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Abstract: The quality of underwater images is often affected by the absorption of light and the
scattering and diffusion of floating objects. Therefore, underwater image enhancement algorithms
have been widely studied. In this area, algorithms based on Multi-Scale Retinex (MSR) represent an
important research direction. Although the visual quality of underwater images can be improved to
some extent, the enhancement effect is not good due to the fact that the parameters of these algorithms
cannot adapt to different underwater environments. To solve this problem, based on classical MSR,
we propose an underwater image enhancement optimization (MSR-PO) algorithm which uses the
non-reference image quality assessment (NR-IQA) index as the optimization index. First of all, in a
large number of experiments, we choose the Natural Image Quality Evaluator (NIQE) as the NR-IQA
index and determine the appropriate parameters in MSR as the optimization object. Then, we use the
Gravitational Search Algorithm (GSA) to optimize the underwater image enhancement algorithm
based on MSR and the NIQE index. The experimental results show that this algorithm has an excellent
adaptive ability to environmental changes.

Keywords: underwater image enhancement; Multi-Scale Retinex; parameter optimization;
no reference image quality assessment

1. Introduction

Marine resources are abundant, but the marine environment is complicated, and underwater
exploration by humans is difficult. Therefore, underwater robots [1,2] are widely used in the exploration
of marine resources and for underwater target recognition [3–7]. However, due to the absorption of
light and the scattering and diffusion of floating objects, underwater images often have distortion,
color deviation, low contrast and low definition.

There are many existing non-underwater image enhancement algorithms, such as Histogram
Equalization [8] (HE). HE transforms the original image into an output image with roughly the same
number of pixels at most gray levels through pixel value transformation. This algorithm has a simple
structure and low computation, but HE is not good at improving the local contrast of the image.
In order to improve the deficiency of HE, Pizer et al. [9] proposed an Adaptive Histogram Equalization
algorithm (AHE)—AHE redistributes the brightness value of the image by calculating the histogram
of each significant area of the image, making it more suitable for improving the local contrast of the
image. However, the AHE algorithm has other problems, such as amplified noise. In order to solve the
shortcomings of the AHE algorithm, Zuiderveld [10] proposed a Contrast Limit Adaptive Histogram
Equalization (CLAHE) algorithm. In addition, algorithms such as color-corrected white balance [11]
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and gray-scale edge assumption [12] have also been developed. However, using the existing image
enhancement algorithms directly in underwater environments may cause the problem of limited
enhancement or excessive enhancement. These algorithms can only deal with the contrast of the image
to a certain extent, but they cannot solve the problem of the color shifting of underwater images; it is
even possible for the algorithms to cause the image to have low local contrast and distortion.

Edwin H. Land proposed the Retinex theory [13]. The Retinex algorithm can balance the three
aspects of edge enhancement, dynamic range compression and color constants in the image processing
process, but when the light intensity is large, the problem of exposure will occur, resulting in the
phenomenon of low local contrast in the image. Zhang et al. [14] proposed the extension of the
multi-scale Retinex underwater image enhancement algorithm and the Multi-Scale Retinal with Color
Recovery (MSRCR) algorithm [15] to the CIELAB color space, which successfully suppressed the halo
phenomenon in the process of image enhancement; however, the algorithm has many parameters,
so the calculation speed is slow. Lei Fei et al. extracted the color–grayscale ratio of RGB underwater
images and carried out the tensile interception of Multi-Scale Retinex (MSR) [16] enhanced images;
then, they used the grayscale ratio to restore underwater images, which improved the color distortion
of underwater images and enhanced their clarity. However, in an image with a large local luminance
difference, the MSR-enhanced image has a halo, resulting in the phenomenon that the local contrast is
too low in the image. Since then, scholars have continued to improve the Retinex algorithm [17–20].

There are two other important research directions in this field: algorithms based on the Dark
Channel Prior (DCP) algorithm and algorithms based on the Generative Adversarial Networks (GAN).
He et al. proposed the DCP [21] algorithm, which has been widely used in the field of image
enhancement [22,23] due to its simple defogging model and good defogging effect. Zhu et al. proposed
unpaired image-to-image translation algorithm using cycle-consistent adversarial networks [24].
Image enhancement algorithm based on GaN is currently a very active research area.

Underwater image enhancement algorithm improves the stability of underwater robot in various
application. Zhao et al. [25] applied their improved underwater image enhancement algorithm
to Autonomous Underwater Vehicle (AUV). The experimental result shows that the AUV visual
SLAM can achieve accurate positioning results by underwater image enhancement algorithm.
Wei et al. [26] applied the improved Retinex algorithm to the Underwater Vehicle Manipulator System
(UVMS) to track and capture underwater objects. The experimental result shows that the algorithm
can improve the precision of AUV grasping.

In general, the existing underwater image enhancement algorithms use fixed parameters.
Although they can improve the visual quality of underwater images to some extent, there are also
problems of amplified noise and color distortion. At the same time, the existing MSR-based underwater
image enhancement algorithms may be particularly effective when dealing with a specific underwater
environment, and the existing underwater image enhancement algorithms are unstable when facing
different underwater environments. In the traditional MSR algorithm, a fixed gaussian weighting
factor is selected. If the image is taken from a cloudy water body, the enhanced image will have color
bias and distortion. As shown in Figures 20c and 21c, the effect is unstable. The traditional DCP
algorithm uses the water environment color A as the point with the brightness of the top 0.1% in
the dark channel image. If the image is taken from the water with strong illumination, the image
enhancement effect will be poor, and the color of the water environment will be left in the enhanced
image. As shown in Figures 22d and 23d, the effect is unstable. Therefore, it is important to determine
the appropriate parameters according to the changes of different scenarios.

