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Abstract: The path planning of a ship requires much information, and one of the essential factors
is predicting the ocean environment. Ocean weather can generally be gathered from forecasting
information provided by weather centers. However, these data are difficult to obtain when satellite
communication is unstable during voyages, or there are cases where forecast data for a more
extended period of time are needed for the operation of the fleet. Therefore, shipping companies
and classification societies have attempted to establish a model for predicting the ocean weather on
its own. Historically, ocean weather has been primarily predicted using empirical and numerical
methods. Recently, a method for predicting ocean weather using deep learning has emerged. In this
study, a deep learning model combining a denoising AutoEncoder and convolutional long short-term
memory (LSTM) was proposed to predict the ocean weather worldwide. The denoising AutoEncoder
is effective for removing noise that hinders the training of deep learning models. While the LSTM
could be used as time-series inputs at specific points, the convolutional LSTM can use time-series
images as inputs, making them suitable for predicting a wide range of ocean weather. Herein, using
the proposed model, eight parameters of ocean weather were predicted. The proposed learning
model predicted ocean weather after one week, showing an average error of 6.7%. The results show
the applicability of the proposed learning model for predicting ocean weather.

Keywords: ocean weather; deep learning; denoising AutoEncoder; convolutional LSTM

1. Introduction

1.1. Research Background

Ocean weather is one of the key considerations for robust ship path planning. The resistance
of a ship can be divided into the still water resistance exerted by principal dimensions and the hull
form of the ship, and an additional resistance exerted by ocean weather. The still water resistance is
estimated during the design of the ship, and the additional resistance changes each time, depending on
the ocean weather. Therefore, ocean weather data are used to calculate the additional resistance.
For calculating the additional resistance, ISO15016:2015 [1], which is a guideline for the calculation
of ship power, can be used. According to this guideline, wave height, wave direction, wave period,
wind speed, wind direction, current speed, current velocity, and sea temperature are required to
calculate roughly the required power of the ship in the sea. By adding this resistance to the still water
resistance, the total resistance of the ship can be calculated. Using the total resistance, the required
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power and fuel consumption of the ship can be estimated. To accomplish this, shipping companies and
classification societies obtain ocean weather from weather centers. Currently, with the introduction
of new technologies, path planning is being implemented in various ways for shipping companies.
Predicting ocean weather is also essential in this process. Under normal circumstances, forecast data
from weather centers can be acquired via satellite communication. However, in situations where
data transmission and reception are not stable, the weather should be predicted without outside
assistance. In addition, typical weather centers provide approximately 6 weeks of forecast data.
Satellite communications are rarely lost for periods longer than 6 weeks. However, if there is no
reception of the forecast data for the ocean weather, even for a short period of time, we have no choice
but to rely on predicted information which is received before the loss of connection. In addition,
typical forecasting information has a characteristic that the longer the forecast period, the greater
the error. Therefore, in order to get even slightly more accurate data, it is necessary to have its own
prediction model. On the other hand, control centers also need to pay regular fees to receive real-time
forecasting information from weather centers. Therefore, we can reduce these costs by building our
own prediction model. Figure 1 shows the necessity of self-predicting ocean weather.
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Figure 1. The necessity of self-prediction of the weather forecast.

In general, “empirical and numerical methods are used for weather forecasting” [2]. Therefore,
each weather center has a prediction model that uses its own analysis and weather data stored for a long
time. However, because shipping companies and classification societies do not have such data and
long-term experience with weather forecasting, there are limitations in developing prediction models
in the same way as weather centers. Therefore, “as a requirement for any forecast, an appropriately
representative model should be developed, calibrated, and validated” [3]. To accomplish this,
various methods have been proposed, including data-driven approaches. One of the methods that
has been recently highlighted is deep learning. Deep learning is an effective approach to grasp the
causality of data in situations with insufficient experience and to derive meaningful prediction models.
Therefore, in this study, deep learning was used to predict ocean weather.

1.2. Related Works

Several studies have predicted ocean weather using machine learning. Jain et al. [4] predicted
wave height using three methods: an artificial neural network (ANN), genetic programming (GP),
and model tree (MT). For the ANN, a deep feed-forward network (DEN), which is a comparatively
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simple configuration, was used. The three methods were used to predict wave height in the Arabian
Sea from 3 to 72 h. As a result of predicting the significant wave height after three days using three
models, the mean absolute error (MAE) was found to be from 0.19 to 0.40 m. The study demonstrated
that GP and MT are more competitive methods than ANN, as the time-series characteristics of the
weather data are not considered using the basic DFN. Mahjoobi et al. [5] studied about three parameters
of weather data: significant wave height, peak spectral period, and mean wave direction. They used
three models to predict weather data in Lake Ontario: an ANN, an adaptive-network based fuzzy
inference system (ANFIS), and a fuzzy inference system (FIS). As a result of performing predictions for
three ocean weather, the mean squared error (MSE) for the significant wave height was 0.14 to 0.18 m,
the peak spectral period was 0.74 to 1.16 s, and the mean wave direction was 2543° to 2893°, respectively.
They concluded that the ANFIS model was marginally more accurate than the other models. However,
they did not consider the time-series characteristics of the weather data. That is, they did not consider
the characteristics of ocean weather that change over time. Similarly, Gunaydin [2] studied a method
for hindcasting wave height in the Atlantic Ocean using various configurations of an ANN model.
He found that the wind speed had the strongest effect on wave height prediction. As a result of
predicting the wave height, the MSE was 0.051 to 0.072 m. As mentioned previously, this result has
a similar problem regarding the weather data. Zhang et al. [6] predicted sea surface temperature (SST)
using a long short-term memory (LSTM) model for coastal seas near China from 1 day to 1 month.
They considered the characteristics of the periodicity of the data using the LSTM model. The result was
compared with two classical regression methods: support vector regression and multi-layer perceptron
regression. As a result of predicting the SST after three days by the proposed method, the root mean
square error (RSME) was 0.18°. The study showed that the LSTM was adequate for predicting the
periodic data. James et al. [3] predicted the significant wave height, wave period, and wave direction
using multi-layer perceptron (MLP) and support vector machine (SVM) [7] models for Monterey Bay
in the USA. As a result of predicting three ocean weather events with their model, the RMSE for the
significant wave height was 0.41 to 1.62 m, the wave period was 0.45 to 4.08 s, and the wave direction
was 12° to 104°, respectively. They compared the results of the two numerical models, and the machine
learning showed similar accuracy to a physics-based numerical model.

As mentioned previously, various deep learning methods have been used to predict ocean weather.
However, most of them do not consider the periodicity, and only limited information and areas were
predicted. To provide ocean weather for shipping companies and classification societies, a general
prediction model capable of predicting eight parameters of ocean weather worldwide is required.
Therefore, in this study, an image-based prediction model was proposed. Table 1 summarizes and
compares related works and this study.

Table 1. Summary of related works and this study.

temperature

Stud Input Data Estimation Estimation Estimation Estimation
y P Objectives Models Area Time Range
Jain et al. [4] Wave height Wave height ~ ANN, GP, MT Arabian Sea 3to72h
Wind direction, .
. ’ Wave height
.. wind speed, . ’ ANN, ANFIS, . .
Mabhjoobi et al. [5] duration, fetch Penqd, FIS Lake Ontario Present point
direction
length
Wind speed, sea ANN (7
Gunaydin [2] level pressure, air Wave height models) Atlantic Ocean  Present point
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Table 1. Cont.

