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Abstract: For numerical simulations of ship and offshore hydrodynamic problems, it is challenging
to model the interaction between the free surface and moving complex geometries. This paper
proposes a discrete-forcing immersed boundary method (IBM) to efficiently simulate moving solid
boundaries in incompressible air–water two-phase flows. In the present work, the air–water
two-phase flows are modeled using the Volume-of-Fluid (VoF) method. The present IBM is suitable
for unstructured meshes. It can be used combined with body-fitted wall boundaries to model the
relative motions between solid walls, which makes it flexible to use in practical applications. A field
extension method is used to model the interaction between the air–water interface and the immersed
boundaries. The accuracy of the method is demonstrated through validation cases, including the
three-dimensional dam-break problem with an obstacle, the water exit of a circular cylinder, and a
ship model advancing with a rotating semi-balanced rudder. The flow field, free-surface profile and
force on the immersed boundaries (IBs) are in good agreement with experimental data and other
numerical results.

Keywords: immersed boundary method; air–water two-phase flows; VoF method; OpenFOAM;
finite volume method

1. Introduction

Incompressible air–water two-phase flows are of practical interest in the ship and offshore
industries. When complex geometries are involved, such simulations are challenging because it is
non-trivial to generate high quality meshes near the geometries, especially when there is relative
motion between boundaries of the domain. Techniques such as deforming meshes, sliding meshes,
overset meshes and IBMs are commonly used to simulate both single-phase and two-phase flows
around moving boundaries.

The identifying feature of IBMs is that the grid lines do not need to conform the solid
boundaries. The governing equations are solved on the background meshes, and the effects of
the solid boundaries are introduced into the governing equations through interpolation. As a result,
the effort to generate high-quality body-fitted meshes is not required. The quality of meshes with
respect to non-orthogonality and skewness is also well preserved for arbitrary body motions.

The IBM is first proposed by Peskin [1] to simulate the blood flow in the heart, in which the
IBM is used to represent the elastic heart walls. Since then, IBMs have become increasingly popular
for the simulations of single-phase flows around boundaries with complex shapes at relatively low
Reynolds numbers. Attempts are successfully made to simulate elastic boundaries [2–4] and rigid
boundaries [5–7] on both structured and unstructured meshes.

Compared with body-fitted meshes, one of the most notable disadvantages of IBMs is that the
near-wall cell spacing is difficult to control. For body-fitted meshes, prism layers with large aspect
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ratios can be used in the near-wall region to resolve the boundary layer which is especially thin at high
Reynolds numbers. Whereas, IBMs have to refine the near-wall cells in all directions to achieve the
similar cell spacing in the wall-normal direction as its body-fitted counterpart. This disadvantage is
one of the main reasons why IBMs are more developed for low-Reynolds-number flows. Fadlun [8]
extends Mohd-Yusof’s work [7] to three dimensions and successfully simulates the turbulent flow
inside an axisymmetric piston-cylinder assembly. For high Reynolds-number applications, large eddy
simulations (LES) is one favourable choice for the implementation of the IBMs, since the requirement
of the near-wall mesh resolution for LES is inline with the IBMs. Balaras [9] proposes a discrete-forcing
IBM to couple with a LES solver to simulate the turbulent flows inside a channel with a wavy
bottom. Very good agreement is achieved with other numerical data. Choi et al. [10] proposes to
reconstruct the wall normal and tangential components of velocity separately near the IB surfaces for
turbulent-flow simulations. A power-law function is used for the tangential component to represent
the near-wall velocity profile at high Reynolds numbers. Good agreement with other computational
and experimental results is reported. However, the choice of the constants in the power-law function
is case specific. Reynolds-Averaged Navier-Stokes (RANS) simulations is another commonly used
technique for turbulent flows. Since the near-wall mesh resolution is not always enough to fully resolve
the boundary-layer flow for a RANS simulation, a wall function can be used to predict the correct wall
shear stress on the immersed boundary. Kalitzin et al. [11] couples an IBM into a RANS solver with
both the Spalart–Allmaras and k−ω SST turbulence models. Wall functions are used to alleviate the
requirement of the near-wall cell spacing. The surface pressure and skin friction on the T106 turbine
blade passage in turbulent flows are well predicted. Capizzano [12] proposes a two-layer approach to
simulate various 2D and 3D airfoils. In his approach, the numerical result is composed of the solution
via a boundary-layer equation in the near-wall region, and the solution in the outer region via the
compressible RANS equations.

In recent years, an increasing amount of research has been conducted on the implementation
of IBMs for air–water two-phase flows. Dommermuth et al. [13] develops an approach combining a
penalty method and a VoF [14,15] method to simulate breaking waves around ships and the resulting
hydrodynamic forces. A free-slip boundary condition is imposed on the hull surface, which leads to
solutions with smaller velocity gradient near the slip boundary. Although the boundary condition
is sufficient for many marine flows, it is not appropriate for cases where the no-slip hull boundary
condition is important.

Sanders et al. [16] presents a level-set two-phase flow solver employing a finite difference IBM.
The solver is validated by solving the decay of the heave motion of a buoyant cylinder and the roll
motion of a box in 2D. It seems that the method has not been extended to 3D or complex geometries.

Shen and Chan [17] propose a methodology that combines a discrete-forcing IBM and the VoF
method to simulate flow interactions between free-surface waves and submerged solid bodies in 2D.
Good agreement of the free-surface profile is presented. However, no additional boundary condition
of the volume fraction on the IB needs to be considered since the solid bodies are fully submerged.

Yang and Stern [18] present a combined sharp interface IB/level-set Cartesian grid method for
the LES simulations of 3D free-surface flows. The contact angle boundary condition on the IB is
implemented to enforce the boundary condition of the level-set function φ, which requires the linear
interpolation of φ in the vicinity of the IB. A series of simulations, including flows around simple
geometries and ship hulls, are performed. The capability of the solver is demonstrated through the
comparison of the flow field and the free-surface profile.