At the same time, the actual computing conditions of underwater robots are limited, and it is
difficult to meet the real-time requirements of image processing. Therefore, this paper attempts to
reduce the computational complexity of the algorithm and thus to improve its ability to be used in
engineering applications.

The structure of this article is as follows—Section 1 introduces the development of underwater
image enhancement work; Section 2 briefly introduces the idea of this article and the purpose of



J. Mar. Sci. Eng. 2020, 8, 741 3 of 23

each workflow; Section 3 briefly introduces relevant background knowledge; Section 4 introduces the
selection method of the parameters and the no reference image quality assessment index; Section 5
introduces the main work content of this article; Section 6 conducts experiments on the algorithm
proposed in this article and objectively analyzes its performance; and Section 7 presents the conclusion
of the article.

2. Methodology

The existing underwater image enhancement algorithms use fixed parameters, which can
improve the visual quality of underwater images to some extent, but the existing underwater image
enhancement algorithms are unstable when facing different underwater environments. MSR-PO
is based on the MSR algorithm, using non-reference image quality assessment indexes to optimize
the parameters to achieve a stable underwater image enhancement effect and improve the efficiency
of underwater exploration by underwater robots. Firstly, we find a suitable non-reference image
quality assessment index for unreferenced images. Secondly, we use the traversal method to select and
optimize the parameters. Finally, in order to improve the enhancement speed, we use the Gravitational
Search Algorithm (GSA) [27] to replace the traversal method for parameter optimization and propose
a strategy for optimization only in stable frames to increase the speed of the enhancement.

2.1. Selection of a Non-Reference Image Quality Assessment Index

We need to find a suitable non-reference image quality assessment index. There are many no
reference image quality assessment indexes, and the most suitable one needs to be selected. In this
paper, Gaussian noise of different degrees is added to the image to observe the changes of multiple
classic no reference image quality assessment indexes. If the changes of a no reference image quality
assessment index could correctly reflect the change trend of noise, and its dynamic range was large,
the indicator would be selected and applied in this article.

2.2. Selection of Target Parameters to Be Optimized in MSR

We need to use the traversal method to find the appropriate algorithm parameters. The main
method is to traverse the parameters in the MSR and observe the dynamic ranges of the no reference
image quality assessment indexes. Generally speaking, the parameters corresponding to the indexes
with large dynamic ranges can meet the requirements of the tasks in this paper. On this basis, if the
indicator changes linearly, the optimal parameters could be directly calculated, and if the indicator
changes nonlinearly, optimization algorithms would need to be used for optimization.

In specific applications, the computing power of an underwater robot is limited, the real-time
requirement for image enhancement is high and parameter screening is required to reduce the amount
of calculation. The main method used is to calculate a set of no reference image quality assessment
index data after each parameter traversal and calculate the influence of the data variance comparison
parameters. If the influence of a parameter increases with the variance, the parameter is retained;
otherwise, it is deleted.

2.3. Improve Engineering Application Capabilities

The traversal method is stable but slow. This paper attempts to optimize the parameters by using
the GSA optimization algorithm and conducts multiple sets of comparative experiments to ensure the
stability of the GSA algorithm.

When enhancing video frames, considering that underwater robots require real-time image
enhancement capabilities, this article attempts to propose a strategy that only optimizes the frame to
increase the enhancement speed; the feasibility of this strategy is verified in this work.

The work flow chart of the algorithm in this paper is shown in Figure 1.
When the existing underwater image enhancement algorithm faces different underwater

environments, the enhancement effect is unstable due to the limitation of the algorithm’s own fixed
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parameters. To solve these problems, we use the non-reference image quality evaluation index as the
optimization index to optimize the parameters in the MSR algorithm and improve the enhancement
speed. Based on this, we propose MSR-PO algorithm.
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Figure 1. The working idea of this paper.

3. Background Knowledge

3.1. Retinex Algorithm Introduction

3.1.1. Single Scale Retinex (SSR)

The single-scale Retinex algorithm works by improving the center/surround Retinex. The basic
idea of the center/surround Retinex algorithm is to estimate the brightness of the center pixel by
assigning different weights to the pixels surrounding the target. The proportional relationships of these
weights are determined by the surrounding function. Jobson proposed a single-scale Retinex algorithm
(SSR) [28] based on this theory. The basic content of the algorithm is as follows. The algorithm assumes
that the image is I(x, y), the brightness image is L(x, y), the reflected image is R(x, y); then:

I(x, y) = L(x, y) · R(x, y). (1)

The purpose of the algorithm is to obtain R(x, y) from I(x, y). The algorithm assumes that the
image is smooth and approximates the low-frequency part of the image. The logarithmic domain



J. Mar. Sci. Eng. 2020, 8, 741 5 of 23

processing makes the perception of the image more similar to the human eye’s perception of brightness.
The single-scale Retinex can be expressed as

ln[R(x, y)] = ln
I(x, y)
L(x, y)

= ln[I(x, y)]− ln[I(x, y) ∗ G(x, y)]. (2)

In Equation (2), G(x, y) is a low-pass filter used to estimate the brightness map; subtracting the
brightness map from the original image can restore the original color of the object. Jobson’s theory
proves that the Gaussian convolution function can process the image locally to better enhance the
image; thus, G(x, y) is usually a Gaussian function, and the expression is

G(x, y) = λ · e
−(x2+y2)

c2 . (3)

In Equation (3), c is a scale constant. The smaller the c is, the larger the dynamic compression
range would be. On the contrary, the larger the c is, the more severe the image sharpness would be.
λ is a constant matrix, and its value must satisfy Equation (4):∫∫

G(x, y) dx dy = 1. (4)

3.1.2. Multi-Scale Retinex Algorithm (MSR)

In view of the problem that the SSR algorithm has poor processing effects in terms of image detail
enhancement and color fidelity, Joson et al. proposed a multi-scale Retinex algorithm (MSR).