Stud Input Data Estimation Estimation Estimation Estimation
y P Objectives Models Area Time Range
Coastal seas ldayto1l
Zhang et al. [6] SST SST LSTM near China month
Wave height,
period, direction, Wave height,
James et al. [3] wind speed, period MLP, SVM Monterey Bay N/A
current speed
SST, wave

SST, wave height,
wave period, wave
direction, wind

height, wave
period, wave
direction, wind

U cosrg;ijlent) speed Convolutional
This study wind speed © c.omponent), LSTM. N Worldwide 6h to one
wind speed Denoising week

(V component),
current speed
(U component),
current speed
(V component)

(V component), AutoEncoder
current speed

(U component),

current speed

(V component)

2. Theoretical Background

In this study, we propose a prediction model that can provide ocean weather for ship path planning.
The model was developed using deep learning, particularly machine learning. The model predicts
eight parameters of ocean weather (i.e., SST, wave height, wave period, wave direction, wind speed
(U component), wind speed (V component), current speed (U component), and current speed
(V component)) worldwide. For this, an advanced model should be used, rather than a general deep
neural network. Therefore, a denoising AutoEncoder and convolutional LSTM (simply, ConvLSTM) that
can train 2D time-series data were used. To predict ocean weather for the entire world, the ConvLSTM,
which can set the input data as a large area, was used. In addition, if the ConvLSTM is used,
each parameter of ocean weather can be used as a channel image; hence, it is possible to predict
the ocean weather by considering the causality for each other. Secondly, if the training of models is
performed using limited training data, the delayed prediction problems may occur. It can be solved
by using AutoEncoder. Therefore, we proposed a prediction model that combines the AutoEncoder
and the ConvLSTM. This section introduces the process from essential deep neural networks to the
convolutional LSTM and the AutoEncoder.

2.1. Conventional Long Short-Term Memory (LSTM)

The DEN, which is the basic model of deep learning, consists of an input layer, hidden layers,
and an output layer. This configuration is useful for finding an output value based on input values.
However, it is not suitable for predicting data over the time series. Therefore, a recurrent neural
network (RNN) has been proposed to train data with time series [8]. An RNN is a type of deep
learning model in which a hidden node is connected to a directed edge to form a cyclic structure
called a directed cycle. It is a model suitable for predicting sequentially arranged data, such as voice
and text. In the RNN, the state of the previous time step is used in the next step, and the resulting
value is affected by the earlier state. Among various RNN models, we used the LSTM to avoid the
gradient vanishing. There are many examples of learning time-series data using the DFN, and the
structure is also very simple. However, ocean weather has a complex causality between time, space,
and parameters of oceanic weather. In addition, since it has periodicity over a long period of time,
it can be said that the LSTM is more suitable than the DEN to understand these characteristics. Many
deep learning methods have been developed to train time-series data. Among them, LSTM is the most
used to date [9]. Figure 2 shows the configuration of the LSTM and details of the cell state “A”.
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Figure 2. Configuration of long short-term memory (LSTM) and cell state “A”.

The cell state serves as a type of conveyor belt. Therefore, even if the state has elapsed for a long
time, the gradient of the input value can be propagated relatively well. The formula of LSTM cell state

“A” is shown in Equations (1)-(6).
@

ft = a(foxt + thht_1 + bf)
@)

®)

(4)
©)
(6)

it = o(Wyixt + Wyl + by)
ot = 0(Wxoxt + Wiohi—1 + bo)
gt = tanh(Wyex; + Wight-1 + bg)
= fiOc1+itOg
hy = o ©® tanh(cy)

In Equations (1)—(6), o is the sigmoid function, W is the weight for each layer (subscription is
expressed for input and output layers), x; is the input in time step t, b is the bias (subscription is
expressed for gates), and tanh is a hyperbolic tangent function. In Equations (5) and (6), () is the
Hadamard product operator [10]. The forget gate f; is a gate to forget past information. The value
obtained by taking the sigmoid after receiving h;_1 and x; is the value that the forget gate sends
out. The output range of the sigmoid function is from 0 to 1. If the value is 0, information from the
previous state is forgotten, and if it is 1, information from the previous state is completely remembered.

The input gate it@gt is a gate for storing current information. It takes /;_; and x; and applies the
sigmoid function. Then, the value that takes the hyperbolic tangent (tanh) function and Hadamard
product operation is sent from the input gate. Since the range of i is from 0 to 1 and the range of g; is

from —1 to 1, each represents the intensity and direction of storing current information.
Since the ocean weather has three causalities (i.e., causality with the ocean weather at the previous

time, causality between the parameters of ocean weather, and causality between spaces), three types of
causalities for a good prediction model should be considered. Using LSTM, time-series causality can
be solved. To solve the other two causalities, the ocean weather should be input at all points where
training is desired as vector x;. As the size of the area to be trained increases, the input data vector
becomes increasingly exponential. In addition, considering the matrix operation required for learning,
performing such a task is practically impossible. To address this problem, LSTM requires a spatial

element—that is, a method that can be used as 2D data input.
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2.2. Convolutional LSTM

To consider spatial causality in learning, 2D data (image) should be used as input. As described
previously, 2D data have a feature that even when the size is increased only slightly, the dimension of
the data is significantly increased during training, such as calculating the weight of models. Therefore,
a convolutional neural network (CNN) [11], one of the deep learning methods that is used to consider
the characteristics of images, can be employed in the LSTM learning model. The most common
technique involves a long-term recurrent convolutional (LRCN) network [10], where each 2D feature
vector is first extracted by the CNN and used as an input of the LSTM. The difference between the
LSTM and the LRCN networks is that the latter (LRCN) passes the input through a convolutional layer.
Then, the input data can be an image, that is, 2D data. However, when using 2D data from multiple
channels as input data, a 3D tensor is used as input, and feature vectors extracted through the CNN
also need to undergo the same process inside as the LSTM. Therefore, it is not suitable for training
long-range data, such as ocean weather. However, the ConvLSTM [12] uses an entirely different
approach. By performing the LSTM internal operation itself as a convolutional operation, the amount
of computation can be dramatically reduced. Figure 3 shows the internal cell state of the ConvLSTM.

Ciq H, 4
@@ .
tanh
A O,
N e Lo
Lo |[o ][tanh ] g |

Wfr—x

A =

Cell state (ConvLSTM)

Figure 3. Cell state configuration of the convolutional LSTM (ConvLSTM).

The modified key equations in the ConvLSTM can be expressed as Equations (7)-(12).

ft = o(Wxs* X + Wrp*Hi—1 + Wep © Croq + by) (7)
it = 0(Wxi* Xy + Wi * Hi_1 + We; © Cy—q + bpii) (8)
gt = tanh(Wxg * X + W * Hy—1 + by_g) 9)
Ci=fioC1+i0g: (10)

0r = 0(Wxo * Xt + Wrio * Hi_1 + Weo © Cr + by (11)
H; = o; @ tanh(Cy) (12)

Equations (1)-(6) and Equations (7)—(12) are quite similar when compared. However, there are
two crucial differences. First, in the ConvLSTM, the input gate i, forget gate f, output gate o, cell input
X, cell output C, and cell state H are all 3D tensors. This is different from the original LSTM, where all
elements were 1D vectors. Second, in the term where matrix multiplication was performed, all matrix
multiplications are replaced by convolution operations. This indicates that the number of weights
present in all W in each cell may be markedly less than in LSTM. This is the same as the effect when the
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fully connected layer is replaced by a convolutional layer; it can reduce the number of weights of the
model significantly and is suitable for effectively training a large amount of data. Therefore, in this
study, the ConvLSTM was used for the ocean weather, which is a very long-range and large scale.

