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Abstract: In the case of DC power distribution-based variable speed engine synchronous generators,
if the output reference voltage is kept constant regardless of the generator engine operating speed,
it may cause damage to the internal device and windings of the generator due to over-flux or
over-excitation. The purpose of this study is to adjust the generator reference voltage according to
the engine speed change in the DC distribution system with the variable speed engine synchronous
generator. A method of controlling the generator reference voltage according to the speed was applied
by adjusting the value of the variable resistance input to the external terminal of the automatic voltage
regulator using a neural network controller. The learning data of the neural network was measured
through an experiment, and the input pattern was set as the rotational speed of the generator engine,
and the output pattern was set as the input current of the potentiometer. Using the measured
input/output pattern of the neural network, the error backpropagation learning algorithm was applied
to derive the optimum connection weight to be applied to the controller. For the test, the variable
speed operation range of the generator engine was set to 1100–1800 rpm, and the input current
value of the potentiometer according to the speed increase or decrease within the operation range
and the output of the voltage output from the actual generator were checked. As a result of neural
network control, it was possible to confirm the result that the input current value of the potentiometer
accurately reached the target value 4–20 mA at the point where the initial speed change occurred.
It was confirmed that the reference voltage was also normally output in the target range of 250–440 V.

Keywords: DC distribution system; variable speed synchronous generator engine; reference voltage
control; neural network controller

1. Introduction

1.1. Background

The emission of air pollutants from maritime vessels has been gradually increasing over time.
According to the most recent statistics, as released annually by the National Institute of Environmental
Research in South Korea, sulfur oxide discharged from maritime vessels accounts for 11.3% of the
total air pollutants, whereas nitrogen oxide accounts for 13.0%, and fine particulate matter account for
7.0%. These pollutants are at a considerably larger emission scale than that from power generation
facilities, manufacturing plants, and automobiles, which are recognized as a general source of air
pollutant emissions [1,2]. In addition, according to the “Fourth IMO Greenhouse Gas Study 2020”
conducted by the International Maritime Organization (IMO), the greenhouse gases generated from
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vessels from 2012 to 2018 accounted for an average of 2.5% of the total greenhouse gases generated
from all industries [3].

To suppress the emissions from maritime vessels, the IMO, in its 70th session, established the
“Prevention of Air Pollution from Ships” agreement in the form of an annex to the International
Convention for the Prevention of Pollution from Ships, 1997 (MARPOL 73/78) and the Marine
Environment Protection Committee (MEPC), to limit the sulfur content in fuel oil used for ship
navigation to 0.5%. In the 72nd session, the MEPC adopted a strategy to achieve the greenhouse gas
reduction target [4,5]. To promote the development and distribution of eco-friendly vessels, the South
Korean government implemented the “Act on the Promotion of Development and Distribution of
Environmentally Friendly Ships”, which establishes and promotes comprehensive countermeasures
and policies, with effect from 1 January 2020 [6].

1.2. Current Issue

Given the more stringent regulations as discussed in Section 1.1, the construction of “eco-friendly”
electric propulsion ships is expected to gain momentum, as shown in Figure 1a,b. Figure 1a explains
the increase in contracts for eco-friendly ships compared to global ship contracts, and Figure 1b shows
the expected results for the construction of electric ships in the future [7–9].
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Market Research Report, 2019).

Most electric propulsion ships in operation are based on AC distribution systems. With the AC
distribution system, the power quality of the entire ship may deteriorate due to a decrease in the stability
of the automatic voltage regulator of the synchronous generator upon the occurrence of sudden load
variations [10,11]. The most fundamental method for enhancing the stability of the generator in an AC
distribution system is to improve the performance of proportional–integral–derivative (PID) controller
of the automatic voltage regulator system [12–17]. There are various alternative methods such as the
self-tuning of the PID controller gain with respect to the load variations [18] and the application of the
stochastic fractal search algorithm to the PID controller, as is currently implemented [19]. Moreover,
the application of a fuzzy-based control system [20–23] and a multilayer neural network [24–27]
was proposed.