The multi-scale Retinex algorithm is the weighted average of the single-scale Retinex algorithm.
r(x, y) is used to represent the final calculation result of the reflected image. The multi-scale Retinex
algorithm can be expressed as

ln[r(x, y)] =
N

∑
i=1

wi {ln[I(x, y)]− ln[I(x, y) ∗ Gi(x, y)]} . (5)

In Equation (5), n represents the number of scales. In general, n = 3 is a color image and wi is
a Gaussian weighting coefficient. Assuming that the weights corresponding to each scale are equal,
then wi = 1/3, and Gi(x, y) is a Gaussian low-pass filter:

Gi(x, y) = λ · e
−(x2+y2)

ci
2 . (6)

In Equation (6), ci represents the scale.

3.2. No Reference Image Quality Assessment Index

Current underwater image quality assessment methods are divided into subjective assessment
and objective assessment [29]. The subjective assessment method is mainly used for testers to observe
the target image and make a subjective assessment and analysis. Generally, the Mean Opinion Score
(MOS) or Differential Mean Opinion Score (DMOS) refer to the difference between the assessment
scores of undistorted and distorted images by human eyes. However, in practical applications,
subjective assessment is limited by many factors, and the uncertainty of subjective assessment makes
it impossible to describe the method with a mathematical model; furthermore, it is difficult to achieve
high-quality assessment. The objective assessment method is used to calculate the visual quality of the
image through certain algorithms and mathematical methods. It includes Full Reference Image Quality
Assessment (FR-IQA), Reduced Reference Image Quality Assessment (RR-IQA) and No Reference
Image Quality Assessment (NR-IQA) [30]. The following is a brief introduction to four common and
classic non-reference image quality assessment indexes.
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3.2.1. Entropy

Entropy [31] appears in information theory to indicate the amount of information. It was not
used to evaluate image quality until 1978. For the assessment of the quality of underwater images,
the color information entropy assessment method is adopted. The RGB color space is selected;
then, the information entropy is obtained based on the three color channels of the image, and the
average value is finally obtained. The formula for information entropy is as follows:

H = −
255

∑
0

P(i) log2 P(i). (7)

In Equation (7), i represents the gray value, and P(i) represents the proportion of pixels with
a gray value of i to all pixels in the image. Color image entropy is the average of the information
entropy of the three channels R, G and B. The greater the information entropy of the image is, the more
information the image has and the better the image quality is.

3.2.2. UCIQE

The Underwater Color Image Quality Evaluation (UCIQE) [32] is a new image quality evaluation
index proposed by Yang Miao et al. The objective image quality evaluation index adopts the linear
combination of chroma, saturation and brightness as the measurement method of image quality.
The higher the UCIQE score is, the better the image restoration would be. The UCIQE is defined as

UCIQE = c1 × σc + c2 × conl + c3 × µs. (8)

In Equation (8), σc is the standard deviation of chroma,conl is the brightness contrast, µs is the
average value of saturation and c1, c2 and c3 are the weighting coefficients. After a large number
of underwater image experiments, the coefficients finally obtained under the underwater test data
sets are c1 = 0.4680, c2 = 0.2745 and c3 = 0.2576. Generally speaking, the higher the UCIQE index
is, the better the quality of the underwater image would be; otherwise, poorer image quality would
be obtained.

3.2.3. NIQE

The Natural Image Quality Evaluator (NIQE) [33] is an image quality evaluation index that was
proposed by Mittal et al. in 2012. The algorithm is based on a probability model. In this algorithm,
the image is first mean-removed normalized; then, the processed image is fitted by generalized
Gaussian distribution and a multivariate Gaussian model to obtain the parameters. Finally, the distance
between the parameters and the corresponding parameters in the image library is the score of the
image. The NIQE algorithm calculates the distance between the distorted image and the original
image in the image library. This distance is used to measure the image quality. If the distance is small,
this means that the image is similar to the natural image in the image library, the degree of distortion
is small and the image quality is good. Conversely, if the distance between the distorted image and the
original image in the image library is large, it means the degree of distortion is large and the image
quality is poor.

3.2.4. UIQM

Karen et al. [34] proposed an Underwater Image Quality Measurement (UIQM) based on the
characteristics of underwater image degradation. The UIQM method uses the linear combination of the
underwater image colorfulness measurement (UICM), the underwater image sharpness measurement
(UISM) and the underwater image contrast measurement (UIConM) as the evaluation basis.

UIQM = c1 ×UICM + c2 ×UISM + c3 ×UIConM. (9)
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In Equation (9), c1, c2 and c3 are the weighting factors of the measurement components in the
linear combination. The method shows that the selection of weighting factors should be based on
specific quality evaluation requirements. When the color quality requirements for underwater images
are high, the value assigned to c1 is large; when the image contrast and clarity quality requirements are
high, the weight values assigned to UISM and UIConM need to be large, and the corresponding c2 and
c3 values are large. In this paper, the weighting factors are c1 = 0.0282, c2 = 0.2953 and c3 = 3.5753.