2.3. Denoising AutoEncoder

In general, when training time-series data, a delay prediction problem [13] occurs. When the
data are insufficient, or the pattern of the data cannot be identified, it tends to bring values similar to
the current value. When the prediction model is overfitted on the input data, if we put an input at
a specific point in time, there is a problem of just shifting the data at that point in time. This is referred
to as a delayed prediction problem.

Figure 4 shows the delayed prediction results of SST. We trained a model to predict SST after
5 days using 60 days of data and applied it to three different ocean areas. For training of the prediction
model, data collected from the European Center for Medium-Range Weather Forecasts (ECMWEF) was
used, and a total of eight years of data was used for training. Among them, the initial six years were
used for learning, and two years were used as a test set. We performed the training using conventional
LSTM based on the data for a point in the region included in Figure 4. As shown in Figure 4, it can be
seen that the delayed prediction problem occurred clearly in all graphs. The same problem can also be
found in other studies [4,14]. The graphs show that the actual result and the predicted patterns are
very similar, although there is a slight difference. Further, it seems that the predicted result has a phase
shift with respect to the origin. The delay prediction problem is mostly caused by not being able to
understand the data patterns properly. Using all of the predictors required for prediction as input can
also be a way to solve the delayed prediction problem. However, as input is limited to eight parameters
of ocean weather, we have to find another way to remove noise to solve this problem. There are two
ways to solve this. The first is to gather sufficient training data to comprehend the data pattern. If the
data for ocean weather can be obtained infinitely, it is possible to make a satisfactory model through
a general DFN or LSTM. However, the data for ocean weather has limitations because it is based on the
data that can be accessed from the weather centers. Second is to remove the noise from the data so that
the pattern of the data is sufficiently revealed. The time-series data are generally composed of the trend
component, seasonal component, and remainder component. The trend component represents the
trend of data fluctuation, the seasonal component is the repeating pattern of data, and the remainder
component usually refers to noise. These data can be decomposed into the three components described
above using the seasonal and trend decomposition using loess (STL) decomposition method [15].
Figure 5 shows the decomposition of SST from 2014 to 2017 into the three components described
previously. In the remainder component, the ocean weather has a large amount of noise. This noise
hinders the learning of seasonal and trend components. Therefore, this study proposes a method
to effectively remove the noise. When using the STL decomposition method, two main parameters
are used. Two are the trend-cycle window and the seasonal window. In particular, as there is no
default value for the seasonal window, the results of the STL decomposition method can be different
depending on how much the seasonal window is set. In this study, one year was divided into four
seasons, and a seasonal window was set considering this.

In the case of ocean weather, one option is available-that is, to gather data provided by weather
centers. In this situation, measurement and estimation errors exist depending on the method used
by weather centers in acquiring data. Therefore, for training efficiency, noise should be removed.
To remove noise from the ocean weather, weather centers have utilized various methods, such as
a principal component analysis (PCA)-based noise filter [16] for a long time. However, noise still exists
in the ocean weather. The residual component is one of the essential factors when predicting regionally
correct values. In addition, due to the nature of ocean weather, this residual component always
exists. However, when training a data-driven model, this residual component prevents the proper
understanding of the remaining components (seasonal component and trend component). Moreover,
it causes a significant reduction in training efficiency. Of course, it is best to develop a learning model
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that can acquire very long periods of data and predict residual components. However, there are
limitations in gathering data infinitely. Therefore, we should reduce the noise of the data as one option.
Analyzing all the data and removing noise is practically impossible. In this study, the ocean weather is
converted into a 2D image and used to train the ConvLSTM model. Therefore, an AutoEncoder that

can extract important features and remove noise from 2D data was used.

Figure 4. The delayed prediction problem of sea surface temperature (SST).
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Figure 5. The decomposed components of SST from 2014 to 2017.
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AutoEncoder is a type of ANN used to train efficient data codings in an unsupervised manner [17].
AutoEncoder simply copies input to output, as shown in Figure 6. The process seems simple, but it can
have a variety of effects on data by constraining the network in different ways. Among them, Figure 6
shows a type of denoising AutoEncoder that reduces the number of neurons in the hidden layer to
be smaller than that of the input layer, encodes the data to take only those characteristics, and then
decodes it to remove noise.

Encoder Decoder

Figure 6. Configuration of AutoEncoder for denoising.



J. Mar. Sci. Eng. 2020, 8, 805 10 of 24

In this study, the training efficiency of the learning model for ocean weather was maximized by
passing data through the denoising AutoEncoder prior to training the data with the ConvLSTM and
removing the noise. Of course, if we use the denoising AutoEncoder to remove the residual component
(smoothing), the accuracy can be lowered. However, it is considered appropriate to use this method to
solve the delay prediction problem using limited training data.

3. Deep Learning Model for the Prediction of Ocean Weather

As explained in Sections 2.2 and 2.3, a deep learning model developed using the ConvLSTM and
the denoising AutoEncoder is efficient in predicting eight parameters of ocean weather worldwide.
This section describes the model used in this study to predict the actual ocean weather and the input
data required to train the model.

3.1. Configuration of the Deep Learning Model

Figure 7 shows the configuration of the deep learning model proposed in this study. In this study,
channel image data (set of 2D images of ocean weather) were used as input data. The noise of the
input data was removed using the denoising AutoEncoder, and the input data from which noise was
removed were used as input data for the ConvLSTM. The denoising AutoEncoder proposed in this
study was trained as a single model in combination with the ConvLSTM. In the denoising AutoEncoder,
as shown in Figure 7, two layers for encoding and two layers for decoding were used. In the two layers
for encoding, the rectified linear unit (ReLU) was used as an activation function to prevent gradient
vanishing, and in the two layers for decoding, the ReLU and the sigmoid were used as activation
functions, respectively. At the end of the denoising AutoEncoder, the sigmoid was used to prevent the
omission of data. At the end of the deep learning model, the sigmoid was also used as the activation
function for the final output. In general, the ReLU, which is widely used as an activation function,
treats all negative numbers as 0. If we use it as an activation function in the output layer, data loss
may occur. However, the sigmoid function can output the value according to the scale of the input
data; hence, the output data can be preserved as the scale of the input data. In addition, the adaptive
moment estimation (ADAM) [18], which is well-known for its good performance, was used for weight
optimization in all models. The input data comprised eight parameters of ocean weather, which were
composed of several channels. When using data with multiple channels, there is an advantage that
the causality between data composed of channels is considered. However, in the case of data that are
not strongly correlated, learning models may produce undesirable effects. Therefore, in Section 3.3,
the data that are useful to configure as a channel and use as a learning model are analyzed.

