed by conclusions in Section 6.

2. Background

2.1. Extreme Value Analysis

The aim of Extreme Value Analysis (EVA) [17,18] is to estimate the probability distribution function
(pdf) of extreme value measurements from a recorded/modelled record. As noted above, the record
must be stationary, and the observations in the record should be independent [18]. In the context of
estimates of extreme significant wave height, independence is usually achieved by ensuring there
are not multiple observations from the same storm event. The requirements that datasets are both
stationary and contain only independent observations generally result in relatively short data records
(less than 20 years) and large confidence intervals for estimated extreme values. Therefore, a common
engineering approach is to relax the requirement that the data are independent and fit a pdf to all
observed data. In the case of in-situ buoy data, this may involve observations separated by as little
as 1 to 3 h. This approach was termed the Initial Distribution Method (IDM) and typically fitted
either a Gumbel or Weibull distribution to the data [19]. In addition to violating the requirement for
independent data, as the pdf is fitted to all data rather than only extremes, the resulting estimates
tend to largely follow spatial distributions of mean values rather than true extremes. Despite these
limitations, the approach has been widely applied for studies of the global distribution of wave height
extremes [11,20]. As demonstrated by Takbash et al. [21], however, the limitations of this approach are
significant and can result in quite misleading conclusions. In addition, now that both satellite and
model datasets span more than 30 years, the need to rely on such approximations no longer exists.

A common approach to ensure that the dataset truly represents extreme values and that the data
are independent is to consider annual maximum (AM) values. For such “block maxima”, it can be
shown that the values will follow a Generalized Extreme Value (GEV) distribution [18,22]

F(Hs) = exp
{
−

[
1 + k

(Hs −A
B

)]−1/k}
(1)

where F(Hs) is the cumulative distribution function form of the GEV and k, A, B are shape, location
and scale parameters, respectively. Equation (1) can be used to determine the value of Hs at the desired
probability of exceedance, that is, P(H < H100

s ) = 0.01, for a 100-year return period event.
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Although the AM method has the advantage of ensuring the data are independent, as there is
only one value per year, the available data to fit Equation (1) are limited, resulting in large confidence
limits for estimates of extreme values. A common method to overcome this limitation is to use a
Peaks-over-Threshold (PoT) approach, where all independent peaks above a defined threshold are
used. In this case, data can be shown to follow a Generalized Pareto Distribution (GPD) [18]

F(Hs) = 1−
[
1 + k

(Hs −A
B

)−1/k]
(2)

where A is the value of the threshold above which data are acquired. There are no rigorous means of
determining the value of the threshold other than that it must be sufficiently high to ensure the data
are from genuine storms but not so high that there are too few data to fit the GPD form (Equation (2)).
PoT approaches have been widely used for global assessment of H100

s [10–14,21].

2.2. Non-Stationary Extreme Value Analysis

As outlined by Mentaschi et al. [15], there are a number of approaches which have been used in an
attempt to address the requirement for stationarity outlined above. A common approach is to represent
the parameters in Equations (1) and (3) by time-varying parametric functions [23–26]. The limitation of
this approach is that there is no generally accepted method for determining the form of the parametric
functions. There has also been a range of approaches which adopt Bayesian methods [27,28]. Further
procedures recognize that multivariates of compound approaches, in which extremes may be a function
of multiple physical processes, are appropriate [29–33]. Regional or nearshore extremes have also been
analyzed using non-stationary approaches [34]. Another method is to divide the non-stationary time
series into a series of quasi-stationary slices. The process is termed “stationary of slice” and has been
used in a number of studies of climate impacts on metocean parameters [9,10].