Sun and Sakai [19] present a numerical model that combines an IBM and the VoF method for
simulating the two-phase flow in a twin screw kneader, which has two counter-rotating screw elements.
The free-surface boundary condition of the volume fraction near the IB is enforced by either a simple
dilation method, or by solving an additional “extension” equation introduced by Sussman [20].

Calderer et al. [21] proposes a new level-set IBM for solving 3D fluid-structure interaction
problems. The spatially-filtered N-S equations are used as governing equations, and they are solved
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using the fractional step method on curvilinear grids. The boundary conditions on the IBs are enforced
through interpolation and enforcement of the velocity in the cells in the vicinity of the IBs. A Neumann
boundary condition is applied to the level set function at the IB. A two-step approach is proposed
to compute the force and moment on the IB by projecting the pressure and the viscous stress to a set
of grid faces that encloses the IB. The accuracy of the solver is demonstrated by a series of test cases
including water entry and exit of a horizontal circular cylinder, free roll decay of different floating
geometries, and wedge impact on the free-surface.

In view of the previous work, the combined usage of IBM and air–water two-phase flow solvers
especially for ship hydrodynamic flows is not explored as much as the application of IBMs for
single-phase flows. Most of the methods are focused on using Cartesian grids, and require the
interpolation for either the level-set function or the volume fraction in a similar way for the enforcement
of the velocity boundary condition on the IBs. In addition, the benefit of the combined usage of
unstructured body-fitted meshes and IBMs has not been well explored. In the previous work [22],
we have proposed a complete development of a second-order IBM for single-phase applications of
both laminar and turbulent flows. Careful verification and validation are carried out to demonstrate
the capability of the method. In this paper, we aim to extend our previous work for the simulations of
air–water two-phase flows. The flow field is governed by the RANS equations and the Spalart–Allmaras
turbulence model. The VoF method is used to track the air–water interface. The dilation method
introduced in [19] is adopted to deal with the intersection between the air–water interface and
IBs. The goal of the implementation is to develop a solver that is suitable and efficient for ship
hydrodynamic applications with minimal modification from the IB single-phase solver. It should be
noted that for many ship hydrodynamic applications where turbulent flow separation important, there
are other choices, such as detached-eddy simulations (DES) or LES, that may better resolve the flow.
However, RANS simulations are still widely used in both academic and industrial fields because of
the balance of computational cost and accuracy.

The paper is structured as follows: the numerical methods are introduced in Section 2, including
the governing equations and coupling of the IBM with the two-phase flow solver. The results of the
validation cases are presented in Section 3, including the 3D dam-break problems with an obstacle,
water exit of a circular cylinder and a KRISO container ship (KCS) model advancing with a rotating
rudder. Comparisons as for the flow field, free-surface profile and force on the IBs are made with
experimental data and other numerical results. Specifically, for the simulation of the KCS model,
unstructured body-fitted mesh is used for the hull and the fixed rudder horn, and the IBM is used to
represent only the rotating rudder blade. Thereby, the benefit of the present IBM for combined usage
with unstructured body-fitted approaches is demonstrated.

2. Numerical Methods

2.1. Governing Equations

In this work, the air–water two-phase incompressible turbulent flows are simulated by the
RANS equations:

∇ · u = 0 (1)

∂ρu
∂t

+∇ · (ρuu) = ∇ ·
[
ρνeff

(
∇u +∇uT

)]
−∇prgh − g · x∇ρ + f (2)

in which, u is the velocity; νeff = ν + νt is the effective viscosity; ν and νt are the kinematic viscosity
and turbulent viscosity, respectively; prgh = p− ρg · x is the dynamic pressure; p is the total pressure;
g is the gravitational vector; x is the position vector; f is the body force term introduced via the IBM to
enforce proper boundary conditions on the IB surfaces. The calculation of f is discussed later.
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2.2. Air–Water Two Phase Flow Modelling

The VoF method is applied to solve the air–water flows. The fluid volume fraction α is introduced
to represent the different fluids. The transport equation for α is written as:

∂α

∂t
+∇ · (uα) +∇ · [ur(1− α)α] = 0 (3)

in which, ur is a compression velocity, and its value at face centers ur, f is calculated by:

ur,f = n f min

{
Cα
|φ|
|S f |

, max

(
|φ|
|S f |

, 1

)}
(4)

in which S f is the face area vector and its direction is the face normal direction. φ is the velocity flux,
Cα is the compression coefficient, and n f is the interface normal vector. Larger values of Cα permit
greater compression of the smeared layer at the interface, but it can result in the decreasing accuracy
for the calculation of the surface curvature. For all the simulations in this article Cα is set to be 1.5.

The last term in Equation (3) represents an artificial compression term, and only appears near the
air–water interface to confine the smearing of α. As a result, the method numerically represents the
air–water interface as a thin layer instead of a sharp boundary.

The different fluid phases (air or water) are indicated by different values of α, as shown in
Equation (5). 

α = 0, air

α = 1, water

0 < α < 1, near the interface

(5)

The boundary condition of α at the intersection of the interface and the solid wall is provided
through the contact-angle boundary condition:

n f · nB = cos θ (6)

in which, n f is the air–water interface normal vector pointing from air to water; nB is the normal vector
on the wall pointing from the fluid phase to the solid phase; θ is the contact angle.

n f is calculated using the gradient of α at the air–water interface as:

n f =
(∇α) f

|(∇α) f + δ| (7)

in which, δ is a small number used to stabilize the simulations.
In the present work, a neutral contact angle θ = π/2 is assumed. Substitution of Equation (7) into

Equation (6) yields the homogeneous Neumann boundary condition of α on the wall:

n f · nB =
(∇α) f

|(∇α) f + δ|nB = 0 ∇nα = 0 (8)

Subsequently, the density and viscosity fields in the momentum equation Equation (2) is
calculated as:

ρ = αρw + (1− α)ρa and ν = ανw + (1− α)νa (9)

where the subscript w and a represent water and air, respectively.

2.3. Immersed Boundary Formulation

The IBM developed in our previous work [22] is adopted for the calculation of the body force
term f in the momentum equation. The first step is to divide into three domains with respect to
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the IB surface S , which are the solid domain, forcing domain and the fluid domain. The resultant
computation domain for a circular boundary is shown in Figure 1 as an example.