Convolutlonal LSTM

A

|
|
|
i
*| AconvisTm > Aconvistm 1 AConvLSTM S
]
|
|
]

Ocean weather (channel image)

Figure 7. Configuration of the deep learning model for ocean weather.
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As shown in Figure 7, the channel image is first refined into the ConvLSTM through a denoising
AutoEncoder. The denoising process is performed through the encoding layer of the second stage and
the decoding layer of the second stage. When encoding and decoding are performed in the layer, a batch
normalization step is additionally inserted to perform efficient denoising and prevent information
escape. Batch normalization is a technique for improving the speed, performance, and stability of deep
learning [19]. If the encoded image is used as an input to the ConvLSTM, the input data are entered in
a compressed form; hence, the output trained through the ConvLSTM is not the same as the format of
the input data. Therefore, the decoded image was used to make the input and output data the same.
The denoised data are composed of data with the same dimensions as the initial input data and used
as input for the ConvLSTM again. In this study, various ConvLSTM models were tested for ocean
weather prediction, and their efficiency was analyzed. Details are discussed in Section 4.

3.2. Acquisition of Ocean Weather

In this study, eight parameters of publicly available ocean weather were accessed and used.
Among them, six parameters (i.e., mean wave height (MWH), mean wave direction (MWD),
mean wave period (MWP), wind speed (U component) (WU), wind speed (V component) (WV),
and sea surface temperature (SST)) were accessed through the ECMWE. ERA-interim was used among
the various models. ERA40 does not include data after 2002, and ERAS5 includes more detailed
information. However, it is not easy to download data for an extended period of time. Therefore,
ERA-interim, which includes relatively accurate information over a long period of time, was used
in this study. ERA-interim includes 6 h of data at intervals of 0.75 degrees in longitude and latitude.
The data for 20 years (from October 1999 to September 2018) worldwide were gathered from ECMWE.
Since information about current data is not included in ECMWE, the other two parameters of data
(current speed (U component, simply, CU) and current speed (V component, simply, CV)) were accessed
through the hybrid isopycnal-sigma—pressure coordinate ocean model (HYCOM). HYCOM provides
three kinds of datasets: GLBy0.08, GLBu0.08, and GLBv0.08. GLBy0.08 does not include data before
2014, and GLBu0.08 includes data from 80S to 80N in latitude. In this study, we used the GLBv0.08
dataset, which includes long-term data and covers a large area of the 80S to 90N in latitude. GLBv0.08
includes 3 h of data at intervals of 0.08 degrees in longitude and latitude. The data accessed through
HYCOM span a range of 4 years and 4 months (from July 2014 to November 2018) worldwide. For the
route planning of a ship, it is necessary to forecast ocean weather from one week to a month. The captain
does not change the route in real time during the voyage so that the route is re-determined every 12 h
to a day. Therefore, 12 h of data is valid as a unit of time. In a spatial resolution, the denser intervals in
longitude and latitude, the better. Generally, any resolution is linearly interpolated from nearby values.
In this study, the eight parameters of ocean weather are composed of intervals of 6 h in time and of
1.5 degrees in longitude and latitude.

The raw data received from the ECMWF and HYCOM data servers are in .nc file format.
The original data accessed in this study have very dense spacing. Therefore, we removed redundant
data and used only the data necessary to train models, and the data were converted to .h5 file
format using the h5py package. Through this process, the data to be used for the proposed model
were generated.

3.3. Correlation Analysis of Ocean Weather

Eight parameters of ocean weather used in this study (SST, MWH, MWD, MWP, WU, WV, CU,
and CV) not only have their own characteristics but also have correlated characteristics. For this reason,
it is challenging to analyze and predict them. For example, in the case of SST, seasonal and trend
components are very distinctive. On the other hand, MWD does not have a particular periodicity, and its
prediction is difficult because the surrounding ocean weather profoundly influences it. As described
in Section 2.3 and Section 3.1, we have to consider the spatial and correlation of each parameter of
ocean weather. When considering the correlation of all eight parameters of data among each other, the
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input data may be composed of eight channels. However, training between data that lacks correlation
decreases training efficiency. Therefore, in this study, we attempted to develop a learning model
considering the correlation between each parameter of data.

Pearson’s correlation coefficient (PCC) [20], which is traditionally used in statistics, was used to
analyze the correlations among the eight parameters of data. PCC is a numerical value quantifying
the correlation between data X and Y. It has a value between +1 and —1, with a positive correlation for
a positive value, a negative correlation for a negative value, and no correlation for a zero value. Generally,
it is judged that there is a meaningful linear correlation with values of +0.5 or more or —0.5 or less.

Table 2 shows the absolute values of PCC for the eight parameters of data. For the calculation
of PCC, one year of weather data in 2017 was used. The PCC results indicate that the wind speed
(WU) and wave height (MWH) have a relatively high correlation compared to others, and the wave
height and wave period (MWP) have a relatively high correlation. However, meaningful correlations,
among other data, are difficult to find. The PCC can only analyze linear correlations. Therefore,
considering that there will be a nonlinear correlation, we should review models that consider six ocean
weather events at once. Among the input data obtained from ECMWE, SST, which does not correlate
with other data, is employed as a single learning model, and the remaining five parameters of data are
utilized as a single learning model. Finally, the two current-related data obtained from HYCOM are
also used as a single learning model.

Table 2. Pearson’s correlation coefficient for ocean weather.

Pearson’s

Correlation SST WU WV MWH MWD MWP CU CvV

Coefficient
SST 1.00 0.24 0.19 0.36 0.32 0.39 0.31 0.32
WU - 1.00 0.03 0.70 0.11 0.07 0.13 0.07
WV - - 1.00 0.04 0.15 0.02 0.03 0.12
MWH - - - 1.00 0.02 0.68 0.32 0.11
MWD - - - - 1.00 0.25 0.27 0.13
MWP - - - - - 1.00 0.29 0.20
CU - - - - - - 1.00 0.31
CcvV - - - - - - - 1.00

4. Applications

In this study, we attempted to determine the optimal learning model by testing various models.
To find the optimal learning model for the eight parameters of data, we varied the input data
period, forecasting point of the output data, and parameters of data to be tied to one learning model,
and analyzed the results. The learning model was trained using a deep learning computer with
the specifications indicated in Table 3. One computer was equipped with both CPU and GPU for
the training.

Table 3. Computing specification for training deep learning model.

Category Specification
CPU Intel Xeon E5-2640 v4 (2.4 Ghz) x 2 EA
GPU GeForce RTX 2080 8 GB x 4 EA
RAM DDR4 32GB PC4-19200 (2400 MHz) x 4 EA = 128 GB

With the computer of the specifications in Table 3, it takes about 3 s to predict the ocean weather
for a time step. Therefore, it is judged that there will be no difficulty in predicting the ocean weather
even with low-spec servers, and it is suitable to be used onboard.
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4.1. Hyperparameters of the Learning Model

Hyperparameters for the ConvLSTM include the epoch number, batch size, and loss function
type. Eight parameters of ocean weather were trained through a model combining the denoising
AutoEncoder and the ConvLSTM. In the case of six parameters of ocean weather obtained from
ECMWE, since it is a total of 20 years of data, the initial 16 years of data were used as a training
set, and the remaining 4 years of data were used as a validation set (2 years) and a test set (2 years).
In addition, in the case of two parameters of ocean weather obtained from HYCOM, since it is a total of
4 years and 4 months of data, the initial 4 years of data were used as a training set and the remaining
4 months of data were used as a validation set (2 months) and a test set (2 months). The batch size and
number of epochs were tracked for the training set, validation set, and test set. The epoch number was
determined using the convergence step from the line where no overfitting occurred. As a result of
training progress, most models typically converge between 40 and 50 epochs. In this study, MAE was
used in all cases for accuracy comparison. Since RMSE tends to overestimate outliers in the overall
data, MAE is more appropriate for this study using time-series data for the long term. In the case of
average error, the whole data are firstly calculated as MAE by comparing them with the original data
and averaged. In addition, the land included in each area was also excluded from the error calculation.
Due to the nature of the ConvLSTM, an image was used as an input, and the value of the land was
calculated as 0. If the error of the land is included in the error, the total error will be smaller. In this
study, we grasped this, calculated MAE for all areas and time series, and averaged it.