Mentaschi et al. [15] proposed an alternative approach called transformed stationary (TS) extreme
value analysis. The TS approach involves three separate steps: (i) transform the non-stationary
time series, y(t) into a stationary time series, x(t), (ii) apply traditional EVA as outlined above to
the transformed time series, (iii) reverse transform the results back to a non-stationary extreme
value distribution. Mentaschi et al. [15] proposed that the transformation from y(t) to x(t) could be
represented as:

x(t) =
y(t) − Ty(t)

Sy(t)
(3)

where Ty(t) and Sy(t) are the trend and standard deviation of the non-stationary time series, respectively.
The transformation represented by Equation (3) ensures that y(t) has a constant mean of zero and
a variance of one. Constant mean and variance are necessary conditions for the stationarity of the
transformed time series but do not guarantee that this is the case. Therefore, Mentaschi et al. [15]
suggest a further test, such as ensuring that higher-order statistics such as kurtosis and skewness are
reasonably constant as a function of time for y(t).

Although the approach does require decisions as to how to transform the non-stationary time
series to a stationary version (as shown in Equation (3)), it overcomes the significant assumptions
required for the alternative approaches described above.

3. Materials and Methods

3.1. ERA5 Global Reanalysis Data

ERA5 is a global reanalysis dataset, constructed by the European Centre for Medium-Range
Weather Forecasting (ECMWF) [16]. For this reanalysis, the ERA5 wind fields were used to drive
the WAM (WAve Model) with Source Term 3 (ST3) physics [35]. The model also assimilated large
amounts of altimeter data into the wave hindcast [36]. The ERA5 values of Hs were downloaded on
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an 0.5◦ × 0.5◦ global grid for the 41-year period from 1 January 1979 to 31 December 2019. To reduce
computational expense, the data were used at 1◦ × 1◦ resolution, by considering only every second
point in the grid, and the TS method was applied at each global grid point. ERA5 has been extensively
adopted as a global dataset for wind, wave and other conditions. Although the 0.5◦ resolution is
generally adequate in deep water conditions, and the reanalysis dataset has been validated in a range
of studies [16], the data are clearly limited in coastal regions and for relatively small meteorological
systems, such as tropical cyclones (see Section 4.1). As such, caution should be exercised in applying
the present results in such areas.

3.2. TS EVA Application

The TS EVA approach can be performed using a stationary GEV (Equation (1)), a stationary
GPD [Peaks-over-Threshold application (PoT)] (Equation (2)), or any other EVA methodology.
As demonstrated by Coles [18], annual maximum data will theoretically follow a GEV distribution,
whilst peaks-over-threshold data will follow a GPD. As the peaks-over-threshold approach retains
more extreme data than the annual maximum method, and has previously been demonstrated to work
well in global applications [21], we adopt this approach. It is not uncommon in EVA applications to test
alternative pdfs to the theoretical GPD and determine the best fitting form. As our application is global,
such an empirical approach is not feasible. Hence, for the present application, we adopted a GPD
approach for all global locations, as described by Mentaschi et al. [15] [see their Equations (19)–(21)
and (28)–(30)]. To ensure the data are independent, we required storm-peaks in the PoT analysis to be
separated by a minimum of 48 h [12–14].

The TS method typically removes the non-stationarity by subtracting the time-varying mean and
normalizing the data with the standard deviation of the record (Equation (3)). Running averages of both
quantities were used for this purpose. The selection of the time window for the running mean allows
both a non-seasonal and seasonal approach to be applied. In the present study, the long-term statistics
were determined by setting the non-seasonal time window to five years, and the seasonality was
evaluated with the implementation of an additional seasonal time window of two months. Selection
of these time windows requires some informed judgement. The non-seasonal window must be long
enough to remove the annual variation (multiple years) but not so long that it may remove interannual
variability (e.g., El Nino, etc.). A number of values were tested and consistent with Mentaschi et al. [15],
the value of five years was adopted. The seasonal window must be long enough to filter out individual
weather events but short enough to still resolve the annual cycle (less than a year). For these reasons,
a value of two months was adopted. Therefore, the long-term non-seasonal H100

s could be determined
from 1979 to 2019 at 5-year intervals. To explore the impacts of seasonality on H100

s , the extremes could
be derived over the same period but on a monthly basis. For instance, the values of H100

s could be
determined for the Northern Hemisphere winter extremes (January), and Southern Hemisphere winter
extremes (July). These time windows are consistent with the recommendations of Mentaschi et al. [15].