4. Selection of Parameters and Assessment Indexes

Whether the no reference image quality assessment index can be used for optimization depends
on whether the index is able to correctly reflect the changing trend of noise and to have a large dynamic
range. By adding different degrees of Gaussian noise to the image, this paper evaluates the image
quality with four kinds of no reference image quality assessment indexes, including information
entropy, UCIQE, NIQE and UIQM. The next step is to observe the change trends and dynamic ranges
of these four indexes and choose a no reference image quality assessment index which can optimize
the algorithm. Then, we use the index to traverse the parameters, observe the dynamic range of the
NIQE index and select the parameters that can be optimized. In order to increase the speed of the
calculation, the parameters need to be screened again, and the parameters with a larger influence must
be selected.

4.1. Selection of Assessment Indexes

In this paper, we intend to optimize the parameters by using NR-IQA to achieve stable underwater
image enhancement and improve the efficiency of underwater exploration by underwater robots.
The selection of the no reference image quality assessment index mainly includes two aspects:

(1) The change of the no reference image quality assessment index correctly reflects the change of
the quality of underwater images;

(2) The dynamic range of the non-reference image quality assessment index is large.

The main method used is to select four representative images (Figure 2) that are commonly used
in the field of underwater image quality enhancement as experimental objects. Figure 2a is a greenish
image of large targets. Figure 2b is a greenish image with light spot. Figure 2c is a bluish image of large
targets. Figure 2d is a bluish image of small targets. These four images are selected in this paper to
simulate different underwater environments. Gaussian noise is added to the images, and the variance
in the Gaussian noise function is from 0 to 0.1 in steps of 0.002. With the increase of Gaussian noise
in the image, we need to calculate four classic non-reference image quality assessment indexes and
count their change trends to obtain four graphs as shown in Figure 3, where the X axis is the variance
of the added Gaussian noise and the Y axis is the calculated four types of non-reference image quality
assessment indexes. In Figure 3, the results of picture 1 are shown in Figure 2a, the results of picture 2
are shown in Figure 2b, the results of picture 3 are shown in Figure 2c, and the results of picture 4 are
shown in Figure 2d.

Analyzing Figures 2 and 3, we find that, with the increase of variance in Figure 3a, the UCIQE
indicator shows an upward trend, indicating that the image quality is improving, but the UCIQE
indicator ought to increase as the image quality becomes better, which is contrary to the requirement
of this article. As the variance increases in Figure 3b,d, the UIQM indicator and information entropy
show a trend of rising first and then decreasing, indicating that the image quality first improves and
then becomess worse, so they are unable to correctly reflect the changing trends of the image quality,
which is inconsistent with the requirements of this paper. As the variance increases in Figure 3c,
the NIQE shows an increasing trend. The larger the NIQE is, the bigger the difference is, meaning that
the image quality is getting worse. The NIQE indicator correctly reflects the trend of image quality
change; the difference between the minimum and maximum of the NIQE index can reach about 13,
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indicating that its dynamic range changes greatly; thus, this article chooses the NIQE indicator as the
optimization indicator.

(a) Picture1: a greenish sample of
large targets

(b) Picture2: a greenish sample with
light spot

(c) Picture3: a bluish sample of large
targets

(d) Picture4: a bluish sample of small
targets

Figure 2. Underwater test pictures.
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(c) Natural Image Quality Evaluator (NIQE)
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(d) Entropy

Figure 3. The degree of response of the four indexes to Gaussian noise.

In the specific calculation, NIQE first normalizes the image pixels, extracts the features of the
salient image blocks, and then performs image quality calculation. By comparing the natural image
and the distorted image, the mean v1, v2 and variance matrices σ1, σ2 of natural and distorted images
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are obtained, and finally the image quality is measured by calculating the distance between the natural
image and distorted image fitting parameters; the calculation formula is as follows:

D(v1, v2, σ1, σ2) =

√
(v1 − v2)T(

σ1 + σ2

2
)−1(v1 − v2). (10)

Generally speaking, the smaller the NIQE value, the better the image quality.

4.2. Selection of Optimization Parameters

In this paper, we try to optimize the parameters by using no reference image assessment indexes
to achieve stable underwater image enhancement. The changes of different parameters have different
effects on the MSR algorithm results, meaning that the task presented in this section is to find the
parameters that have the greatest influence on the MSR results.

There are many parameters in the MSR algorithm that are set by human experience. In this paper,
two sets of parameters that have relatively large influences on the MSR algorithm results are obtained
through preliminary screening. The first group is the scale parameter values sigma1, sigma2 and
sigma3, and the second group is the Gaussian weighting factors W1, W2 and W3, and the pre-screening
methods are the same as the methods in the section above; thus, the details will not be repeated here.
At present, all MSR parameter values are artificially summarized and cannot be adapted to different
environmental conditions. This paper uses no reference image quality assessment indexes to optimize
the parameters, but the extent to which the changes in the above parameters could affect the quality
index of the no reference image is not known.

Generally speaking, if the change of a parameter can lead to a large change in the no reference
image quality assessment index, then the optimization effect of this parameter will be good, which is
also true for the optimization index of our work in this section.