Figure 1. Categories of domains: a. solid domain: white cells; b. forcing domain: red cells; c. fluid
domain: blue cells.

The body force term f will then be imposed in the forcing and solid domains to represent the
proper boundary conditions on the IB surface. Similar to the method for single-phase flows, f is
calculated by:

f =
∂ρu∗

∂t
+∇ · (ρu∗u∗)−∇ ·

[
ρνeff

(
∇u∗ −∇u∗T

)]
+∇prgh + g · x∇ρ (10)

where,

u∗ =

{
L(u), forcing domain

ubody, solid domain
(11)

in which, the operator L(∗) denotes the interpolation of the velocity near the IB surface.
The interpolation is based on the solution of the governing equations and the velocity boundary
conditions on the IB surface. The second-order Laplacian interpolation is used in the present work.
The detailed descriptions and a series of verification and validation tests can be found in [22].

Different from the IBM used in the single-phase flow, the additional gradient of density in the
momentum equation due to buoyancy is challenging for the IBM. Since the fluid inside the solid
domain is unphysical, the volume fraction α and the density field are not properly determined at this
stage. By examining Equation (9), one can find that without a proper setup of the volume fraction
α near the IB surface, the calculation of the density field is problematic in that region. In addition,
considering the density ratio between air and water, large error will be introduced to the calculation of
the gradient of density near the IB surface, leading to an incorrect solution of the momentum equation.

In the current work, the dilation method proposed by Sun and Sakai [19] is adopted. At the end
of each time step, the volume fraction field is extended into the solid domain as follows:

1. Mark all solid cells and store in a listM.
2. Loop through all marked cells inM.

(a) Check all the cells that share nodes with the marked cell i, and store the indices of all
unmarked cells. The volume fraction α of these cells is used to interpolate the α in cell i.

(b) After storing all the unmarked cells, use the inverse square distance method to interpolate
αi as

αi =
∑j wjαj

∑j wj
(12)
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where
wj =

1
d2 (13)

where d is the distance between the cell centers of i and j. j is the cell index of each
unmarked cell.

(c) Store the cell index i into a temporary list S .
(d) Go to next marked cell i + 1.

3. Remove all cells in S fromM.
4. Go back to the beginning of Step. 2.

The number of iterations in Step. 2 determines how many layers of solid cells α are extended
inside the IB surface. Note that this extension is naturally a good approximation of the Neumann
boundary condition. In practice, we find that five layers are good enough for both cases with both static
and moving IB surfaces. It should be noted that this process of extension changes the fluid volume
in the solid domain solely to enforce the Neumann boundary condition of α on the IB. Therefore,
it changes the total fluid volume in the whole domain. However, since the velocity boundary condition
is imposed on the IB, there is no velocity flux across the IB boundaries. Change of the fluid volume
in the solid domain serves the sole purpose to impose the correct boundary condition of α on the IB,
and does not affect the total volume in the fluid domain.

The effect of the field extension operation is demonstrated by the canonical 2D dam-break problem.
In this case, the dam walls are modeled using IB surfaces, which do not coincide with the grid lines,
as shown in Figure 2a. In Figure 2, the color represents the value of the volume fraction α, where red
represents water α = 1, and blue represents air α = 0. The IB surfaces are denoted as white dots.

(a) Original α field (b) α field after the extension

Figure 2. Extension of α into the solid region. The IB surfaces are denoted as white dots.

Figure 3 shows the comparison of the shape of the air–water interface between the present IBM
and the results on the body-fitted mesh with the same mesh resolution after the dam is released.
The shape of the air–water interface, especially at the water front along the tank bottom, is not correctly
predicted without the field extension. Inaccurate simulation of the water volume will cause a poor
prediction of the momentum of the water body, leading to an inaccurate simulation of the development
of fluid field and the impact force.
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Figure 3. Comparison of the shape of the water volume. Left: Field extension; middle: no enforcement
of the α BC; Right: body-fitted mesh.

2.4. Turbulence Modelling

Following our previous work [22], the Spalart–Allmaras turbulence model is used in the current
work. Previous results of flows in an asymmetric diffuser and behind a KVLCC2 ship model
demonstrate that moderate flow separation can be well handled with decent accuracy. It should
be noted that for many marine hydrodynamic applications where massive separation effects are
important, more advanced turbulence modelling techniques can offer additional accuracy, such as DES
or LES.

In the Spalart–Allmaras turbulence model, the turbulent viscosity νt is calculated by solving the
transport equation of the modified turbulent viscosity ν̃:

D
Dt

ν̃ =
1

σνt

∇ · ((ν + ν̃)∇ν̃) +
Cb2
σνt

|∇ν̃|2 + Cb1S̃ν̃(1− ft2)

− (Cw1 fw −
Cb1

κ2 ft2)
ν̃2

d̃2
+ Sν̃

(14)

with the wall boundary condition ν̃wall = 0. Detailed description of the model and the default model
coefficients can be found in [23]. The near-wall distance d̃, which is essential for the correct modelling
of the destruction of the turbulence, is calculated taking into account the IB surfaces. As proposed
in our previous work, the IB wall function is also used to relax the requirement of the near-wall cell
spacing. The wall function provides a universal velocity profile from the outer edge of the logarithmic
layer down to the IB surface. The wall tangential component of the velocity in the forcing cell is
corrected based on the velocity profile. ν̃ in the forcing cell is directly calculated based on a linear
profile as follows:

ν̃+ = κy+ (15)

in which ν̃+ = ν̃/ν; κ = 0.41 is the Von Karman constant; y+ = yuτ/ν; uτ is the friction velocity
determined from the Spalding’s velocity profile:

y+ = u+ +
1
E

[
eκu+ − 1− κu+ − 1

2
(κu+)2 − 1

6
(κu+)3

]
(16)

3. Numerical Results

3.1. 3D Dam-Break with an Obstacle

In this section, the canonical problems of dam-break are investigated. Two different setups are
considered to validate the solver from different aspects including the flow velocity, development of
the air–water interface and the impact on the obstacle.
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3.1.1. Dam-Break No.1

This section discusses the interaction between a vertical square cylinder and a single large wave
caused by the dam break. The flow velocity in front of the obstacle and the impact force on the
square cylinder are examined. The experimental data is found in [24] provided by Profs. Catherine
Petroff and Harry Yeh. Numerical results are also provided in [24] using their three-dimensional
Eulerian-Lagrangian marker and micro-cell method.