4.2. Effect of the Denoising AutoEncoder

The model described in Table 4 of Section 4.3 was trained using a model combining a denoising
AutoEncoder and the ConvLSTM, as mentioned in Section 3.1. However, before that, we attempted
to confirm the effect of the denoising AutoEncoder. For this, SST, which has a strong periodicity,
was used. The results obtained using only the ConvLSTM model and those obtained using the
denoising AutoEncoder and ConvLSTM models proposed in this study were compared.

Table 4. Learning model configurations.

Cases Input Data Range Output Data Channel Configuration
(Look Back Steps) (Look Forward Steps)

Case 1 60 days (240) After 6 h (1) 1 channel (SST)
6 channels (SST, MWH,
Case 2 22.5 days (90) After 6h (1) MWP, MWD, WU, WV)
6 channels (SST, MWH,
Case 3 22.5 days (90) After 1day (4) MWP, MWD, WU, WV)
6 channels (SST, MWH,
Case 4 22.5 days (90) After 2 days (8) MWP, MWD, WU, WV)
6 channels (SST, MWH,
Case 5 22.5 days (90) After 3 days (12) MWP, MWD, WU, WV)
6 channels (SST, MWH,
Case 6 22.5 days (90) After 7 days (28) MWP, MWD, WU, WV)
e 6 channels (SST, MWH,
Case 7 22.5 days (90) After 3 days (1-shifting) MWP, MWD, WU, WV)
6 channels (SST, MWH,
Case 8 90 days (90) After 7 days (7) MWP, MWD, WU, WV)

1 channel (SST), 5
Case 9 84 days (84) After 7 days (7) channels (MWH, MWP,
MWD, WU, WV)

Prior to comparing the two models, to determine whether the delay prediction result occurs
even when training SST, the look forward value was changed under the same conditions by using
a single channel of SST as input data, and the accuracy was compared. Figure 8 shows the results
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of SST predictions for the Yellow Sea in South Korea for approximately a year in 2018. It shows the
difference in prediction results according to the look forward value. When the look forward value
was set to 4, 1 day later, a little difference was found between the observed value and the predicted
value. However, evidently, the predicted value is similar to the shape when the observed value graph
is slightly shifted to the right. When the look forward value is increased to 20 (5 days) and 40 (10 days),
the delay prediction result can be clearly confirmed. Notably, the look forward value increases, and the
delay prediction problem of the prediction result becomes more pronounced. This occurs because,
as explained in Section 2.3, the learning model does not accurately grasp the data pattern because
of the noise. As the look forward value increases, the farther the value to be predicted is from the
current time when the prediction is made so that the current value can be scaled as it is and inferred
as a prediction result. To address this problem, the noise should be removed by adding a denoising
AutoEncoder to the ConvLSTM model.

Look forward = 4 (1 day)

285 ——— Observed

84 Predicted

2017-11-01 2017-12-01 2018-02-01 2018-04-01 2018-06-01 2018-08-01 2018-10-30
Date Time

Look forward = 20 (5 days)

Observed

Predicted

2017-11-01 2017-12-01 2018-02-01 2018-04-01 2018-06-01 2018-08-01 2018-10-30
Date Time

Look forward = 40 (10 days)

— Observed

284 Predicted

2017-11-01 2017-12-01 2018-02-01 2018-04-01 2018-06-01 2018-08-01 2018-10-30
Date Time

Figure 8. Results of predicting SST using the ConvLSTM according to look forward steps.

To analyze the effect of using the denoising AutoEncoder, SST of South Korea’s Yellow Sea was
selected as a prediction target, as in the previous example. A total of 8 years of data were used,
and a training set of 6 years and a test set of 2 years were used. The data were only used for this
section and are different from the data mentioned in Section 4.1. Figure 9 shows the result of SST
prediction. The upper graph is the prediction result using only the ConvLSTM, and the lower graph is
the prediction result using the denoising AutoEncoder as the input of the ConvLSTM model. In the
test case, models predicting a month (30 days) from the present were trained and compared whether
the delayed problem is clearly visible or not. The result shows the last 2 years (from November
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2016 to October 2018) of the predicted range, which was not used for training. The two data used in
Figures 8 and 9 are the same. However, in Figure 9, the graph was drawn using 2 years of data to show
the effect of the denoising AutoEncoder clearly.

ConvLSTM

Observed

Predicted

2814
280 {
2791

2016.11.01 2017.05.01 2017.11.01 2018.05.01 2018.10.30
Date Time

SST [K]

Denoising autoencoder + ConvLSTM

28| | — Observed

Predicted

SST [K]

2016.11.01 2017.05.01 2017.11.01 2018.05.01 2018.10.30
Date Time

Figure 9. Results of predicting SST using the ConvLSTM and denoising AutoEncoder.

In Figure 9, the result using only the ConvLSTM shows a significantly delayed predicted result,
as in Figure 8. The average error of the test set is 0.998 K, and when converted at a ratio according
to the maximum and minimum value, it has an error of 10.97%. For the model using an additional
denoising AutoEncoder, the delay prediction is clearly resolved. The average error of the test set is
0.474 K, showing an error of 5.26%. This is a 53% reduction in error compared with learning using
the ConvLSTM alone, and as mentioned, the delay prediction problem has been solved. Therefore,
in this study, a model combining a denoising AutoEncoder and the ConvLSTM was used to predict
ocean weather.

4.3. Description of the Learning Models for Worldwide Data

The disadvantage of not using the ConvLSTM described in Section 2.2 is that the characteristics of
space and correlation between each parameter of ocean weather cannot be considered for learning.
In addition, when using a conventional LSTM, an LSTM learning model must be created for each point
where the prediction of ocean weather is desired. Figure 10 predicts MWH using the ConvLSTM.
A total of 8 years of data were used for learning, 6 years were used as a training set, 1 year was used as
a validation set, and the last 1 year was used as a test set. A model for predicting MWH after 7 days
was trained using a total of 30 days of data. The batch size was 128, the number of hidden layers was 1,
and the total number of nodes in the hidden layer was 32. The study was performed for 40 epochs
until the model converged sufficiently. The lower graph in Figure 10 is an enlarged prediction result of
the test set. The MAE of the test set was predicted relatively accurately at 0.78 m (4.8% error).
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Figure 10. Results of predicting mean wave height (MWH) using conventional LSTM.
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The conventional models of deep learning, such as DFN and LSTM, use data for specific locations
to learn. Therefore, it is challenging to compare the ConvLSTM to DFN or LSTM directly. A large
number of learning models are required to target worldwide data. Although the total number of
models differs depending on how the resolution of the training model is set, 64,800 (=180 X 360) models
are needed worldwide to build a learning model for the ocean weather with resolutions of 1 degree in
longitude and latitude. The recent increase in computing power has accelerated learning speed, but it
takes considerable time to train 64,800 models. Therefore, in this study, the world was divided into 12
areas, and the proposed learning model was applied. Figure 11 shows the 12 areas used in this study.
Dividing the latitude from —67.5° to 67.5° into three equal parts and the longitude from —180° to 180°

into four equal parts divided the world into 12 equal pieces.