In order to apply the TS method with a PoT GPD pdf, it is necessary to define the threshold value,
A in Equation (2). It is common practice to set this parameter as a percentile value, such that it can
dynamically scale for regions with differing wave climates [11,21]. As discussed below, a variety of
different thresholds between the 70th and 90th percentile values were tested. To ensure that peaks
above the threshold represented independent events, a condition that peaks be separated by 48 h in
time was set. It should also be pointed out that the present analysis uses only the threshold value to
define storms. Approaches which use additional parameters such as peak wave frequency to define
storm events were not considered feasible at the global scale of the present application.

3.3. Trend Estimation

The TS EVA described above enables estimates of the non-seasonal and seasonal (January and
July) values of H100

s to be determined at any desired date over the period from 1979 to 2019. Our aim is
to estimate H100

s at each global grid point and at regular intervals of time and then undertake trend
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estimates of the 41-year period. Such a process is computationally expensive, requiring a reasonable
investment in super-computing resources. Noting that the trend is slowly varying, H100

s was estimated
at 5-year intervals, which is also consistent with the non-seasonal time window adopted. There is
significant literature on the estimation of trends [4,7,9,37,38]. Much of these analyses relate to the
determination of trends for data which have a significant seasonal signal or where the pdf of the
variable does not correspond to a normal distribution. In the present case, the data consist of estimates
of H100

s at 5-year intervals. That is, a total of 9 values, over the period from 1979 to 2019, for each
non-seasonal and seasonal (January and July) analysis. As a result, simple linear regression was
applied [9]. To test the Goodness of Fit (GoF) and the statistical significance of the calculated trends,
values of the correlation coefficient, R2 and the p-value were also determined for each grid point. In the
results presented below, we highlight trends which are statistically significant at the 95% level based
on their p-values.

As will subsequently be shown in Section 4 (Figure 1), the mean trend is not necessarily
monotonically increasing (decreasing). Although this is often clear for mean values [7,8], our interest
lies in the tail of the pdf where statistical variability increases. As a result, it was not feasible to investigate
how the trend varied over the 41-year period. Rather, the linear (least squares) approximation over the
full period was deemed consistent with the statistical variability of the EVA estimates.

Figure 1. The non-stationary TS analysis for a location at 40◦ S, 240◦ E. (a) The time series of Hs (m) as
a function of time (1979–2019) with the mean and standard deviation marked. (b) The GPD pdf as a
function of time. (c) Transformed time series with constant mean and standard deviation. The skewness
and kurtosis are approximately constant, indicating stationarity.
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4. Results

The TS EVA was applied at 1◦ × 1◦ resolution as noted in Section 3, and the trend was
evaluated at each grid point. The analysis was carried out both on a non-seasonal and a seasonal
basis for the representative months of January (Northern Hemisphere winter) and July (Southern
Hemisphere winter).

4.1. Non-Seasonal Analysis

Figure 1 shows examples of the time series of Hs (Figure 1a) and the resulting non-stationary
non-seasonal GPD pdf as a function of time (1979–2019) (Figure 1b) for the location 40◦ S, 240◦ E.
This is a location in the Pacific basin of the Southern Ocean, west of South America. This location was
selected as an example of a point where the subsequent analysis shows there is a statistically significant
trend in the extreme wave height. As evident in Figure 1a, there is a positive (increase) trend in the
mean values over this period. The resulting non-stationary pdf is shown in Figure 1b over this period.
In addition, there is also a clear positive trend in the pdf. Both the time series and the pdf show that
the trend is not linear over this period, with clear variations with time. These long-duration variations
in the trend may be associated with multi-decadal climate variability, such as El Nino [39] or with the
impact of the advent of satellite data assimilation, which occurred around 1990 [40]. Figure 1c shows
the transformed (stationary) time series. As can be seen, the transformed time series has a constant
mean of zero and a constant variance (standard deviation) of one. The kurtosis and skewness, as a
function of time, are also shown. These higher-order statistics are reasonably constant, indicating the
transformed time series is approximately stationary. The results shown in Figure 1c are typical of most
regions of the globe, indicating the suitability of the transformation used.