The process of selecting optimization parameters first traverses each parameter and observes
the changes of NIQE indexes. In the traversal process, the range of parameter traversal must first
be determined. The range of the traversal is mainly determined by the general values of the three
parameters, and the values of the three scale parameters should at least be twice as large from the first
to the third parameter. Based on this, the sigma1 traversal range is set to 10–40; the sigma2 traversal
range is set to 30–125; and the sigma3 traversal range is set to 160–300. In this section, we randomly
select two pictures in the sea urchin database of the National Fund of China (NFC) (Figure 4) and
traverse their sigma1, sigma2 and sigma3. The results are shown in Figure 5.

(a) Randomly select sample 1 from
the sea urchin database of the NFC

(b) Randomly select sample 2 from
the sea urchin database of the NFC

Figure 4. Underwater test images.

In the graph of Figure 5, the abscissa is the traversal parameter, and the ordinate is the NIQE
value. In Figure 5a,b, when traversing sigma1, the difference between the maximum value and the
minimum value of the dynamic range of NIQE value is about 35%; in Figure 5c,d, when traversing
sigma2, the difference between the maximum value and the minimum value of the dynamic range of
NIQE is about 4–6%; and in Figure 5e,f, when traversing sigma3, the difference between the maximum
value and the minimum value of the dynamic range of NIQE is about 1–2%.
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(e) Figure 3a sigma3 traversal
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(f) Figure 3b sigma3 traversal

Figure 5. The result of traversing sigma1, sigma2 and sigma3 of the two pictures in Figure 4.

The second set of weight parameters has the relationship of W1 + W2 + W3 = 1. The three
parameters restrict each other. The third weight W3 can be expressed as 1 − W1 − W3, so two
parameters are selected for simultaneous optimization. In this article, W1 and W2 are selected for
simultaneous traversal, and the traversal range of both W1 and W2 is set to 0–1. This method traverses
W1 and W2 in the two pictures in Figure 4 to observe the experimental results.

As shown in Figure 6, when traversing W1 and W2, the maximum value and the minimum value
of the dynamic range of NIQE can differ by about 0.6.

(a) W1, W2 traversal of Figure 3a (b) W1, W2 traversal of Figure 3b

Figure 6. W1, W2 traversal results.

According to the above analysis, the dynamic range in the graph becomes larger as the parameter
values vary, so the five parameters can be optimized. There are multiple peaks and troughs in
Figures 5 and 6, indicating nonlinear changes, so the optimal values of parameters cannot be directly
calculated, and an optimization algorithm is needed to obtain the optimal values of parameters.

From the above experiments, we can find that all five parameters can be optimized, and optimizing
these five parameters will consume a large amount of time. This paper attempts to traverse each
parameter and bring the results into the MSR algorithm for enhancement; five sets of no reference
image quality assessment indexes could be obtained through the calculation, and the variance of these
five sets of data could also be obtained. The greater the variance, the greater the influence of the
parameter. The less influential parameters would not be optimized. Among them, the three parameters



J. Mar. Sci. Eng. 2020, 8, 741 11 of 23

of the first group of scale parameters do not restrict each other, while the second group of Gaussian
weighting factors restrict each other, and the mutually restricted parameters cannot exclude any of
the factors. Therefore, this paper calculates the influence of the first group of parameters, as shown in
Figure 7 and randomly selects four images from the sea urchin database of the China National Fund
Commission for testing.

(a) Randomly select sample 1 from
the sea urchin database of the NFC

(b) Randomly select sample 2 from
the sea urchin database of the NFC

(c) Randomly select sample 3 from
the sea urchin database of the NFC

(d) Randomly select sample 4 from
the sea urchin database of the NFC

Figure 7. Underwater test images.

As shown in Figure 8, a histogram of variances with three Gaussian weighting factors for four
pictures is listed. The three parameter variances are sorted as sigma1, sigma2 and sigma3 from largest
to smallest. The small-scale parameter sigma1 has a greater impact on the image quality evaluation
results than the mesoscale parameter sigma2 and the large-scale parameter sigma3. Therefore, sigma1 is
selected for optimization in this paper.

It should be pointed out that the better the parameters, the more the indexes will be improved.
With the improvement of underwater robot computing resources, we can optimize all parameters.
This article only uses sigma1 as an optimization parameter and puts forward the idea of the algorithm
in this paper. It is hoped that the stability can be improved at first and that the accuracy can be
improved to some extent without limiting the number of optimized parameters, which could be
increased later.
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Figure 8. Parameter influence.
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5. Our Algorithm

The three scales—sigma1, sigma2 and sigma3—of the existing MSR algorithm are derived from
human experience. In theory, sigma3 depends on the image size while sigma1 depends on the size of
target objects and the water turbidity. From the above experiments, it has been verified that sigma1,
sigma2 and sigma3 have obvious impacts on image quality, and sigma1 has the greatest impact on
image quality. This article makes adaptive adjustments to sigma1 of the MSR algorithm and optimizes
and confirms the optimal value of sigma1 through the no reference image quality assessment index.

The existing MSR algorithm artificially sets the three Gaussian weighting factors to one-third,
but this does not meet the data distribution characteristics of the underwater image color space and
causes image distortion problems. It has been verified from the above experiments that W1, W2 and
W3 have a great influence on image quality, and so this article makes adaptive adjustments to the
Gaussian weighting factors of the MSR algorithm, and optimizes and confirms the optimal values of
Gaussian weighting factors through no reference image quality assessment indexes.

In order to reduce the dimension of the optimization space and improve the optimization speed,
the algorithm splits the original target (NIQE) and three variables (sigma1, w1, w2) into two steps
for optimization. The first step is the optimization of the target (NIQE) and one variable (sigma1) to
find the optimal sigma1. The second step is the optimization of the target (NIQE) and two variables
(w1, w2) to find the optimal w1 and w2.