Figure 4 illustrates the setup of the numerical simulation. The dimensions of the tank are
1.6 m× 0.61 m× 0.75 m. A volume of water with the size 0.4 m× 0.61 m× 0.3 m is initially placed
at the left end of the tank. The dimensions of the vertical obstacle are 0.12 m× 0.12 m× 0.75 m. It is
placed downstream of the volume of water with center of the bottom of the obstacle at (0.96, 0, 0).
As reported by Petroff and Yeh, the bottom of the tank was not completely drained in the physical
experiment. Therefore, a thin layer of water with 0.01 m in depth is setup in the present simulation as
shown in Figure 4.

It should be noted the way that the water is released in the present simulation is different from
how the experiment was conducted. In the physical experiment, the water is blocked by a gate that is
lifted vertically with finite speed at the beginning of the test, whereas in the simulation the water is
released instantaneously. Lin and Chen [25] discuss the influence of the opening speed of the gate on
the time history of the impact force on the obstacle. Their results show that the peak of the impact
force is delayed as the finite opening speed of the gate decreases.

Figure 4. Case setup of Dam-Break No.1.

In the present simulations, the walls of the tank are represented by the body-fitted wall boundaries
as shown in Figure 4. The solid walls of the vertical obstacle are represented by an IB surface. A set
of three background meshes with a refinement ratio of

√
2 in each direction is used to validate the

solver. The total numbers of cells of the background meshes are 114× 43× 53, 161× 61× 75 and
228× 86× 106, respectively. The position of the IB in the tank is shown in Figure 5.
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(a) top view (b) front view (c) side view

Figure 5. Relative position between the IB and the medium background mesh.

The density and viscosity are ρw = 1000 kg/m3, νw = 1 × 10−6 m2/s for the water,
and ρa = 1 kg/m3, νa = 1× 10−5 m2/s for the air. The gravitational acceleration is g = 9.81 m/s2.
In the simulations, the time step size is adjusted automatically to keep the Courant number less
than 1.0.

A probe is used to record the flow velocity at a location in front of the obstacle at (0.754, 0, 0.026).
In addition, the impact force on the obstacle is calculated.

Figure 6 shows the wave propagation and its interaction with the obstacle at different time instants.
It provides a general idea of what the critical phases of the dam-break problem look like. At t = 0 s,
the water is released. After the water hits the front side of the obstacle, it runs up along the front wall
and causes a large impact force. Afterwards, the water that travels around the obstacle joins together
behind the obstacle, travels to the end of the tank, and hits the back side of the obstacle after being
reflected by the end wall of the tank. It causes a second impact in the opposite direction compared to
the first peak of impact. The second impact force is expected to be weaker than the first one because
the velocity of the front of the wave is decreasing in general.

Figure 6. Simulation of the 3D dam-break problem with a vertical square obstacle.

To further evaluate the accuracy of the solver, Figure 7 shows the x-component of the velocity at
the velocity probe using all three background meshes. The data is shifted in time such that t = 0 s
in the figure is the moment when the water first reaches the probe. Specifically, t = 0 s in the figure
corresponds to 0.238 s after the water is released. The experimental data is plotted together for the
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purpose of comparison. The gaps in the experimental data at 0.6 < t < 0.85 s and t > 1.5 s are due to
the presence of bubbles in the water as explained in [24]. The velocity at t = 0 s is slightly overpredicted
by the medium and fine meshes, which means the water moves faster in present simulations than
in the experiment. It should be noted that in the simulations, the floor is set to be covered by a thin
layer of water of thickness 0.01 m. The layer of water is used to mimic the wet floor in the experiment.
However it cannot perfectly reproduce the experimental environment. Another reason is that the gate
in front of the water is released with finite speed in the experiment, which reduces the velocity at the
water front near the floor. A similar conclusion is drawn in [25] by investigating the influence of the
release speed of the gate. The medium and fine meshes correctly predict the decrease in the velocity of
the water (e.g., 0 < t < 1.5 s) due to the blockage of the obstacle. After t = 1.5 s, the wave is reflected
from the tank wall at x = 1.6 m, and it is further blocked by the back side of the obstacle. The water
near the bottom floor in front of the obstacle is almost stationary. This can be confirmed from Figure 7
that the velocity at the probe drops to almost zero after t = 1.5 s.

Figure 7. Time history of the horizontal velocity in front of the obstacle at (0.754, 0, 0.026) using
different background meshes.

Figure 8 shows the impact force on the obstacle. It is worth pointing out that t = 0 s in this figure
corresponding to the time when the simulation starts, which explains the zero impact force at about
t < 0.25 s. The different background meshes predict a consistent start time of the impact. Compared
with the experimental data, it can be seen that the first impact happens earlier than in the experiment,
which is consistent to the behavior of the horizontal velocity at the velocity probe discussed before.
Figure 8 shows that the numerical results slightly underpredict the positive peak value at around
t = 0.4 s. Afterwards, the impact force decreases gradually to zero around 0.4 < t < 1.5 s, which is
consistent with experimental data. At t ≈ 1.5 s, the wave reflected from the end the tank arrives and
impacts on the back side of the obstacle causing a negative peak of the impact force. During the last
phase of the dam break, the impact force decreases to zero again.

In summary, the accuracy of the solver is demonstrated via the comparisons between the numerical
solutions and the experimental data for the impact force and the horizontal velocity in the front of
the obstacle.



J. Mar. Sci. Eng. 2020, 8, 809 11 of 25

Figure 8. Time history of the impact force on the obstacle using different background meshes.