This non-seasonal analysis was applied at five-year intervals from 1 January 1979 to 1 January
2019, with H100

s determined at each point on the global grid. Figure 2 shows the resulting colour-filled
contours of non-seasonal H100

s for 1 January 1979 (Figure 2a) and 1 January 2019 (Figure 2b). The results
are generally consistent with previous analyses using conventional EVA approaches obtained from
both satellite and model datasets [12–14,21]. The results show the largest values of H100

s in the North
Atlantic and North Pacific with these values displaced towards the western boundaries of both of
these oceanic basins. This corresponds to the storm tracks for both basins [21]. Values of H100

s across
the Southern Ocean are quite consistent but slightly lower than values at the same latitudes in the
Northern Hemisphere. The region of intense and frequent typhoons is evident in the western North
Pacific. The zonal variation in extreme values is also apparent with the equatorial values being much
smaller than at higher latitudes.

Note that as ERA5 is a deepwater global dataset, it has limited validity in coastal waters where
finite depth and coastal details need to be defined at a resolution higher than the 0.5◦ resolution of the
reanalysis. In addition, the TS EVA approach often could not fit a reasonable GPD approximation to
the pdf in such regions. As a result, these coastal locations are not shaded in Figure 2 and subsequent
plots. In addition, regions covered by ice for part of the year are also shaded white.

Figure 3 shows a comparison with the results of a conventional PoT GPD analysis (i.e., assumes
the data are stationary) applied to both the present ERA5 data (Figure 3a) and altimeter data (Figure 3b),
as in Takbash et al. [21]. The ERA5 results (Figure 3a) were obtained with a threshold set at the
70th percentile (as in Figure 2). The altimeter results use a 90th percentile threshold [21]. The ERA5
results are in good global agreement with the altimeter results. The ERA5 values are slightly smaller
in magnitude than the altimeter results, consistent with previous studies [6,13,14], which show that
models tend to slightly underestimate extreme wave height. The spatial distributions of extremes for
the ERA5 conventional EVA analysis (Figure 3a) and the TS analysis (Figure 2) are, however, in good
agreement with the altimeter results. It should also be noted that the threshold value chosen in the
present analysis (70th percentile) differs from that of Takbash et al. [21] (90th percentile). A range of
values for the threshold was tested for the present analysis. For most regions of the globe, the resulting
values of H100

s were not significantly affected by the choice of the threshold value. In the typhoon
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region of the western North Pacific, however, a threshold value greater than the 70th percentile resulted
in unreasonably large values. Examination of the pdfs for this region showed that this was because a
higher threshold resulted in too few values in the pdf to adequately define the tail of the distribution.
It is believed this is because of the relatively infrequent occurrence of typhoons and the likelihood
that the model resolution is such that many such storms are not adequately resolved [13]. Therefore,
although we acknowledge the choice of a 70th percentile threshold is relatively low, we believe it
is a reasonable compromise for such a global analysis and does not significantly bias the results.
Certainly, these results are consistent with calculations with higher percentile thresholds and with the
comparisons with altimeter H100

s (Figure 3).

Figure 2. Global long-term (time-dependent) values of H100
s (m) obtained with the non-stationary PoT

analysis and a GPD distribution using the non-seasonal TS method (a) 1 January 1979 and (b) 1 January
2019. Data obtained from ERA-5 reanalysis 1979–2019. White regions represent coastal locations where
the TS EVA did not produce acceptable fits to the pdf or regions covered by sea ice.

Comparison of the values of H100
s between 1979 (Figure 2a) and 2019 (Figure 2b) show regions

where there are apparent differences. The comparison suggests increased values of H100
s in the Southern

Ocean and South Pacific in more recent years. There is also an increase in the typhoon regions of the
western North Pacific and the hurricane regions off the west coast of the United States. Such changes are
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more clearly shown in Figure 4, which shows the linear trend over the period 1979–2019. In addition,
regions for which the trend is statistically significant at the 95% level (based on the p-value) are shown
with shading, as a measure of the statistical confidence of the trend.

Figure 3. Global distribution of H100
s (m) from conventional PoT GPD analyses (i.e., data assumed

stationary over time). (a) Analysis using the ERA5 dataset used in the remainder of this paper.
(b) Altimeter data, as in Takbash et al. [21].