For practical reasons, we make an assumption: in continuous frames in dozens, the environment
of the underwater Image is basically unchanged; that is, the size of the target object and the turbidity
of the water body are unchanged. Then, we can adopt the strategy of optimizing only in stable frames.
During this time, we do not need to repeatedly optimize the values of sigma1, w1 and w2; we can use
the same parameters to perform the restoration work, which can increase the enhancement speed.

On this basis, the algorithm of this paper first obtains the acceleration of each frame image through
the IMU in the underwater robot. Taking N video frames as a group, the frame with the smallest
acceleration in a group of video frames is selected as the stable frame, and the optimal sigma1, first_W1
and first_W2 found by the GSA in the stable frame are used, and the remaining N-1 frame videos use
sigma1, first_W1 and first_W2 to implement the image restoration.

Single image enhancement steps are shown in the workflow in Algorithm 1, and the video frame
image enhancement steps are shown in Algorithm 2.

Algorithm 1 Single image enhancement steps
Input: Single image
Output: Enhanced image

Step1. Adaptive adjustment is made for sigma1 of the MSR algorithm. Through no reference image
quality assessment indexes, the GSA algorithm is used to optimize and confirm the optimal
sigma1 value.

Step2. Adaptive adjustment is made for the gaussian weighting factor of the MSR algorithm, the
optimal values of w1, w2, and w3 are optimized and confirmed through no reference image
quality assessment indexes.

Step3. The optimal sigma1, w1, w2, and w3 are applied to the MSR algorithm for underwater
image enhancement.
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Algorithm 2 Video frame image enhancement steps
Input: A set of video frame images
Output: A set of enhanced video frame images

Step1. The underwater robot calculates the frame with the smallest acceleration in a group of video
frame images through the IMU, and sets the frame with the smallest acceleration as the
stable frame.

Step2. Adaptive adjustment is made for sigma1 of the MSR algorithm. Through no reference image
quality assessment indexes, the GSA algorithm is used to optimize the optimal sigma1 value
of the stable frame.

Step3. The optimal sigma1 value of the stable frame is used as the sigma1 value of the group of
video frames.

Step4. The gaussian weighting factors optimized by the GSA algorithm for the first frame of each
group are first_W1, first_W2, and the following N-1 frame videos use first_W1, first_W2 to
realize the restoration of underwater images.

6. Experimental Analysis

6.1. Gsa Optimization Effect

Considering that the traversal method takes a long time, and the underwater environment is
complex and changes greatly, in order to reduce the calculation time, we try to use the GSA optimization
algorithm instead of the traversal method. Figure 9 is a time comparison diagram of the optimization
of two Gaussian weighting factors in 16 video frame images using the traversal method and the GSA
algorithm. From Figure 9, it can be found that the optimization efficiency of the GSA algorithm is far
ahead in the two-parameter optimization problem, which is five times faster than the traversal method.
The optimization algorithm is more efficient than the traversal method, but the accuracy is slightly
reduced. This is well. known, and this article only makes a brief description of this fact here.
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Figure 9. Gravitational Search Algorithm (GSA) and traversal method time comparison chart.

Four images (Figure 10) are randomly selected from the underwater sea urchin database and
optimized to obtain Figure 11. The abscissa in Figure 11 is the number of iterations, and the ordinate
represents the sum of R, G and B three-channel NIQE evaluation values. As the number of iterations
increases, the score of image quality converges continuously. Figure 12 shows the optimal sigma1
found by the traversal method and the GSA algorithm. The optimal solutions found by these
two methods differ in less than two scales, meaning that the GSA algorithm is feasible to use.
In Figure 13, the optimization speed of the GSA algorithm is less than half of the traversal method;
thus, when the underwater robot performs image enhancement, the GSA algorithm can improve the
optimization speed.
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(a) Randomly select sample 1 from the sea
urchin database of the NFC

(b) Randomly select sample 2 from the sea
urchin database of the NFC

(c) Randomly select sample 3 from the sea
urchin database of the NFC

(d) Randomly select sample 4 from the sea
urchin database of the NFC

Figure 10. Underwater test images.
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Figure 11. Sigma1 optimization fitness evolution curve.
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Figure 12. Comparison of the optimal values of optimization and traversal.
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Figure 13. Comparison of the optimal values of optimization and traversal.

6.2. Strategy and Time Analysis of Optimizing Only in Stable Frames

Figure 14 shows a set of 10 consecutive frames of video images collected by an underwater robot.
The sequence of these video frames is from left to right and from top to bottom. The subsequent
optimization experiments correspond to the order of these 10 pictures.

Figure 14. Experimental test images.

Figure 15 shows the iterative curves of the optimize_Score value for these 10 continuous frames
of video images obtained by the GSA algorithm. The abscissa is the number of iterations, and the
ordinate is the NIQE value after the RGB channel fusion of the image. As the number of iterations
increases, the image quality scores continue to converge. Judging from the scores of these consecutive
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video frames, the overall difference is not large—the largest gap is only 0.35—and the overall curve
completely converges within 20 epochs.
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Figure 15. GSA image quality score optimization curve.