Given that the generator engine always operates at a fixed frequency irrespective of the actual
load on the ship, fuel consumption increases during low-load operation, thereby increasing the
emissions [28–30]. In addition, incidents were reported wherein failure to continuously synchronize
the voltage, frequency, and phase resulted in severe damage, i.e., electrical short circuits and grounding
accidents due to pulsating transient torques upon the operation of the generator in parallel [31–34].
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Therefore, as shown in Table 1, the implementation of DC distribution systems as an alternative to
AC distribution systems has recently increased, mainly in small and medium-sized electric propulsion
ships [35,36].

Table 1. References of the DC-gird system in ships.

Type Reference: Ship Name (Type, Delivery Year)

Generator main power

MS Viking Legend (Car ferry, 2009)
MS Viking Prestige (Car ferry, 2011)

MV Jaguar (General cargo ship, 2012)
Absis Dover (PSV, 2012)

Dina Star (PSV, 2013)
Edda Ferd (PSV, 2013)
BB Green (Ferry, 2015)

Damen Eco Liner (Tanker, 2015)
Edda Freya (OSV, 2016)

Harvey Stone (PSV, 2016)
Vision of the Fjords (Car ferry, 2016)

IJ Ferry 60, 61 (Passenger ferry, 2016–17)
NKT Victoria (Cable laying vessel, 2017)

Van Oords Nexus (Cable laying vessel, 2017)

Battery main power

FCS Alsterwasser (Ferry, 2012)
Ampere (Car ferry, 2014)

Tycho Brahe and Aurora of HH ferries (Car ferry, 2017)
Elektra (Ferry, 2017)

Guangzhou Shipyard International (Cargo ship, 2017)
E-ferry (Car ferry, 2018)

The DC distribution system of an electric propulsion ship refers to converting the output of an AC
generator to DC using a power converter installed at the rear end of the generator and then distributing
it. In parallel operation, unlike an AC distribution system in which the grid connection between
generators is complicated, parallel operation between grids is easily possible if only the DC voltage at
the bus end is kept the same. In addition, a variable speed system can be applied that can change the
speed of the generator engine according to the load of the ship due to the power conversion device
installed at the generator output stage.

The biggest difference between conventional AC and DC power distribution systems is that the
application of a variable speed synchronous generator engine in DC systems increases or decreases
the rotational speed of the generator engine according to the load, which allows for optimal fuel
consumption, thereby reducing fuel consumption and emissions during low-load operations [37,38].

However, as previously mentioned, when the speed changes with respect to the load,
the maintenance of a constant set reference voltage value of the automatic voltage regulator installed
in the synchronous generator may lead to the following problems.

First, in the excitation system of the synchronous generator, an excessive excitation current may
be supplied to the field winding, to maintain the previously-set reference voltage [39,40].

Second, when the speed is changed by the synchronous generator, an over-flux phenomenon
occurs due to changes in voltage and frequency; in severe cases, this may cause significant damage to
the internal devices and windings of the generator [41,42].

Most of the studies conducted on the DC distribution system were focused on the feasibility
of the DC distribution system in comparison with the AC distribution system [43–47]. Moreover,
several studies were conducted on the enhancement of energy efficiency due to minimization of fuel
consumption by the application of a variable-speed engine [28–30,37,38,48], the power conversion
devices that constitute the power system of a variable speed engine, and specialized components such
as propulsion motors and circuit breakers [49,50]. However, limited studies have been conducted on
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the protection of the internal devices and windings of a variable speed generator engine, which is a
critical component of a DC distribution system.

Therefore, the aim of this study was to describe the necessity for the reference voltage control of
the automatic voltage regulator with respect to the speed using the proposed neural network algorithm,
for the protection of the generator in variable-speed operation.