Yellow Sea in South Korea

90°
(o ; 67.5°
45° Area 1 Area 2 Area 3 : Area 4
22.5
Area 5 Area 6 Area 7 Area 8
-22.5
Area 9 Area 10 Area 11 Area 12
-67.5
-180° -90° 0° 90° 180°

Figure 11. The divided 12 areas for learning models.

The structure of the learning model is important.

However, setting the input, output,
and hyperparameters of the learning model has a significant influence also in the learning efficiency.
Therefore, this study attempted to analyze its effects through case studies of various input and output
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changes. A total of 240, 90, and 84 input data (look back) were used. Since the time interval of the
ocean weather is 6 h, if there are 240 input data, this indicates that 60 days of data are used as input.
In the case of ocean weather, trends over time should be considered. Therefore, if possible, it is good
to have a long look back period. However, lengthening the look back period infinitely is impossible
because there are limitations on the computation power of memory. In this manner, we used six hours
of data. Therefore, assuming 90 steps as a look back, and it means using 22.5 days of data as input.
However, when the interval of data is set to 1 day, a total of 90 days of data can be used as a look back.
The accuracy, according to the interval of the ocean weather, was also analyzed.

In the case of output data (look forward), it denotes at which point the ocean weather is predicted
through the look back data. In general, as the prediction time interval from the input data decreases,
the accuracy increases. For example, predicting 1 day after the present is more accurate than predicting
1 week later. In this study, the accuracy was analyzed by changing the look forward to 4, 8, 12, and
28 steps. The look forward is similar to the look back. If the data interval is 6 h, 4 steps means a day
later. Similarly, if the weather data are on a daily basis, 4 steps means 4 days later. In addition, in the
case of look forward, shifting prediction is possible.

The shifting prediction is a method of predicting a specific point and using the predicted data as
an input to predict the following continuously. For example, if the learning model is trained as a model
that predicts one step forward, it cannot predict after four steps. In this case, the result of predicting
the first step forward can be used as input again to predict the second step forward. By repeating
this process, we can predict 4 steps forward and even can predict 100 steps forward. Figure 12 shows
a comparison between normal prediction and shifting prediction. In the process of using deep learning
models, we confirmed various studies on shifting prediction. Rasp et al. [21] performed a similar
approach and named it “iterative prediction”. If the satellite communication is lost, we cannot get
nowcasting information. However, we can predict any days in the future from past data by generating
our own prediction model. In addition, using shifting forecasting allows for predicting the far future
as well; thus, we can make a long-term plan. In this study, the difference in accuracy between the two
methods was analyzed.

Normal prediction

L lookbackrange— 'ook~forward-range‘¢*\ /

lookbackrange— ¥
--------------------------------------------- ¥
o
e 7 I

Figure 12. Comparison between normal prediction and shifting prediction.

As explained earlier, it takes a lot of time and effort to train models by dividing the world into
12 areas. Therefore, it is necessary to find the appropriate number of input data to shorten the training
time and to achieve affordable prediction accuracy. The original data are in intervals of 6 h. However,
by adjusting it to an interval of one day, we compared the accuracy of making predictions using data
from a longer period as a look back. Finally, as explained in Section 3.3, we compared and analyzed
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whether it is accurate to predict eight parameters of data with a single model and to divide the model
through correlation analysis.

Table 4 shows the types of models trained in this study for comparison. Case 1 shows how much
look back range could be accepted for the performance of the computer used in this study. Cases 3,
4,5, 6, and 7 were compared to analyze the accuracy of the prediction model as the look forward
increased. When predicting the same time, Cases 6 and 8 were used to determine whether it is correct
to predict the time right or to make a shifting prediction. By comparing Cases 7 and 9, when predicting
the same time, it was confirmed whether the prediction accuracy is maintained even if the number of
data points for prediction is reduced. In Case 8, six channels (55T, MWH, MWP, MWD, WU, and WV)
constituted a single learning model. In Case 9, a total of two models was trained. One is a prediction
model that includes only one channel (SST), and the other is a prediction model that includes five
channels MWH, MWP, MWD, WU, and WV) to consider the correlation of each channel. The last two
cases were selected to see which one was more accurate.

For accurate verification, K fold cross-validation is generally used, and training is performed
commonly through a total of 10 fold cross-validation [22]. However, since the model of this study takes
about one week for training each model, it is difficult to perform all cross-validation at the laboratory
level. Due to this limitation, the cross-validation was not implemented here.

4.4. Case Studies and Discussion

All accuracy for case studies was measured using “Area 4” out of the 12 areas shown in Figure 11.
The training time for computing varies depending on the look back range and the channel, but on
average, it took approximately a week to train one model. Table 5 shows the accuracy of 11 cases.
Accuracy was covered for all areas, including land. Since the training was performed with the image
data, some data that are not on the land, such as SST or MWH, are assumed to be 0, and an image is
generated and used as input.

Table 5. Summary of estimation accuracy for all cases.

SST Error MWH MWP MWD WU Error WYV Error  Average Error
Cases o Error °
[°K] Error [m] Error [s] [m/s] [m/s] [%]
[deg]
1.84
Case 1 (9.3%) N/A N/A N/A N/A N/A 9.3
Case 2 2.84 0.09 0.25 11.21 1.21 1.19 31
(9.3%) (0.6%) (1.4%) (3.1%) (2.0%) (2.1%) ’
Case 3 3.31 0.13 0.32 19.43 1.80 1.84 41
(10.8%) (0.8%) (1.4%) (5.3%) (2.9%) (3.2%)
Case 4 2.69 0.18 0.40 28.34 2.28 2.24 46
(8.8%) (1.2%) (2.3%) (7.8%) (3.7%) (3.9%) ’
Case 5 3.68 0.22 0.48 33.76 2.46 2.38 56
(12.1%) (1.5%) (2.8%) (9.3%) (4.0%) (4.1%)
Case 6 3.16 0.18 0.42 32.15 2.33 2.24 51
(10.4%) (1.2%) (2.4%) (8.9%) (3.8%) (3.9%) ’
Case 7 7.03 0.28 0.95 66.12 3.41 3.46 10.0
(23.1%) (1.8%) (5.5%) (18.3%) (5.5%) (5.6%) ’
Case 8 411 0.17 0.44 32.66 2.05 1.99 56
(13.5%) (1.4%) (2.5%) (9.0%) (3.4%) (3.8%) ’
Case 9 3.47 0.44 0.75 28.27 3.06 3.17 51
(4.2%) (3.5%) (4.7%) (7.8%) (5.0%) (5.2%) ’

In general, as the look back range increases, so does the prediction accuracy. However, the longer
the look back range, the more memory allocation is required exponentially to train the models. If it is
assumed to train the model for one area, the input data becomes an image of ocean weather during
the look back range. Following the look back range, the number of images required for training
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increased significantly. In addition, if we use images of multiple channels, the number of images
required for training is multiplied by the number of channels. If a multi-channel image is used as
the input for the model using the lock back range of Case 1, training is impossible due to a memory
problem. That is, if training is performed with the computing specifications in Table 3, training will not
progress because of insufficient memory. Due to the limitation of computing power, it was determined
that one channel was the maximum look back range for 240 steps in this study. In the case of Case 1,
because training was performed with one channel of SST, there was not an insufficient memory issue.
However, when training is conducted through one channel, the causality between each type of data
cannot be considered. Therefore, to proceed with training in multiple channels, the look back range
was reduced from the maximum allowed by the memory.