Figure 16 shows the optimal Gaussian weighting factors (best_W1 and best_W2) obtained by
the traversal method and the optimized Gaussian weighting factor parameters (optimize_W1 and
optimize_W2) corresponding to the GSA in Figure 15. In the Figure 16, the x-axis is the video frame
order, and the y-axis is the Gaussian weighting factor value. From Figure 16, we can se that the
best_W1 and optimize_W1 of the 10-frame video are concentrated between 0.1–0.2, the best_W2 and
optimize_W2 are basically concentrated between 0.3–0.4, and the Gaussian weighting factors in the
same scene are stable.
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Figure 16. Traversal method and GSA algorithm used to optimize Gaussian weighting factors.

As can be seen in Figure 16, for w1 and w2, these two parameters show basically no change in the
10 frames of pictures, so the assumption in Section 5 can be confirmed.In continuous frames in dozens,
the underwater image environment basically remains unchanged; that is, the size of the target object
and the turbidity of the water body are unchanged. Then, we can adopt the strategy of optimization
only in stable frames. During this time, we do not need to repeatedly optimize the values of sigma1,
w1 and w2. We can use the same parameters to perform restoration work, which can increase the
enhancement speed.

It should be noted that, through experiments, we find that not only are the 10 continuous frames
as listed in this article are basically unchanged, but also in hundreds of consecutive frames, the image
parameters remain basically unchanged; that is, these 10 frames can be replaced with hundreds
of frames.

As shown in the Figure 17, the underwater robot used in the experiment is a new type of
underwater robot launched by Aquabotix. As shown in the Figure 18, the robot operating system
used in the experiment is configured with the GPU hardware platform of Nvidia Geforce GTX1060Ti.
Figure 19 is a graph of the running time of the video frame Gaussian weighting factor optimization
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strategy, where the x-axis represents the number of video frames and the y-axis is the time for which
the algorithm runs. The GSA algorithm needs 205 ms to optimize Gaussian factors, and the subsequent
image color restoration is about 5 ms for each image.

Figure 17. Autonomous underwater vehicle.

Figure 18. Autonomous underwater vehicle operating system.
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Figure 19. Video frame Gaussian weighting factor optimization time curve.

In terms of time, a stable working time TT1 in this paper is shown in Equation (11):

TT1 = T1 + 10 ∗ T2, (11)

where TT1 is the consumed time of this algorithm in 10 consecutive frames, including one optimization
time of T1, and the restoration time T2 of an image after obtaining optimization parameters 10 times.
The number of shooting frames of the underwater camera is 30 FPS/s, then the time resource TT1 for
this algorithm should be less than 333 ms.

By performing calculation with the GPU hardware platform of Nvidia Geforce GTX1060Ti, T1 in
this article is 205 ms and T2 is 5 ms, so TT1 is 255 ms, and TT1 is less than 333 ms, which meets the
calculation time requirement given in the project.

Since the optimization time T1 is longer than T2, and the image can be stable for hundreds
of frames, according to our own needs, we can increase the number of frames from 10 to conserve
more computing resources for further analysis and control. Due to the time limitation in engineering
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applications, in the MSR-OP algorithm, images with resolution of 400 × 300 can be restored and
optimized in a group of 10 frames three times per second. If higher resolution is required, such as
800 × 600 images, 30 frames can be set as a group to meet the requirements of engineering applications,
and the MSR-PO algorithm can be restored and optimized once per second.

6.3. Overall Algorithm Effect Analysis

In order to prove the applicability and superiority of the proposed enhancement algorithm,
this paper uses the Contrast Limit Adaptive Histogram Equalization (CLAHE), the classic Multi-Scale
Retinex with Color Restoration (MSRCR) algorithm and the Dark Channel Prior (DCP) algorithm for
comparison. The underwater images processed by different algorithms are analyzed and compared
from the two perspectives of subjective visual perception and an objective evaluation index.

In our research, hundreds of images are analyzed in the general underwater image database and
the sea urchin database of the China National Fund Committee. Four groups of underwater image
enhancement contrast experiments are randomly selected for demonstration here. The first (Figure 20a)
underwater image is from the universal underwater database, and the next three underwater pictures
(Figures 21a, 22a and 23a) are randomly selected from the sea urchin database of the National Fund
of China.

Images (b–d) in Figures 20–23 are the effect pictures of different algorithms. Image (b) in
Figures 20–23 is that of the CLAHE algorithm, image (c) in Figures 20–23 is that of the MSRCR
algorithm, image (d) in Figures 20–23 is that of the Dark Channel Prior algorithm and image (e) in
Figures 20–23 shows the image generated by MSR-PO algorithm.

Analyzing the results of these three image enhancement algorithms through Figures 20–23, it can
be seen that the contrast and sharpness of the image processed by these three algorithms are improved
to different extents. In scene 1 and scene 2, the CLAHE algorithm and the parameter-optimized MSR
algorithm enhance the visual effect of the image very well, but in scene 3 and scene 4, the effect of the
CLAHE algorithm is obviously not as good as MSR-PO algorithm. This is because the color channel of
the CLAHE algorithm is limited, so the image still has the problem of color casting. In the four scenes,
although the effect of the MSRCR algorithm can restore the details of the image well, the overall color
of the image fades to white, and there is a slight distortion problem. In general, the MSRCR algorithm
is visually inferior to the MSR-PO algorithm. In scene 3 and scene 4, the enhanced image of DCP
algorithm is slightly green. This is because the DCP algorithm has a dark channel depth that is not
obvious, so the image transmittance cannot be estimated, and the image contrast and color difference
are not repaired well. Compared with the other two algorithms, MSR-PO algorithm performs better,
and it can be widely used in different scenarios because its effect is more stable.

(a) The original image (b) CLAHE (c) MSRCR (d) DCP (e) MSR-PO

Figure 20. Scene 1 comparison.