To adjust the reference voltage in the automatic voltage control device with respect to the engine
speed, a reference voltage control method was proposed for the adjustment of the value of the input
variable resistance to the external resistance terminal of the automatic voltage control device using
a neural network algorithm. The input and output data for the training of neural networks were
experimentally measured, and the connection weight derived through training was inputted into
the neural network controller for the configuration of the simulation and experimental apparatus.
The output results were obtained via this procedure.

2. Materials and Methods

2.1. Necessity of Reference Voltage Control of Variable Speed Generator Engine

Most power systems in the electric propulsion ships in operation are based on the AC distribution
system, and the AC distribution system operates the generator engine at a constant speed to maintain
a constant generator voltage and frequency, irrespective of the load. Therefore, the fuel consumption
and exhaust gas emission of the generator engine increase during low-load operation. In addition,
it is difficult to synchronize the voltage, frequency, and phase in the real-time parallel operation of
generators for the distribution of the ship load.

Moreover, the DC power distribution system of the variable speed synchronous generator
engine can operate within the range of optimal fuel consumption according to the fuel consumption
characteristics of the engine by varying the engine speed with respect to the load on the ship, as shown
in Figure 2. Therefore, the fuel consumption and emissions are reduced during low-load operations.
The ABB (ASEA Brown Boveri) Ltd., a global marine electric propulsion system engineering company,
confirmed that fuel consumption can be reduced by up to 27%, in addition to a decrease in emissions,
due to the operation of “Dina Star”, namely, the ship with the first onboard DC-grid system [51].
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During parallel operation, synchronization can be easily conducted by matching the value of the
voltage using a power converter installed at the rear of the generator. Figure 3 presents a comparison
of the power distribution systems in electric propulsion ships.
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However, in a DC distribution system with a variable speed synchronous generator engine,
the reference voltage of the generator output side should be adjusted with respect to the speed, for the
following reasons.

When the reference voltage of the generator is kept constant, a decrease in the rotational speed of
the variable speed synchronous generator engine due to sudden load fluctuations in a DC-grid ship
may cause over-flux or overexcitation, thus resulting in damage to the internal devices or windings of
the generator.

A change in over-flux refers to the excessive amount of magnetic flux generated by the rotor,
as expressed by an equation of the induced electromotive force (EMF), namely, Equation (1).

V = 4.44k fϕ (1)

Here, V is induced electromotive force (generator output voltage), k is winding factor, f is frequency,
and ϕ is magnetic flux.

The above equation can be converted into an equation for magnetic flux, as shown in Equation (2).

ϕ = 4.44 ×
V
f

(2)

From Equation (2), it can be seen that the magnitude of the magnetic flux is dependent on the
voltage and frequency, where a large magnetic flux refers to the case wherein the magnitude of the
generator output voltage increases and the frequency decreases due to a decrease in the rotational
speed of the generator. When the rotational speed of the variable speed synchronous generator engine
suddenly decreases, as in the above assumption, the magnitude of the magnetic flux supplied to the
generator increases in accordance with a decrease in frequency.
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Although the generator is equipped with an over-flux limiter to prevent internal damage by
overexcitation, given that the protection technique is based on the V/Hz ratio, the faulty state of the
interrupted relay cannot be easily determined upon the occurrence of a disturbance that increases in
proportion to the frequency and voltage, when the V/Hz ratio is kept constant [52].

When an excessive magnetic flux density is maintained in the internal iron core of the generator
for a long time-period, the conduction path of the magnetic flux is saturated, and the leakage magnetic
flux increases. The generated leakage magnetic flux then induces an eddy current in the non-stacked
portion of the iron core. In particular, when overheating occurs due to eddy currents in the bolts
and brackets that fix the iron core to the non-stacked part, thermal expansion occurs, and the force
required to fix the iron core in place is diminished, thus resulting in vibrations within the iron core.
Such vibrations within the iron core cause friction between the iron cores, thus damaging the insulating
material surrounding the iron core. Moreover, cases of severe damage to the internal structure of the
generator were reported, as shown in Figure 4 [31,53].
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When the rotational speed of the variable speed synchronous generator engine is reduced,
the exciter can supply an excessive excitation current to the generator rotor to maintain the generator
output voltage at the previously-set value. With an increase in the excitation current supplied to the
rotor windings, the heat generated from the windings increases, which may limit the stable operation
of the generator.