Cases 3-7 set the look back range to 22.5 days (90 steps) and performed training using six channels
(SST, MWH, MWP, MWD, WU, and WV) of data. In Case 2, look forward was set to 6 h (1 step), and in
Cases 4, 5, 6, and 7, training was performed after 1 day (4 steps), 2 days (8 steps), 3 days (12 steps),
and 7 days (28 steps). When comparing the four cases, as the look forward increases, the prediction
error also increases. The average errors of Cases 3-7 are 3.1%, 4.6%, 4.6%, 5.6%, and 5.1%, respectively.
For accurate prediction, look forward should be small. However, the accuracy relatively remained over
a range of look forward. In a typical prediction model for the ocean weather, the longer the forecast
period, the higher the error, as shown in Figure 13. However, as the results presented in this study,
it can be seen that the error does not increase after a certain period. Unlike the general prediction model
based on physical phenomena, the deep learning-based prediction model presented in this study is
a data-driven prediction model. Therefore, even if the prediction period is lengthened, the error does
not increase indefinitely by considering the periodic and seasonal characteristics of the data at the
same time.
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Figure 13. RMSE of significant wave height for ten organizations [23].

When the same time was predicted in Cases 6 and 8, we determined whether the normal prediction
or the shifting prediction was more accurate. As shown in Figure 12, shifting prediction is a method
of predicting the next time point using the predicted data as input again and can easily predict the
far future, regardless of the size of the look forward. Therefore, in this study, the accuracy of the
two methods was compared through Cases 6 and 8. In Case 5, the look forward was set to 3 days
(12 steps), and in Case 7, the result was predicted after 3 days by shifting; the model trained to predict
after 6 h (1 step) was used. Cases 3 and 8 are the same learning model, but the error is much more
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significant when shifting prediction is performed. Case 5 showed an average error of 5.6%, but Case 7
showed a relatively high error of 10.0% because of the accumulation of errors during shifting. In Case 2,
the SST and MWD errors were relatively high compared with the other data types. Since the errors
accumulate and become more significant during shifting, in Case 7, SST and MWD are 23.1% and
18.3%, respectively, and the error was significantly increased compared with the other data types.
By comparing the results of Cases 6 and 8, it can be observed that when predicting a relatively far
future, it is more accurate to train the model as a normal prediction model than as a learning model for
shifting prediction.

When the data at the same time were predicted in Cases 8 and 9, the data intervals used in the
two models were different. Cases 8 and 9 used an interval of 1 day (originally, 4 steps). In this way,
even if the same look forward was used, there was an advantage that prediction could be performed
considering a longer period (longer look back range). Case 6 was a model that predicted 7 days later
(look forward was 28 steps) using 22.5 days of data (look back range was 90). In Case 8, the look back
range was also 90. However, because the interval of the data used for training was one, it was a model
that predicts 7 days later using data from 90 days. Case 6 had an average error of 5.1%. In Case 8,
the average error was 5.6%. When using the same look back range, it is more accurate to have a dense
data interval. However, the difference in the error was not as large as it was in other comparisons.

In Cases 8 and 9, two models were compared in terms of accuracy. One was a learning model that
consists of six channels of data in ECMWE, and the other one was a learning model where SST and five
other parameters of data were divided into two models, as described in Section 3.3. The error of Case 8
was 5.6%, and the error of Case 9 was similar to that of Case 6, with an error of 5.1%. By comparing
Cases 8 and 9, it was confirmed that it is more accurate to separate the model considering the causality.
Therefore, this study consists of three models for predicting ocean weather. One was a single model of
SST, and one was for the five remaining ECMWF data MWH, MWP, MWD, WU, and WV). The last
one was a model for HYCOM data (CU and CV).

Actually, it is hard to directly compare the accuracy of the model in this study with that of the
general prediction model provided by weather centers. To compare the accuracy between them,
the ocean weather data up to now should be obtained, and the proposed model should be generated
using those data. However, ECMWF and HYCOM provide only data from several months ago; hence,
it is difficult to obtain the data for generating the model at a specific point in time. In addition, even for
predictions at a specific point in the past, they only provide actual data from the past, not data of how
they predicted the weather at that time (i.e., past forecast data).

However, for indirect comparison, three parameters of verification data for the ocean weather
(significant wave height (SWH), peak wave period (PWP), and wind speed (WS)) provided by the
Weather Meteorological Organization (WMO) and ECMWF (2020) were additionally investigated.
According to the verification data, it can be seen that the error rate accumulates and increases as the
forecast period increases in the prediction models of weather centers. A total of ten organizations
surveyed by the WMO compared the result of error between predicted ocean weather after three days
and the actual value. The error of SWH is about 0.3-0.5 m, PWP is about 2.0-2.6 s, and WS is about
2.7-3.4 m/s, respectively. Figure 13 shows the RMSE of SWH presented in WMO and ECMWF [23].
In this study, the results of predicting the ocean weather after three days using the proposed model
were presented in Section 4.4 (Case 5). As a result of predicting the ocean weather after three days
using the proposed method in Case 5, the error was 0.22 m for MWH, 0.48 s for MWD, 2.46 m/s for WU,
and 2.24 m/s for WV, respectively. It can be seen that it shows a similar error rate presented by WMO
and ECMWF (2020). Therefore, if there is no experience to make a numerical prediction model for the
ocean weather, the proposed method is expected to be helpful.

4.5. Prediction Results of Worldwide Ocean Weather

We proposed a learning model for predicting ocean weather using the ConvLSTM model and
denoising AutoEncoder. In addition, through the case studies in Section 4.4, the accuracy of the
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learning models according to various look back and look forward ranges was compared and analyzed.
Based on the comparison, the model used in Case 9 was applied to training the models worldwide.
As described in Section 3.2, the eight parameters of data used in this study consist of data that have 6-h
intervals and spatial intervals of 0.75° in longitude and latitude. If the 0.75° interval data are used
for one region shown in Figure 11, an image size of 120 X 30 pixels should be applied. This induced
practical difficulty in training because of the specifications of Table 3 in terms of memory. Therefore,
data were organized at intervals of 1.5° in longitude and latitude. Finally, training was performed
using an image of 60 x 30 pixels per area.

In addition, as described in Section 4.4, three models per area in the 12 areas were used for
prediction, and 36 prediction models were used to predict the ocean weather worldwide. In the case of
look back, 84 days of data (12 weeks) was used, and a model for predicting after 7 days was constructed.
Table 6 shows the prediction accuracy for the eight parameters of ocean weather in the 12 areas.

Table 6. Summary of the prediction accuracy for all areas.