Figure 4 confirms the results seen in Figure 3 that there is a generally positive trend across
significant regions of the Southern Hemisphere (greater than 15◦ S), in the typhoon belt of the western
North Pacific and the hurricane regions off the west coast of the United States. There are also increases
(statistically significant) in the high latitudes of the North Pacific (greater than 50◦ N). In the Atlantic,
positive trends occur in the hurricane regions to the east of the United States and the South Atlantic
(extratropical cyclones region [41]). There are also negative trends in the trade wind belts of the North
Pacific and North Atlantic (∼30◦ N). However, for these regions the trend is not statistically significant.
As a result, there is less statistical confidence in these negative trends.

The spatial distributions of positive trends shown in Figure 4 are generally consistent with the
results of the altimeter data of Young et al. [9], which were obtained with a “stationary slice” approach
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and an IDM analysis. Published 90th percentile Hs trends for altimeter data [7,8] also show increases
in the Southern Hemisphere, although these tend to be further south in the Southern Ocean than
the present EVA results. In addition, the results in Figure 4 indicate that the largest values of the
positive trend in the Southern Hemisphere occur in the Pacific basin of the Southern Ocean. In contrast,
previous results for mean and upper percentile trends suggested the largest values were in the Indian
Ocean basin of the Southern Ocean [7,8]. The present analysis indicates the largest values of the trend
are approximately +3 cm/yr, indicating an increase of approximately 1.2 m over the 41 year period of
the record, consistent with the differences shown in Figure 2.

Figure 4. Global non-seasonal long-term trend (cm/yr) of H100
s over the period 1979–2019 from the

non-stationary TS EVA approach with a GPD. Values which are statistically significant are shown with
shaded dots.

4.2. Seasonal Analysis—January

Figure 5 shows an example of the resulting time series and pdf for the non-stationary seasonal
GPD analysis as a function of time for the location 40◦S, 240◦E (as in Figure 1). Compared to Figure 1,
the seasonal variation is now evident, with larger waves in winter (July) than in summer (January).
The seasonal analysis enables an understanding of whether the extreme conditions are dominated by a
particular season or whether there is a more consistent year-round contribution of extremes. For the
seasonal analysis, values of H100

s are determined by season (month) and year. As a result, trends can
then be determined for each season. Therefore, for example, H100

s can be determined for January of
each year and the trend evaluated across these values. As with the non-seasonal analysis, such values
were determined at 5-year intervals and the trend determined using linear regression.

Figure 6 shows the values of H100
s on a seasonal basis for January 1979 (Figure 6a) and January

2019 (Figure 6b). January corresponds to the Northern Hemisphere winter and hence, as expected,
extreme values in the high latitudes of the North Pacific and North Atlantic are slightly higher than
the nonseasonal result (Figure 2) (∼22 m compared to ∼18 m). This occurs because the Northern
Hemisphere has a significant seasonal cycle (winter to summer), with most storms occurring during
winter. In contrast, summer conditions in these northern latitudes are relatively calm [42]. Therefore,
the probability of occurrence of extremes is increased in January compared to the full year and hence the
values of H100

s are larger for the seasonal analysis. In contrast, extreme values for the Southern Ocean
for January are smaller than for the non-seasonal analysis (Figure 2) (∼12 m compared to ∼14 m), as this
is now the Southern Hemisphere summer. The difference is not as large as for the Northern Hemisphere
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winter, as the seasonal variation in wave conditions in the Southern Hemisphere is less than that for
the Northern Hemisphere. That is, the Southern Ocean is relatively rough year-round [42,43].

Figure 5. The non-stationary seasonal TS analysis for a location at 40◦ S, 240◦ E. (a) The time series of
Hs (m) as a function of time (1979–2019) with the mean and standard deviation marked. (b) The GPD
pdf as a function of time. The seasonal cycle is evident in both panels.

It is also clear in Figure 6 that the extremes associated with western Pacific typhoons and United
States hurricanes are significantly reduced, as these tropical low-pressure systems do not occur at this
time of year.