3.1.2. Dam-Break No.2

In the previous section, the discussion is focused on the velocity of the water and the total impact
force, which is an integrated variable. It is equally important to investigate the local pressure during
the impact, as well as the water elevation at different places. To fulfill this goal, a different setup
of the 3D dam-break problem with an obstacle is used in this section. The height of the obstacle
is much smaller than in the previous case, which means the water also flows over the top of the
obstacle. The physical experiment was carried out by the Maritime Research Institute Netherlands
(MARIN, [26]) to investigate the phenomenon of green water on the deck of a ship. Local pressure
at different positions of the obstacle, and the water elevation at different locations of the tank were
recorded in the experiment. The results of numerical simulations are also provided in [26].

Figure 9 shows the computational domain and the numerical setup. The dimensions of the
tank are 3.22 m× 1 m× 1 m. At the beginning of the simulation, the volume of water with the size
1.22 m× 1 m× 0.55 m is located at the end of the tank from x = 2 m. A rectangular obstacle is placed
in front of the dam to represent a container on the deck of the ship. The dimensions of the obstacle are
0.16 m× 0.4 m× 0.16 m with its front side (the side which faces the dam) positioned at x = 0.83 m.
The water elevation is monitored at two places along the vertical plane y = 0 m, which are x = 1.0 m
and 2.66 m. Eight sensors are used to record the local pressure on the top and front sides of the obstacle,
and the locations are listed in Table 1. The numerical results of the time histories at the pressure sensors
P1, P3, P5 and P7 are compared with the experimental data. The locations of these four sensors are
illustrated in Figure 10. The sensors P1 and P3 are on the side facing to the initial volume of water.
The blue solid line represents the plane y = 0 m as a reference.
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Figure 9. Case setup of the 3D dam-break problem with an obstacle: Problem No.2.

Figure 10. Locations of the pressure sensors P1, P3, P5 and P7.

The density and viscosity of the water are ρw = 998.2 kg/m3, νw = 1 × 10−6 m2/s, and
ρa = 1 kg/m3, νa = 1.48× 10−5 m2/s for the air. The gravitational acceleration is g = 9.81 m/s2.
Similar to the previous section, a set of three background meshes with a refinement ratio of

√
2 in

each direction is used. The number of cells of the background meshes are 64× 32× 32, 90× 46× 46
and 128× 64× 64, respectively. All the sides of the tank are represented by the body-fitted boundary
conditions as no-slip walls, and the obstacle is modeled with an IB. The time step size is adjusted
automatically to keep the global Courant number less than 0.75 and the Courant number near the free
surface less than 0.3.

Table 1. Locations of the pressure sensors in the 3D dam-break problem No.2.

Sensor Location

P1 (0.83,−0.026, 0.025)
P2 (0.83,−0.026, 0.063)
P3 (0.83,−0.026, 0.099)
P4 (0.83,−0.026, 0.136)
P5 (0.806, 0.026, 0.16)
P6 (0.769, 0.026, 0.16)
P7 (0.733, 0.026, 0.16)
P8 (0.696, 0.026, 0.16)

Figure 11 shows the time histories of the water elevation at the locations x = 2.66 m and 1.0 m,
which are inside the initial position of the dam and in front of the obstacle, respectively. During the
initial part of the time series the comparison between the experiment and simulation is very close.
At about t = 2.5 s and 1.8 s, the water reflected from the wall of the tank at x = 0 m arrives to the two
probes, and causes a random unsteady and high frequency response. For the second part of the time
histories, there are differences between the numerical results and the experimental data with regard to
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the high frequency part, yet the mean elevation is in very close agreement. For example in the probe at
x = 1 m, the front of the water arrives at around t = 4.5 s, and the numerical results accurately capture
the instant when the air–water interface starts to rise in accordance with the experiments.

(a) x = 2.66 m (b) x = 1 m

Figure 11. Time histories of the water elevation at different locations.

As shown in Figure 12, the time histories of the local pressure at four different sensors are
selected to compare with the experimental data. The present numerical simulation captures the
behavior when the water first impacts the sensors, especially for the ones on the front side of obstacle.
The peak pressure at P1 matches with the experimental data very well, while the peak pressure at P3 is
underpredicted by the fine mesh. At around 2 < t < 4 s, the pressure at both sensors drops gradually.

(a) P1 (b) P3

Figure 12. Cont.
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(c) P5 (d) P7

Figure 12. Time histories of the pressure at different locations.

For the numerical results at P5 and P7, which are on the top surface of the obstacle, the numerical
results show a large oscillation. It is because when the water flow over the obstacle, the large vertical
velocity of the water causes the water to detach from the surface of the obstacle. Subsequently, air
is entrapped when the water starts to impact on the top the obstacle. However, the effect of air
compressibility is not considered in the current solver. Figure 13 shows the profile of the air–water
interface around the pressure sensor P7 at around t = 1.1 s. It can be clearly seen that the air is
entrapped and a bubble is formed around P7. As a result, the large oscillation appears in the numerical
results at P5 and P7 in the limitations of the current numerical framework.

Overall, the results demonstrate that the present IBM solver can handle the problems of wave
interaction with solid walls with respect to the evolution of the air–water interface, velocity of the
water, force on the obstacle and the local pressure due to the impact.

Figure 13. Air entrapped on the top of the obstacle in the dam-break problem No.2.

3.2. Water Exit of a Circular Cylinder

In this section, the IBM is used to simulate a moving surface in the air–water two-phase flow to
further demonstrate its capability. The test case is the water exit of a 2D circular cylinder with constant
vertical velocity. The physical experiments were conducted by Miao [27]. The results of the numerical
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simulations carried out by Zhu et al. [28] are also presented as a reference. The numerical simulations
use the Constrained Interpolation Profile (CIP) method.

The computational domain and the initial position of the cylinder with the radius of R = 0.0625 m
are shown in Figure 14. The domain is 1 m wide and the water depth is h = 0.5 m. At the beginning of
the simulation, the cylinder accelerates upwards from rest and gradually reaches the final constant
velocity v. Eventually, the cylinder exits the water until the water fully dropped from the surface the
cylinder. In the present simulations, the cylinder is represented using the IB, and a uniform structured
mesh is used as the background mesh with the cell size ∆x = ∆y = 0.04R.