SST MWH MWP MWD WU WV CU CvV Average

Areas Error Error Error Error Error Error Error Error Error
[°K] [m] [s] [deg] [m/s] [m/s] [m/s] [m/s]

Area 1 2.81 0.82 1.15 57.20 4.04 4.64 0.12 0.12 6.8%
(7.8%) (5.1%) (6.4%) (15.9%) (5.5%) (5.9%) (4.0%) (3.7%)

Area 2 2.05 0.74 1.10 72.77 6.01 4.49 0.12 0.11 6.2%
(5.2%) (4.4%) (6.4%) (20.2%) (4.0%) (4.3%) (2.5%) (2.3%)

Area 3 3.74 0.46 0.88 71.84 3.56 3.76 0.09 0.09 71%
(9.7%) (3.7%) (5.3%) (20.0%) (5.7%) (6.4%) (3.0%) (3.0%)

Area 4 3.47 0.74 1.07 77.08 20.18 4.56 0.15 0.15 7 50,

(9.9%) (4.6%) (6.1%) (21.4%) (7.9%) (3.6%) (3.5%) (3.1%) ’

Area 5 3.70 0.36 1.13 52.25 2.03 2.22 0.13 0.12 6.2%
(9.8%) (4.6%) (6.8%) (14.5%) (4.1%) (3.6%) (2.9%) (3.2%)

Area 6 3.40 0.82 1.84 72.42 3.33 3.03 0.14 0.13 79%
(9.9%) (5.5%) (11.0%) (20.1%) (4.9%) (4.9%) (3.7%) (3.5%)

Area 7 1.63 0.58 1.42 39.11 3.54 3.75 0.15 0.14 6.2%
(4.6%) (6.2%) (8.4%) (10.9%) (7.3%) (6.5%) (3.0%) (3.0%)

Area 8 1.08 0.34 0.82 29.29 2.21 2.00 0.13 0.12 41%
(3.0%) (3.1%) (4.8%) (8.1%) (4.2%) (3.2%) (3.0%) (3.1%)

Area 9 1.34 0.85 1.17 43.32 4.80 5.00 0.12 0.12 6.6%
(4.0%) (6.0%) (7.0%) (12.0%) (8.0%) (7.8%) (4.1%) (4.2%)

Area 10 2.38 1.09 1.76 77.47 5.47 5.21 0.13 0.13 9.79%
(8.9%) (11.6%) (10.7%) (21.5%) (10.3%) (9.1%) (2.9%) (2.9%)

Area 11 2.92 0.93 1.36 37.68 5.00 7.96 0.15 0.15 71%
(9.2%) (6.2%) (8.0%) (10.5%) (7.6%) (9.9%) (3.0%) (2.6%)

Area 12 1.07 0.81 1.10 31.40 4.52 471 0.13 0.13 549
(3.1%) (5.4%) (6.5%) (8.7%) (6.9%) (6.3%) (2.9%) (3.1%)

Average 2.47 0.71 1.23 55.15 5.39 4.28 0.13 0.13 6.7%

error  (7.1%)  (55%)  (7.3%)  (153%)  (64%)  (6.0%)  (32%)  (3.2%)

In Table 6, the area with the lowest error is shown in blue, and the area with the highest error
is shown in red, for each parameter of ocean weather. In addition, the area with the lowest average
error was marked with blue shade, and the area with the highest error was marked with a red shade.
The average error for the eight parameters of data worldwide was 6.7%, and the results were quite
different in each area, ranging from 4.1% to 9.7%. When comparing the error rates for each area, it can
be seen that Areas 1, 3, 4, and 6 have higher average errors than the other areas. This is because it
is challenging to consider spatial influences in learning because the land is included in these areas.
However, in Areas 10 and 11, the error rate is significantly higher than in other areas, even though
these areas contain little land. This is because, despite the fact that the area includes a large ocean area,
the ocean weather varied so much that the learning model could not grasp the pattern correctly.
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By analyzing the error rate for each type of data, the error rate of the current is significantly lower
than that of the other types. In this study, the HYCOM data were used for training the CU and CV,
and the data range was relatively short (4.4 years data) compared with the ECMWF data. However,
the error rate was low compared with the other types of data. It was expected to be easy for the
learning model to grasp the pattern because the current is relatively small, and there is little change
compared with the other data. Conversely, in the case of MWD, the error rate was significantly higher
than that of other data, which may have occurred because the fluctuation range is very severe and
there is no periodicity relative to the other types of data.

5. Conclusions and Future Works

As explained in Section 1, there is a demand for shipping companies and classification societies to
make a solution for predicting ocean weather on their own, which is currently only provided through
weather centers. However, they were inexperienced in building a long-term, data-driven numerical
model. Therefore, this study proposed a data-driven learning model for solving the lack of experience.
In this study, we proposed a deep learning model that combines a denoising AutoEncoder and the
ConvLSTM to predict ocean weather. With the ConvLSTM, we can train a model that predicts ocean
weather over a wide range of regions by taking advantage of 2D data. That is, we can train the
model over a wide area at once and consider the causality between points in the area. In addition,
using data with noise removed by the denoising AutoEncoder as input, the problem of delay prediction,
which frequently occurs when training time-series data, was solved. The method proposed in this
study can be regarded as an initial study for the solutions to be provided for shipping companies
or classification societies. In the case of the method of the ocean weather forecasting to be used in
real solutions, the higher the accuracy, the better. However, currently, we are developing under the
judgment that it is available if it has an error rate of around 5%.

Through a variety of case studies, first, a model capable of training on the computer used in
this study was selected. Second, analyzing the results of the learning model when changing the look
back range, it was confirmed that as the look back range increased, the results were more accurate.
It was expected that the prediction accuracy would decrease as the look forward increased. However,
as a result of the prediction, it was confirmed that there was an exponential relationship, and the
average error value converged to a value between 5 and 5.5. In addition, the results seemed to have
an exponential relationship with the look forward value and the accuracy of the model, and it will be
identified through further research. When comparing the predictions of the normal prediction and
the shifting predictions, it was confirmed that the model that predicts a specific time point at once
was more accurate than the shifting model when predicting the far future. It was confirmed that the
accuracy was similar when the intervals of input data were varied to use the longer periodicity as input.
Finally, it was determined that it is more accurate to build a model by dividing the model according to
causality, rather than predicting all data as a single model.

In this study, the world was divided into 12 areas to construct the worldwide learning model,
and three learning models were trained for each area. The model proposed in this study was found to
have satisfactory accuracy, with an average error of 6.7%. Although this study is in an early stage and
the accuracy is not yet excellent enough to be commercially available, it has confirmed the possibility
of applying the data-driven method to predict ocean weather worldwide. The goal of this study is to
develop further and expand the proposed method to provide a more accurate and reliable forecast
service for ocean weather.

When using the learning model, it was found that there is still some room for improvement.
In order to obtain the ocean weather at the beginning of the study, it was confirmed that NOAA,
ECMWE, and HYCOM provided the ocean weather. Among them, ECMWEF and HYCOM were
accessed and used in this study. In the future, we will search for various providers and upgrade the
input data to be used. As mentioned in Section 4.4, because of the lack of memory, the look back range
was selected as 12 weeks. In the future, we intend to build more accurate models by increasing the
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look back range using a computer with better performance. In addition, currently, the land existed in
2D images was used as input data. In this case, for data types such as SST and MWH], if the value is
not on the land, it was assigned a value of 0. In the ConvLSTM, which considers spatial relationships,
this can adversely affect accuracy. Therefore, there is an additional need for a method to manage
the influence of land on the input data in the future. Ocean weather has significant features for each
region. Therefore, in order to build good learning models, it is necessary to divide it into areas with
similar characteristics, such as the North Sea, the Atlantic Ocean, and the Pacific Ocean. Probably
considering these characteristics, it is expected that we can build models that are superior to the error
rate suggested in this study. In addition, we plan to carry out a sensitivity test for shifting prediction
and to verify the proposed model with the climatology. Therefore, we plan to improve the models by
reflecting the point of view in the future.
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