Therefore, when a variable speed synchronous generator engine is applied to a DC distribution
system, the reference voltage should be appropriately adjusted by the automatic voltage regulator of
the generator to stably maintain the output voltage by supplying the appropriate amount of magnetic
flux and excitation current to the generator windings. Moreover, it is necessary to control the generator
reference voltage to protect the windings and internal structure of the generator.

2.2. Methodology

The overall control process of the reference voltage with respect to speed using a neural network
is shown in Figure 5.

2.2.1. Step 1: Data Acquisition

To control the reference voltage with respect to changes in the speed of the variable speed generator
engine using a neural network algorithm, the input/output data for the training of the neural network
are required. In this study, the input pattern for the training of the neural network was set as the
rotational speed of the generator, and the output pattern was set as the input current value to the
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potentiometer. The synchronous power generation system installed on the testbed was used to measure
the actual value.
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The speed of the generator, which was considered as the input pattern, was measured using a
pickup sensor. The input current of the potentiometer, which was considered as the output pattern,
was set to match the reference voltage to be output by the automatic voltage regulator with respect to
the rotational speed of the generator, in advance. A potentiometer for the variable resistance output
was installed to adjust the variable resistance value at this time. Upon obtaining the current value
for the setting of the reference voltage with respect to the rotational speed, the potentiometer outputs
an appropriate variable resistance value and supplies it to the reference voltage control circuit of the
automatic voltage regulator.

To output the variable resistance value for the setting of the reference voltage matched to the
rotational speed of the generator, as shown in Figure 6, 4–20 mA was supplied to the input side of the
potentiometer using a power supply. The variable resistance value output from the potentiometer
is then inputted into the external resistance terminal of the automatic voltage regulator, and the
potentiometer input current value is adjusted to obtain the matched voltage by the operation of the
synchronous generator and measurement of the actual generator voltage.

2.2.2. Step 2: Training Configuration for Neural Network

The rotational speed of the synchronous generator and the input current value of the potentiometer
obtained through actual measurements, as detailed in Section 2.2.1, were sampled to obtain the optimal
connection weight through the training procedure, by the application of the backpropagation algorithm
in the neural network configured with MATLAB/Simulink as shown in Figure 7.
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Figure 7. Block diagram of the neural network developed in this study.

With MATLAB/Simulink, one hidden layer with five nodes is configured through repeated training
processes. A tan-sigmoid function was applied as the activation function of the hidden layer, and a
linear function was applied as the activation function of the output layer. The tan-sigmoid function
applied as the activation function can be expressed as Equation (3) [54,55].

f (x) =
2

1 + e−2x − 1 (3)

The input current of the potentiometer can be expressed as Equation (4) using the optimal
connection weight obtained through the backpropagation algorithm of the neural network.

Ĉs(k) =
[
F j

(
XiWi j + B j

)]
(4)

where Ĉs(k) denotes the input current of the potentiometer as the output data; i denotes the number of
nodes in the input layer; j denotes the number of nodes in the hidden layer; k denotes the number of
nodes in the output layer; F j denotes the active function of the hidden layer; Xi denotes the rotor speed
matrix of the generator; Wi j denotes the connection weight matrix between the input layer and the
hidden layer; W jk denotes the connection weight matrix between the input layer and the hidden layer;
B j denotes the hidden layer bias matrix; and Bk denotes the output layer bias matrix.