Figure 14. Computational domain and the initial condition of the water exit of a circular cylinder.

In the experiment, the dimensionless time vt/R = 0 corresponds to the time instant when the top
of the cylinder touches the air–water interface. vt/R = −5.5 and −5 correspond to the time instants
where the cylinder starts to move and reaches the final velocity v, respectively. The prescribed motion
of the cylinder is described by the position of the center of the cylinder with respect to time:

y(t) =

{
1
2 v(t− t0

π sin(πt
t0
)), t < t0

v(t− 1
2 t0), t ≥ t0

(17)

where t0 is the time of ramping up the velocity. It should be noted that in the simulations, t = 0 s
corresponds to the time instant when the cylinder starts to move.

Two numerical tests are carried out with different final velocity v as listed in Table 2.

Table 2. Parameters for the water exit tests.

Test Fr v( m/s) t0( s)

No.1 0.4627 0.5124 0.0610
No.2 0.6903 0.7644 0.0409

The time step size is automatically adjusted to keep the global Courant number less than 1.0 and
the Courant number near the free surface less than 0.3.

Figure 15 shows the time histories of the exit coefficient Ce for the two test cases. The time t = 0
of the present simulations is shifted to compare with the experimental data. The exit coefficient Ce is
defined as:

Ce =
F

ρv2R
(18)

where ρ is the density of water and F is the vertical hydrodynamic force on the cylinder.
For both test cases, the present numerical results show good agreement with the experimental

data. In general, Ce shows similar trend for both exit speeds. Before the dimensionless time vt/R < −5,
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the cylinder starts to accelerate from its initial position. It results in a large negative peak in force,
which is captured by all the three results for both cases. For the time range−5 < vt/R < 0, the cylinder
moves upward with a constant speed. As the cylinder approaches the surface of the water, Ce gradually
decreases with a nearly constant rate of change. In addition, the vertical speed of the cylinder does not
have much influence on the rate of decrease of Ce. When the cylinder starts to exit from the water at
vt/R = 0, the hydrodynamic force drops significantly, and eventually becomes zero when the cylinder
is drained after it completely leaves the water.

(a) Test No.1 (b) Test No.2

Figure 15. Time histories of the exit coefficient Ce for the water exit tests.

Figure 16 shows the comparison of the profile of the air–water interface with the numerical
solutions of Zhu et al. [28] at different time instants. The present results show overall good agreement
with the other numerical results with respect to the hydrodynamic force on the cylinder with different
exit velocities. When the cylinder exits the water after vt/R = 0, the present results capture the thin
layer of water on top of the cylinder. The present results also predict the deformation of the air–water
interface when the layer of water starts to fall down along the surface of the cylinder at vt/R > 1.

In summary, for both vertical speeds of the cylinder, the present IBM quantitatively captures the
unsteady behavior of the hydrodynamic force at different phases of the two water-exit tests. In addition,
the deformation of the air–water interface, especially due to the interaction between the IB surface and
the air–water interface is accurately modeled.

Figure 16. Comparison of the profiles of the air–water interface at different time instants in Case No.1.
Top row:zhu et al. [28]; bottom row: Present.
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3.3. KCS Model Advancing with a Rotating Rudder

To fully demonstrate the flexibility and the accuracy the present IBM. A combined usage of IB
surfaces and unstructured body-fitted approach is considered in this section, which is a KCS ship
model advancing with a rotating rudder. More specifically, the computational domain is drawn using
unstructured mesh with body-fitted boundary on the ship hull and the fixed rudder horn. The rotating
rudder blade is modeled using an IB surface.

In this simulation, the equations are written in a coordinate system that moves with the constant
velocity of the ship hull. In addition, the boundary layer flow is more well defined on the ship hull
than in the wake where the rudder operates, due the high Reynolds number. For such a case, using
an unstructured grid and body-fitted approach on the ship hull is more efficient than IBMs. If an IB
is used to represent the entire ship hull, it will require many more cells to achieve similar accuracy
since it requires resolution in the boundary layer cells in all directions. Whereas, if the body-fitted
approach is applied to the rotating rudder blade, a huge amount of time and effect is required to
properly design the mesh to achieve satisfying mesh quality near the tip of the blade, and in the gap
between the blade and the rudder horn. Additional attention is also required to design the mesh
topology such that the mesh quality is preserved due to the rotation of the blade. In comparison, using
an IB to represent the rotating rudder blade completely avoids mesh motion and also saves the effort
of designing the mesh. A novel capability of our approach is to combine the benefits of unstructured
grid, body-fitted approach and an IBM Therefore, the present IBM, which can be used together with
body-fitted boundaries on unstructured grids, is more flexible and efficient than other IBMs, where all
boundaries are represented by IBs and structured background grids are used.

The ship model and the rudder are shown in Figure 17. in which, the propeller is not considered.
The main particulars of the model-scaled KCS and the rudder are listed in Tables 3 and 4, respectively.

In the simulations, the ship model is fixed in the even-keel condition without considering the
vertical motions. Whereas the experimental ship model is free to sink and trim in the experiments.
The forward speed of the ship model is Vmodel = 1 m/s, corresponding to Fr = 0.216 and 19.9
knots in full scale. The Reynolds number is 1.72× 106. Four rudder angles are tested, which are
δ = −5◦,−10◦,−15.1◦ and −20.1◦, respectively.

Table 3. Main Particulars of the model-scaled KCS.

Main Particulars Symbol Value

Scale λ 105
Length between perpendiculars Lpp(m) 2.19

Length of waterline Lwl(m) 2.2143
Width Bwl(m) 0.3067
Depth D(m) 0.1810
Draft T(m) 0.1029

Displacement ∆ (m3) 0.0449
Wetted area without rudder S (m2) 0.8644

Longitudinal center of buoyancy (fwd+) LCB (%Lpp) –1.48
Vertical center of gravity KG (m) 0.118

Moment of inertia Kyy/Lpp 0.25

Table 4. Main Particulars of the model-scaled rudder.