The trends in values of H100
s for January are shown in Figure 7. The spatial distributions of the

trends are similar to the non-seasonal result (Figure 4). However, the magnitude of the increase in the
Southern Hemisphere for the seasonal result for January is much smaller than for the non-seasonal
case. This suggested that the increases in H100

s in these regions are associated with a strengthening
in Southern Hemisphere storms during winter. As noted above and shown in Figure 6, values of
extreme wave height associated with typhoons in the western North Pacific and hurricanes off the
west coast of North America are not large during January. However, it is evident in Figure 7 (and also
Figure 6) that H100

s in both of these regions has increased over the 41-year period. This suggests that
both typhoons and hurricanes in these basins may be occurring more frequently in these winter periods
in recent years.
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Figure 6. Global long-term (time-dependent) values of H100
s (m) obtained with a PoT analysis and a

GPD distribution using the seasonal TS method (a) 1 January 1979 and (b) 1 January 2019. Data obtained
from ERA-5 reanalysis 1979–2019. White regions represent coastal locations where the TS EVA did not
produce acceptable fits to the pdf or regions covered by sea ice.

Figure 7. Global seasonal long-term trend (cm/yr) of H100
s for January over the period 1979–2019 from

the non-stationary seasonal TS EVA approach with a GPD. Values which are statistically significant are
shown with shaded dots.
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4.3. Seasonal Analysis—July

Figure 8 shows the values of H100
s from the seasonal analysis for July for 1979 (Figure 8a) and July

2019 (Figure 8b). Consistent with Figure 6, the maximum values of H100
s in the Southern Hemisphere

(winter) are slightly higher than the corresponding non-seasonal case (Figure 2). For the high-latitude
regions of the North Pacific and North Atlantic, the maximum values of H100

s are, however, much smaller
than for the non-seasonal case (∼6 m compared to ∼18 m). This again demonstrates that the Northern
Hemisphere has a significant seasonal cycle, with summer conditions (July) relatively calm [43]. As a
result, the July values of H100

s are much smaller than the non-seasonal analysis (Figure 2) and the winter
(January) conditions (Figure 6). The large values of H100

s associated with typhoons in the western
North Pacific are now clearly evident in the analysis for July, reflecting the time of year when these
tropical systems occur.

Figure 8. Global long-term (time-dependent) values of H100
s (m) obtained with a PoT analysis and

a GPD distribution using the seasonal TS method (a) 1 July 1979 and (b) 1 July 2019. Data obtained
from ERA-5 reanalysis 1979–2019. White regions represent coastal locations where the TS EVA did not
produce acceptable fits to the pdf or regions covered by sea ice.

The trend for H100
s in July is shown in Figure 9. The spatial trends are similar to the seasonal

trend for January (Figure 7) and the non-seasonal case (Figure 4). Compared to the trend for January
there are, however, clear differences in the magnitude of the trends. During July, the trends in the
Southern Ocean are more strongly positive than in January. Again, this indicates that the increasing
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trend for H100
s in the Southern Ocean appears to be associated with strengthening extreme waves

during winter. Similarly, the negative trend in the North Pacific and North Atlantic is more strongly
negative than for January. This result, however, needs to be treated with caution as these trends are not
statistically significant.

Figure 9. Global seasonal long-term trend (cm/yr) of H100
s for July over the period 1979–2019 from the

non-stationary seasonal TS EVA approach with a GPD. Values which are statistically significant are
shown with shaded dots.

5. Discussion

The present results indicate that the 100-year return period significant wave height, H100
s ,

as modelled by the ERA5 reanalysis dataset has increased at a rate up to +3 cm/year in the Southern
Hemisphere over the 41-year period from 1979 to 2019. As values of H100

s in the Southern Ocean are
typically approximately 15 m, this equates to a percentage increase of 0.2% per year or 8% over the
41-year period. The present result represents the first attempt to determine changes in extreme wave
heights over the past decades using a robust extreme value approach. It is interesting to compare these
results with previous studies.