As shown in Figure 8, given that the connection strength could be determined as inappropriate due
to an error arising from the comparison of the input current value of the potentiometer (the output of
the neural network) with the target value, an algorithm was applied to minimize the error by re-training
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the neural network through the backpropagation of the generated error in the neural network. In the
process, when the optimum connection weight is obtained, the next step is started. If the optimum
connection weight is not obtained, the input/output data are re-checked for the re-training of the neural
network [56,57].
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Figure 9a presents the rotational speed data of the variable speed synchronous generator engine,
which was used as the input pattern of the neural network; Figure 9b presents the data of the
potentiometer input current, which was used as the output pattern. Figure 9c presents the output
result of the current output with respect to the input of the potentiometer, with the speed command of
the synchronous generator, which was the input value of the neural network. Moreover, the speed
changed in the order of 1800→1100→1800 rpm after the configuration of a neural network controller
input with the connection weight, thus validating the connection weight of the neural network derived
by the backpropagation algorithm.

The simulation results shown in Figure 9c reveal that the target potentiometer current value
was accurately outputted with respect to the changes in the speed of the variable speed synchronous
generator engine, thereby validating the connection weight value obtained through the training of the
neural network.

2.2.3. Step 3: Configuration of Experimental Apparatus

The optimal connection weight obtained by the neural network was inputted into the neural
network controller of the power management device. The input current value of the potentiometer
with respect to the speed of the variable speed synchronous generator engine is the output of the
control unit of the power management device. The reference voltage was then adjusted by inputting
the variable resistance value output from the potentiometer to the external resistance terminal of the
automatic voltage regulator, with respect to the input current.

The overall system configuration of the variable speed synchronous generator engine used in the
application of reference voltage control method using a neural network is shown in Figure 10.
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Figure 10. Overall system configuration of the variable speed synchronous generator engine in the
reference voltage control method using a neural network.

The experimental apparatus was configured in the same manner as the variable speed synchronous
generator engine under the application of reference voltage control using a neural network. Figure 11
presents the setup of the experimental apparatus. The experimental apparatus consisted of a variable
speed engine, a synchronous generator, a power management system, a potentiometer, and an
automatic voltage regulator. The power management device with the applied neural network
controller included a microprocessor system (control unit), programmable logic circuit (PLC), power
supply, and communication device.
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Table 2 lists the system components for the experiment and their corresponding roles.

Table 2. Components of the experimental apparatus and their functions.

Item Model Description

Diesel Engine P158LE-III 400 kW
Alternator MJB 355SB4 440 VAC, 60 Hz

Digital Governor GNDC-1000 Engine Control
Microprocessor TMS320F28377D Neural Network Controller

PLC Module XGB XBC-DN32 Analog, Digital data in/out
Communication Device ADAM 4520 RRS485 to RS232 Converter

Potentiometer CVR1-AK-R AVR External resistance control
AVR M31FA600A MEC-20 Voltage control

Variable Speed Synchronous Generator Engine

The variable speed synchronous generator engine, as configured in this study, was a diesel engine
with a brushless synchronous generator with the following system specifications: rated output of
400 kW, rated voltage of 440 V, and rated speed of 1800 rpm. The variable speed operation range was set
as 1100–1800 rpm, because the L.O (Lubricating Oil) and coolant pump are self-attached type engines,
and when operating in the range of 1100 rpm or less, the safety of engine operation will be dramatically
reduced due to the drop in L.O and coolant pressure. Therefore, in this study, the operating range is
set to 1100–1800 rpm. The engine speed and generator output voltage were controlled according to the
output speed command value from the neural network controller of the power management system.

Power Management System

- Control system

The neural network was trained using the input and output data obtained from actual
measurements. Moreover, a neural network controller was configured to calculate the input current
value of a potentiometer that was installed on the microprocessor in the power management device,
with respect to the input speed, by the calculation of the optimal connection weight through training,
which was then applied to the synchronous power generation system.

The control system of the power management device acts as the control unit of the entire system,
carries out the calculations via the neural network controller based on the input data, and outputs
the calculation results. Given that such an operation process requires a high processing speed for
floating-point operations and excellent control reliability, a high-performance 32-bit dual-core controller
(TMS320F28377D, Texas Instruments) was used.