Main Particulars Value

Scale 105
Type Semi-balanced horn rudder

Area of rudder (m2) 0.0104
Lateral Area of rudder (m2) 0.0049
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Figure 17. Geometry of the KCS ship model and the rudder.

Since the ship hull and the rudder horn are fixed, it is reasonable to use body-fitted mesh to
represent these parts to efficiently resolve the boundary layer. The moving part of the rudder is
modeled using an IB to take full advantage of the IBM for modeling moving geometries. The numerical
solutions are compared with the experimental data [29] to demonstrate the capability of the present
IBM. Since the accuracy is limited by not only the IBM, but also the underlying solver and discretization
schemes, the RANS simulations with the rudder at fixed deflection angles are also carried out using
body-fitted meshes as a comparison. Three sets of simulations are carried out to systematically show
the capability of the solver as listed in Table 5. In the first set, a mesh convergence study is conducted
by using body-fitted meshes to find an appropriate resolution of the background mesh to balance the
accuracy and computational cost. In the second set, the simulations of the rudder at fixed deflection
angles are carried out on body-fitted meshes. The body-fitted results represent the baseline of the
accuracy of the solver that the present IBM combined with. The simulation with the hybrid method
at the maximum deflection angle δ = −20.1◦ is also carried out to validate the IBM. In addition,
a simulation without the IB wall function is carried out using the hybrid method at the maximum
deflection angle to examine the effect of the IB wall function. In the third set, the simulation of a
rotating rudder is conducted with the hybrid method. The results demonstrate that, with the help of
the present IBM, the single-run procedure can be applied to this problem to predict the hydrodynamic
forces accurately and efficiently.

Table 5. Summary of the simulations of a ship model advancing with a deflected rudder.

Case No. Mesh Refinement Mesh Type Symmetric δ(◦) WF RR

1 C BF Y 0 Y N
2 M BF Y 0 Y N
3 F BF Y 0 Y N

4 M BF N –5 Y N
5 M BF N –10 Y N
6 M BF N –15.1 Y N
7 M BF N –20.1 Y N
8 M Hybrid N –20.1 Y N
9 M Hybrid N –20.1 N N

10 M Hybrid N - Y Y

C: coarse, M: medium, F: fine. BF: body-fitted. Symmetric: symmetric boundary condition on the centerline.
WF: wall function. RR: rotating rudder.
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3.3.1. Mesh Convergence Study

In this section, the simulation with the rudder at δ = 0◦ is carried out. A set of three body-fitted
meshes with a constant refinement ratio is used to test the spatial convergence and to find an
appropriate background mesh for the following simulations by the IBM. The meshes are generated
by snappyHexMesh, an automatic mesh generation utility provided by OpenFOAM. The meshes
are systematically refined by refining the background meshes with a refinement ratio of

√
2 in each

direction. In addition, the mesh is further refined near the ship hull, the rudder and the air–water
interface. Only half of the ship is used in the simulations with a symmetric boundary condition applied
on the centerline to accelerate the simulation. The total number of cells of each mesh is listed in Table 6.

Table 6. Number of cells for the mesh convergence study.

Mesh Name Coarse Medium Fine

Number of cells 518,640 1,220,948 2,382,616

Figure 18 shows the computational domain and the local mesh refinement around the ship.
The dimensions of the computational domain are 4Lpp × Lpp × 1.5Lpp. The boundary conditions are
summarized in Table 7, where the bottom and the far field of the domain are both included in the
inlet boundary.

Figure 18. Computational domain and the local mesh refinement.

Table 7. Summary of the boundary conditions for the mesh convergence study.

Boundary Names α U prgh

Inlet waveAlpha waveVelocity zeroGradient
Outlet zeroGradient zeroGradient fixedValue

Top inletOutlet pressureInletOutletVelocity totalPressure
Centerline symmetryPlane symmetryPlane symmetryPlane

Hull and rudder zeroGradient movingWallVelocity fixedFluxPressure

Boundary Names ν̃ νt

Inlet fixedValue 5.871×10−6 fixedValue 1.27×10−6

Outlet zeroGradient zeroGradient
Top zeroGradient calculated

Centerline symmetryPlane symmetryPlane
Hull and rudder fixedValue 0 nutUSpaldingWallFuntion
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The viscous pressure drag coefficient Cp, the frictional drag coefficient Cv, and the total drag
coefficient CT are defined as:

Cp =
Fp

1
2 ρU2LT

Cv =
Fv

1
2 ρU2LT

CT =
FT

1
2 ρU2LT

(19)

where Fp, Fv and FT are the viscous pressure drag, frictional drag and the total drag on the ship hull and
the rudder. Table 8 shows the mesh convergence results of the drag coefficients on different meshes.
The total drag coefficient CT shows that the numerical solutions converge with satisfying agreement.

Table 8. Results of the drag coefficients in the mesh convergence study.

Mesh Name Cp Cv CT Exp [29] Error

Coarse 0.00272 0.01682 0.01954 0.0178 9.8%
Medium 0.00237 0.01686 0.01924 0.0178 8.1%

Fine 0.002244 0.01696 0.01921 0.0178 7.9%

Figure 19 shows the profile of the air–water interface on the ship hull extracted with the volume
fraction α = 0.5. It can be seen that the medium and fine meshes agree closely with each other, while
the coarse mesh misses the short wave near the bow. In the following sections, the medium mesh is
used for all the simulations considering a balance of accuracy and efficiency.

Figure 19. Free-surface profile on the ship hull with α = 0.5.

3.3.2. Simulations with the Rudder at Fixed Deflection Angles

The accuracy of the IBM solver relies on not only the additional operations introduced by the
IBM, but also the underlying RANS solver and numerical discretization schemes as discussed in the
previous chapters. In this section, the simulations with the rudder at fixed deflection angles using
pure body-fitted meshes are carried out. Therefore, the accuracy of the underlying RANS solver and
numerical schemes can be evaluated. As a comparison, the case with the rudder at the maximum
deflection angle δ = −20.1◦ is also simulated using the IBM with a fixed IB. Comparisons of the
surge coefficient X′, sway coefficient Y′ and the normal force coefficient FN′ of the rudder with the
experimental data are made to validate the solver. The coefficients are defined in Equation (20) as:

X′ =
X

1
2 ρU2LT

Y′ =
Fv

1
2 ρU2LT

FN′ =
FN

1
2 ρU2LT

(20)

where X and Y are the surge and sway forces on the ship including the rudder, respectively. FN is the
force on the moving part of the rudder in the direction normal to the rudder mid plane.