Young et al. [9] analyzed a 16-year altimeter dataset (1992-2008) to estimate H100
s . The analysis

had the limitations that the period was relatively short and was analyzed using a “time slice” method
and an IDM approach to the extreme value analysis. Despite this, the spatial distributions of H100

s are
remarkably similar to the present results, showing positive trends over the Southern Hemisphere and
weaker negative trends for the Northern Hemisphere. For the Southern Hemisphere, the magnitude of
the trend was approximately +4 cm/year, comparable to +3 cm/year in the present study.

Young and Ribal [8] re-examined altimeter data but over a more extensive 33-year period from
1985 to 2018. They examined trends in the mean and 90th percentile Hs, finding weak positive trends
in mean conditions and larger trends for the 90th percentile. Again, the 90th percentile values showed
positive trends in the Southern Hemisphere and weaker negative trends in the Northern Hemisphere.
Their positive trends in the Southern Hemisphere were approximately +1 cm/year. As their results
seem to indicate that extremes were increasing faster than mean conditions, one would expect the 90th
percentile result to be smaller than H100

s . Although a 90th percentile cannot be directly compared to
H100

s , the Young and Ribal [8] result is consistent with the present result.
Morim et al. [5] and Meucci et al. [10] considered future projections of wave climate using an

ensemble of model results for a range of atmospheric emission scenarios. They projected positive
trends in the wave climate in the Southern Hemisphere and smaller negative trends in the Northern
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Hemisphere. Morim et al. [5] projected increases of the 99th percentile Hs of 5% to 10% between the
present day and 2100 (an increase of approximately +2 cm/year). Meucci et al. [10] also projected
increases of H100

s in the Southern Ocean of 5% to 10% over this period (approximately +2.5 cm/year).
Hence, all of these findings are consistent with the present results. The reliability of the present

result does, however, depend on whether reanalysis models can reproduce trends in extreme values.
Here, there are potentially two limitations, firstly, whether models can accurately reproduce extreme
values. A number of studies have compared reanalysis model estimates of H100

s with both buoy
and altimeter data [12–14], showing that model results may be 10% lower than buoy and altimeter
data. The spatial distributions of reanalysis data are, however, reproduced well. This is confirmed in
Figure 3, where conventional (i.e., time series assumed stationary) EVA analyses of both the present
ERA5 reanalysis data and altimeter observations show global values of H100

s with a similar magnitude
and spatial distribution. The other issue which needs to be considered is whether the inclusion of
altimeter assimilation in the ERA5 reanalysis dataset in approximately 1990 introduced a discontinuity
in the dataset which significantly impacts trend estimates [4,40]. Timmermans et al. [2] compared
trends in mean Hs for ERA5 and the ECMWF CY46R1 (Cycle 46R1) product. CY46R1 is very similar to
ERA5 but without altimeter data assimilation. Over the period 1992–2017, ERA5 and CY46R1 yielded
very similar spatial distributions of the trend in mean Hs, with CY46R1 producing slightly higher
values. Although this is a shorter period than the present analysis, it does add some confidence that
the assimilation does not grossly distort the trend estimates of mean values. The behaviour at the
extremes is still unclear.

6. Conclusions

The present study has undertaken a non-stationary TS extreme value analysis of a 41-year record
of global ERA5 reanalysis data of significant wave height, Hs. The global distribution of values of the
100-year return period significant wave height, H100

s , from the non-stationary analysis is consistent
with previous results using conventional stationary approaches. The non-stationary analysis, however,
allows the determination of changes in H100

s over the data period (1979–2019). This analysis shows that
there have been statistically significant changes in H100

s over this period. In particular, there has been
an increase in H100

s in the Southern Hemisphere of up to +3 cm/year. The Northern Hemisphere shows
a smaller negative trend, although these values are generally not statistically significant. The seasonal
analysis of the data shows that the positive trend in the Southern Hemisphere is a result of an increase
in the intensity of winter storms or the frequency of these storms, or both.

Both the spatial distribution of changes in H100
s and the magnitudes are consistent with the

previous limited analyses of global extreme wave height trends, both for the historical period and
future projections. These various analyses show that there have been clear increases in H100

s over the
past 41 years in the Southern Hemisphere and that this is projected to continue in the future.
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