- PLC

The PLC received the output data calculated by the microprocessor system and converted to
4–20 mA, which is the input power of the potentiometer, via a digital/analog converter. The PLC then
transmits the digital and analog input/output data of the variable-speed engine and the generator to
the power management device.

- Communication device

The speed of the variable-speed engine is transmitted using the RS485 serial communication
method; in this study, an “RS485 to RS232” converter was employed to connect the transmitted data to
the D-SUB 9-pin connector for the RS232 communication of the microprocessor system board.
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Potentiometer

To adjust the generator reference voltage with respect to the engine speed, a variable resistance
value was inputted into the external terminal of the automatic voltage regulator. A potentiometer,
as shown in Figure 12a, was additionally installed to change the variable resistance value according to
the calculation result of the neural network with respect to the speed. The reference voltage was set
with respect to the speed, and the variable resistance value for outputting the reference voltage via the
neural network controller was adjusted by the variation of the input current value of the potentiometer.
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Figure 12b presents the internal circuit of the potentiometer. The installed potentiometer was
sourced by a DC supply voltage of 24 V and supplied power to the internal circuit and servo motor.
The current input circuit converts the input current of 4–20 mA input into a voltage signal through
a resistance of 250 Ω installed at the front of the current, and then transmits the voltage signal to
the comparator of the servo motor driver circuit. The servo motor driver circuit adjusts the rotation
angle of the servo motor in proportion to the size of the input voltage signal. Given that the variable
resistance potentiometer was directly connected to the drive shaft of the servo motor, the output
variable resistance value was adjusted by adjusting the voltage divider ratio of the variable resistance
using a current signal of 4–20 mA.

Reference Voltage Control Unit of the Automatic Voltage Regulator

Figure 13a presents the appearance of the automatic voltage regulator used in the experiment,
and Figure 13b shows the reference voltage control circuit in the automatic voltage regulator. If the
divided voltage is lowered by adjusting the variable resistance value output from the potentiometer,
the differential amplifier circuit determines that the generator output voltage is lower than the reference
voltage, and outputs a positive voltage to increase the excitation current, thus resulting in an increase
in the output voltage of the generator. Conversely, if the divided voltage is increased by adjusting the
variable resistance value output from the potentiometer, the differential amplifier circuit outputs a
negative voltage to reduce the excitation current, thus resulting in a decrease in the output voltage of
the generator. The size of the generator reference voltage was adjusted with respect to the variable
speed based on this principle.

As shown in Figure 13b, the automatic voltage regulator is a device that maintains a constant
reference voltage by the control of the excitation current supplied to the generator excitation system,
and its internal circuit consists of a voltage input circuit for the detection of the generator output voltage,
a differential amplifier circuit, and a semiconductor switching circuit to output excitation current signals.
The input voltage circuit receives the generator output voltage through an instrument transformer and
converts it into a DC voltage through a diode rectifier and smoothing circuit. The differential amplifier
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circuit supplies the non-inverting input part of the circuit with an internal reference voltage and inputs
the generator output voltage converted to the DC voltage by the voltage input circuit to the inverting
input part of the circuit. Thereafter, it differentially amplifies the output voltage via a comparator,
and outputs the value to the semiconductor switch.
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2.2.4. Step 4: Analysis of Output Results

By measuring the output voltage of the variable speed synchronous generator engine, it can be
determined whether the set voltage is appropriately outputted. If not, the process is repeated by
probing the neural network controller in the control unit and the input data. If the output voltage of
the synchronous generator is confirmed to be within the acceptable range, the entire configuration of
the reference voltage control process is considered as acceptable.

3. Experimental Results

The application of the variable speed synchronous generator engine significantly improves the
energy efficiency and decreases emissions of a DC distribution system. Therefore, an increase in the
number of cases of applying the variable speed synchronous generator engine in ships is expected in
the implementation of asynchronous generators in variable-speed operation in ships, and the reference
voltage control for the protection of the synchronous generator with respect to speed is critical in
such applications.