Since the ship hull with the deflected rudder is not symmetric, the medium mesh used in the
previous section is mirrored with respect to its centerline. The total number of cells used by both the
body-fitted mesh and the IBM is listed in Table 9.
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Table 9. Total number of cells for the simulations of the rudder at fixed deflection angles.

Mesh Name Body-Fitted Hybrid

Number of cells 2,441,378 2,499,112

Figures 20–22 show the results of the force coefficients X′, Y′ and FN′, respectively. In the figures,
“BF” represents the results of cases No. 4–7 in Table 5. It should be noted that in the experiments tests
were carried out at δ = ±5◦,±10◦,±15.1◦ and ±20.1◦. The numerical results generated for positive
deflection angles, but are reflected accordingly with respect to the y axis to compare with the full range
of experimental data.

Figure 20. Surge force coefficient X′ predicted at the fixed deflection angles.

Inspection of the experimental data highlights some of the challenges in measuring and predicting
rudder forces at model scale. At this model scale Reynolds number, fully turbulent flow may be
difficult to maintain along the length of the hull, and the flow patterns in the stern and on the rudder
are very sensitive to any asymmetry in the model geometry and setup in the tank. For example,
without a propeller, it is expected that a positive and negative rudder angle of the same degree
would produce the same drag, whereas this is not exactly the case in the experiments. Likewise,
the sway force should pass through zero as the rudder is in its zero position, and again there is a slight
positive sway force in the experiments. Figure 20 shows that when δ > −15◦, the total drag is well
predicted by OpenFOAM. However, when δ ≤ −15◦ the numerical results overpredict the drag. It is
because when the deflection angle is large, the flow massively separates from the surface of rudder.
The Spalart–Allmaras turbulence model used in the current simulation is not fully capable of capturing
the massive flow separation on the rudder. In addition, the wall function that is used in the IBM is
based on the near-wall velocity profile in an attached turbulent flow, which does not hold true when
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the deflection angle is large. Compared between the results of Cases No.8 and No.9, it shows that the
usage of the wall function does not have notable impact on the total drag. It may because that the
rudder is in the region of the wake flow, where the boundary layer effect is not as significant as on the
ship hull.

Figure 21. Sway force coefficient Y′ predicted at the fixed deflection angles.

Figure 21 shows that the numerical prediction of the sway force matches well with the
experimental data at all deflection angles. The sway force increases consistently with the increase of the
deflection angle. It makes sense since the dominant contribution of the sway force comes from the lift
force on the rudder, and the lift force increases with the increase of the deflection angle. The prediction
of the IBM at the maximum rudder angle is less than the results on the body-fitted mesh, while both
results fall into the uncertainty region of the experimental data. In addition, the IB wall function used
in the IBM has no notable influence on the sway force.

Figure 22 shows the force on the moving part of the rudder in the direction normal to the rudder
mid plane. Again, the numerical predictions match well at all deflection angles. The results at
the maximum deflection angle obtained by the body-fitted mesh and the IBM agree well with each
other, which again validates the accuracy of the IBM. The result without using the IB wall function
underpredicts the normal force on the rudder. In the circumstance of simulating turbulent flows at
high Reynolds numbers, it is almost unavoidable for the IBM to have similar near-wall resolution as the
body-fitted mesh if the total number of cells is similar. Although due to the fact that the rudder is in the
wake flow, the boundary layer effect is not as significant as on the ship hull. Using the IB wall function
still improves the overall accuracy, especially when it only slightly increases the computational time.
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Figure 22. Normal force coefficient of the rudder FN′ predicted at the fixed deflection angles.

Finally, Figures 23 and 24 show the velocity and dynamic pressure at z = −0.065 m when
δ = −20.1◦, respectively. The velocity field shows the flow separation happens at this deflection angle,
which confirms the discussion about the forces on the rudder in the previous paragraphs. For both the
velocity and the pressure, the results of the IBM match closely with the body-fitted results.

(a) Body-fitted mesh (b) IB mesh

Figure 23. Comparison of the velocity at z = −0.065 m when δ = −20.1◦.

(a) Body-fitted mesh (b) IB mesh

Figure 24. Comparison of the dynamic pressure at z = −0.065 m for δ = −20.1◦.

4. Conclusions

In this paper, we extended our work of single-phase IBM for RANS simulations of fixed and
moving objects in air–water two-phase turbulent flows. The VoF method with a compression term
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was used to simulate the air–water interface. Compared with the simulations of single-phase flows,
the momentum equation for two-phase flows has the gradient of density term because of buoyancy.
Due to the large ratio of density between air and water, a correct density distribution near the IB
surface is necessary to represent the homogeneous Neumann wall condition of density on body-fitted
boundaries. This is satisfied indirectly by setting the homogeneous Neumann boundary condition
of the volume fraction α, and it corresponds to a neutral contact angle boundary condition θ = π/2.
In the present work, the volume fraction α is extended into the solid domain by a field extension
operation. The process involves interpolation of α one layer a time into the solid domain using the
inverse square distance method. For turbulence modeling, the same methodology in our previous
work is adopted, i.e., the Spalart–Allmaras turbulence model with an IB wall function.

A series of test cases are presented to evaluate the accuracy of the IBM. The cases consider both
fixed and moving IB. Various aspects are carefully investigated, including the deformation of the
air–water interface, the flow fields and the forces on the IB surfaces. Comparisons between the present
results and other resourses demonstrate that the proposed IBM is capable of simulating the interaction
between the air–water interface and the solid boundaries. Finally, we investigate the simulation of
a KCS ship model advancing with a rotating rudder. The accuracy and flexibility of the IBM is fully
demonstrated via the combined usage of the IB surfaces with unstructured body-fitted approach.
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