(a) The original image (b) CLAHE (c) MSRCR (d) DCP (e) MSR-PO

Figure 21. Scene 2 comparison.
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(a) The original image (b) CLAHE (c) MSRCR (d) DCP (e) MSR-PO

Figure 22. Scene 3 comparison.

(a) The original image (b) CLAHE (c) MSRCR (d) DCP (e) MSR-PO

Figure 23. Scene 4 comparison.

Table 1 uses information entropy, UCIQE and NIQE to evaluate the images in Figures 20–23. It is
difficult to determine which algorithm has the best image enhancement effect only by observing Table 1.
Therefore, the average index is used to prove the superiority of the MSR-PO algorithm. The final result
is shown in Table 2. An index evaluates the enhanced underwater images with different algorithms,
and the best results in the table are bold fonts. After the normalization operation, the following can be
found: the highest average quality index of the four scenes is the MSR-PO algorithm; furthermore,
the performance of the MSR-PO algorithm is more stable.

Table 1. Objective assessment index of underwater image quality.

Scene Enhanced Algorithm Entropy UCIQE NIQE

Scence 1

None 7.570 0.619 2.885
CLAHE 7.864 0.650 3.045
MSRCR 6.507 0.346 2.999

DCP 7.549 0.6262 2.860
MSR-PO 7.835 0.654 3.013

Scence 2

None 7.499 0.529 4.445
CLAHE 7.875 0.592 4.105
MSRCR 5.899 0.309 4.987

DCP 7.5643 0.595 4.253
MSR-PO 7.840 0.628 4.340

Scence 3

None 6.608 0.343 11.365
CLAHE 7.329 0.438 9.660
MSRCR 6.303 0.434 8.178

DCP 7.019 0.382 10.560
MSR-PO 7.642 0.641 7.341

Scence 4

None 6.595 0.340 12.426
CLAHE 7.217 0.406 11.149
MSRCR 6.413 0.421 9.731

DCP 7.030 0.388 11.780
MSR-PO 7.731 0.642 8.489
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Table 2. Normalized indicator results.

Scene Enhanced Algorithm Entropy UCIQE NIQE Average Quality Index

Scence 1

None 0.203 0.214 0.205 0.207
CLAHE 0.211 0.224 0.195 0.210
MSRCR 0.174 0.120 0.197 0.164

DCP 0.202 0.216 0.207 0.208
MSR-PO 0.210 0.226 0.196 0.211

Scence 2

None 0.204 0.200 0.198 0.201
CLAHE 0.215 0.223 0.215 0.218
MSRCR 0.161 0.116 0.177 0.151

DCP 0.206 0.224 0.207 0.212
MSR-PO 0.214 0.237 0.203 0.218

Scence 3

None 0.189 0.153 0.162 0.168
CLAHE 0.210 0.195 0.190 0.198
MSRCR 0.181 0.194 0.224 0.200

DCP 0.201 0.171 0.174 0.182
MSR-PO 0.219 0.287 0.250 0.252

Scence 4

None 0.189 0.155 0.169 0.171
CLAHE 0.206 0.185 0.189 0.193
MSRCR 0.183 0.191 0.216 0.197

DCP 0.201 0.177 0.178 0.185
MSR-PO 0.221 0.292 0.248 0.253

7. Conclusions

The existing MSR-based underwater image enhancement algorithms use fixed parameters,
and these algorithms are unstable when facing different underwater environments. Therefore, it is
important to determine the appropriate parameters according to the changes of different scenarios.

MSR-PO chooses the appropriate NR-IQA method and optimizes the parameters using the MSR
algorithm to achieve stable underwater image enhancement, making further underwater exploration
possible. Secondly, we also consider the engineering application performance of this method, and we
propose a way to restore the general parameters of short-time stable frames.

MSR-PO can complete the optimization and restoration of 30 frames within 1 s. At the same time,
we reserve enough computing resources for the AUV’s own analysis and control. This indicates that
the MSR-PO algorithm can be applied in engineering applications. By comparing different scenes,
the experimental results show that MSR-PO algorithm’s subjective effect and objective quality scores
are better than the existing classical MSR based algorithm and DCP algorithm. This shows that
MSR-PO can be applied to different underwater environments and the effect is stable.
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Abbreviations

The following abbreviations are used in this manuscript:

OMS-PO MSR Parameter Optimization
MSR Multi-Scale Retinex
NR-IQA Non-Reference Image Quality Assessment
NIQE Natural Image Quality Evaluator
GSA Gravitational Search Algorithm
HE Histogram Equalization
AHE Adaptive Histogram Equalization
CLAHE Contrast Limit Adaptive Histogram Equalization
MSRCR Multi-Scale Retinal with Color Recovery
MSR Multi-Scale Retinex
DCP Dark Channel Prior
AUV Autonomous Underwater Vehicle
UVMS Underwater Vehicle Manipulator System
GAN Generative Adversarial Networks
SSR Single-Scale Retinex
MOS Mean Opinion Score
DMOS Differential Mean Opinion Score
FR-IQA Full Reference Image Quality Assessment
RR-IQA Reduced Reference Image Quality Assessment
UCIQE Underwater Color Image Quality Evaluation
NIQE The Natural Image Quality Evaluator
UIQM Underwater Image Quality Measurement
UICM Underwater Image Colorfulness Measurement
UISM Underwater Image Sharpness Measurement
UIConM Underwater Image Contrast Measurement
NFC National Fund of China
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