To adjust the reference voltage with respect to the speed of the synchronous generator in the
variable speed synchronous generator engine operation, the neural network controller was applied
with the connection weight obtained by training the neural network using the generator speed as input
data. The potentiometer input current, which was considered as output data, was composed of one
hidden layer and five internal nodes, with the tan-sigmoid function set as the output function of the
hidden layer.

The operating range of the variable speed synchronous generator engine was set as 1100–1800 rpm,
and the experiment was conducted by classification into (1) the case wherein the speed is increased or
decreased by 100 rpm as the input data used for training the neural network, and (2) the case wherein
an arbitrary speed command is inputted.

When the speed of the variable speed synchronous generator engine in operation was increased
by 100 rpm within the range of 1100–1800 rpm, as shown in Figure 14a, the result of the input
current supplied to the potentiometer was outputted, as shown in Figure 14b. Figure 14c,d present
the experimental results with respect to the output of the input current of the variable resistance
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potentiometer that generated the external resistance value of the automatic voltage regulator when the
speed of the variable speed synchronous generator engine was decreased by 100 rpm within the range
of 1800–1100 rpm.
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From the analysis of the experimental outputs, the output value of the input current was found to
immediately and accurately reach the target value within the range of 4–20 mA, with minimal delay in
the initial response speed with respect to changes in the speed of the generator. Therefore, the output
voltage of the synchronous generator was outputted within the range of the set reference voltage from
250 to 440 V, as shown in Table 3.

Table 3. Experimental results of the generator reference voltage with respect to changes in the system
speed using the neural network controller.

Generator Engine
Speed (rpm)

Generator Voltage
(VAC)

Generator
Frequency (Hz)

Potentiometer Input
Current (mA)

AVR External
Resistance Value (kΩ)

1100 251 36.7 4.0011 4.15
1200 279 40 6.2388 18.22
1300 306 43.3 8.6048 33.67
1400 331 46.7 10.7804 47.1
1500 360 50 13.2004 62.9
1600 387 53.3 15.3152 75.9
1700 414 56.7 17.7208 91.3
1800 443 60 19.9908 98.5
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Figure 15a shows the generator speed output when a random speed command is given to the
generator and Figure 15b presents the output results of the potentiometer input current for the setting
of the reference voltage of the generator when the speed command of the synchronous generator was
continuously changed to an arbitrary value that was not previously used for neural network training.
Moreover, for an input speed command that was not previously used for the neural network training,
the potentiometer input current was calculated by the connection weight configured in the neural
network controller, thus resulting in the output of an appropriate generator reference voltage.
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Figure 15. (a) random speed of generator, (b) output results of the potentiometer input current with
respect to random speed command values.

The experimental results revealed that the reference voltage of the generator varied when adjusting
the external resistance value of the automatic voltage regulator with respect to the speed using the
neural network controller, as shown in Table 3; Figure 16 shows the result of confirming that the output
voltage value changes as shown in Table 3 when the speed of the generator is increased from 1100 rpm
to 100 rpm. The voltage output result according to the speed change of the generator is shown in
8 sections from 1100 rpm in Figure 16a to 1800 rpm in Figure 16h.

The result of testing was the output voltage of the generator according to the increase and decrease
of the speed according to the load change of the variable speed engine system based on the load
scenario of the actual 5500TEU Reefer Container in the test bed. Load Scenario was applied by scaling
down the actual ship’s load according to the test bed, and the load data is shown in the Table 4.

Table 4. The load profile applied to the experiment (5500TEU Reefer Container ship).

Load(kW) Scale down Load(kW)/Pattern Energy Source

1423.7 125(Normal seagoing without reefer) Only DG

4153.7 357(Normal seagoing with reefer) Only DG

2148.1 187(Port in/out without thruster) Only DG

3860.4 332(Port in/out with thruster) Only DG

3714.6 320(Loading/Unloading) Only DG
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Figure 16. Output results of the reference voltage with respect to the generator speed.(a) output voltage at 1100 rpm, (b) output voltage at 1200 rpm, (c) output voltage
at 1300 rpm, (d) output voltage at 1400 rpm, (e) output voltage at 1500 rpm, (f) output voltage at 1600 rpm, (g) output voltage at 1700 rpm, and (h) output voltage at
1800 rpm.



J. Mar. Sci. Eng. 2020, 8, 802 18 of 22

As a result of analyzing the operation mode of the ship, it could be classified into normal seagoing
(without reefer; with reefer), port in/out (without thruster; with thruster), and load/unload. As for the
load, the speed of the generator was changed according to the load change from 125kW to 357Kw,
and it was confirmed that the output voltage normally follows the target value. Figure 17a shows the
generator speed according to the load change, and Figure 17b presents the generator output voltage
according to the load change.
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4. Discussion

Most of the studies conducted on DC distribution systems were focused on the enhancement
of the energy efficiency and reduction of emissions due to the decrease in the fuel consumption,
when compared with AC distribution systems in ships. However, in this study, a reference voltage
control method suitable for speed fluctuations was applied using a neural network controller, to prevent
damage to the internal windings of the generator due to the excessive magnetic flux and overexcitation
that may occur during the variable-speed operation of the synchronous generator installed in the DC
distribution system.

In this study, an experiment was conducted by configuring a variable speed synchronous power
generation engine system on a testbed, thus simulating an environment similar to that of an actual
electric propulsion ship. With the variations in speed suggested as the aim of the initial study, significant
results were obtained in which the voltage output from the synchronous generator applied to the
neural network controller was adjusted. The results suggest that safety can be ensured when the
synchronous generator in variable-speed operation is implemented in the DC distribution system of
a ship.

However, the scope of the current research is limited to the generator reference voltage control,
and not the power system, which includes the entire power source from the propulsion motor to the
propulsion motor. Although the findings of this study are significant, the application of the proposed
method is limited, given that the power system of an electric propulsion ships is not only composed
of a power source. In future work, research will be conducted on an integrated power management
system that can control and manage the entire power system of a DC grid electric propulsion ship,
for application to actual ships, which can serve as a useful guideline.
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5. Conclusions

In this study, a neural network controller was employed as the control unit of the power
management system to change the reference voltage of the variable speed synchronous generator
engine and to stably maintain the changed voltage. The neural network controller controls the input
current of the potentiometer, which adjusts the size of the variable resistance supplied to the external
input resistance, to change the reference voltage of the automatic voltage regulator with respect changes
in the speed.

Based on the experimental results, the following conclusions can be reached.
(1) A synchronous power generation system installed on an actual testbed was used to determine

the input/output patterns for the training of a neural network, and a current of 4–20 mA was supplied
to the input of the potentiometer, to output the variable resistance value for the setting of the reference
voltage matched with respect to the rotational speed of the generator. In addition, the output variable
resistance value was inputted into the external resistance terminal of the automatic voltage regulator,
and the actual generator output voltage was measured by operating the synchronous generator on
the testbed.

(2) The neural network was trained using the measured input/output pattern, and the neural
network controller applied with the optimal connection weight obtained through the training process
was mounted in the control unit of the power management system.

(3) The operation range of the variable speed of the synchronous generator was set as 1100–1800 rpm,
and the input current of the potentiometer calculated by the neural network controller was outputted
with respect to an increase/decrease in the speed in intervals of 100 rpm. The potentiometer then
outputted a variable resistance, and the output variable resistance was inputted into the reference
voltage control circuit of the automatic voltage regulator. The experimental results confirmed that the
reference voltage of the generator was adjusted with respect to the speed. In addition, upon the input of
an arbitrary speed command that was not previously used for neural network training, an appropriate
reference voltage was outputted through the calculation of the neural network controller.
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