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Abstract: Recent studies indicate that nature-inspired thrusters based on flexible oscillating foils
show enhanced propulsive performance. However, understanding the underlying physics of the
fluid–structure interaction (FSI) is essential to improve the efficiency of existing devices and pave
the way for novel energy-efficient marine thrusters. In the present work, we investigate the effect of
chord-wise flexibility on the propulsive performance of flapping-foil thrusters. For this purpose, a
numerical method has been developed to simulate the time-dependent structural response of the
flexible foil that undergoes prescribed large general motions. The fluid flow model is based on
potential theory, whereas the elastic response of the foil is approximated by means of the classical
Kirchhoff–Love theory for thin plates under cylindrical bending. The fully coupled FSI problem
is treated numerically with a non-linear BEM–FEM scheme. The validity of the proposed scheme
is established through comparisons against existing works. The performance of the flapping-foil
thrusters over a range of design parameters, including flexural rigidity, Strouhal number, heaving
and pitching amplitudes is also studied. The results show a propulsive efficiency enhancement of
up to 6% for such systems with moderate loss in thrust, compared to rigid foils. Finally, the present
model after enhancement could serve as a useful tool in the design, assessment and control of flexible
biomimetic flapping-foil thrusters.

Keywords: flexible flapping foils; coupled BEM–FEM; hydroelasticity; unsteady marine thruster

1. Introduction

The remarkable propulsive and manoeuvring mechanisms of aquatic swimmers, that have
fascinated researchers since the 1970s, inspire the design of modern autonomous underwater vehicles
(AUV) as well as autonomous underwater gliders (AUG) for marine environmental data acquisition,
see, e.g., [1], biomimetic swimming robots and novel propulsion devices with enhanced efficiency,
see, e.g., [2]. Selection of the swimming mode to serve as inspiration for the artificial devices closely
depends on hydromechanical aspects of the application itself. The thunniform swimming mode for
example, where the caudal fin of the fish performs a combination of pitching and heaving motions,
identifies as the most efficient and therefore suitable for nature-inspired propulsion systems operating
at high cruising speeds, see, e.g., [3,4]. Devices based on flapping foils have also been studied as
auxiliary thrusters augmenting the overall ship propulsion in waves, see, e.g., the works [5–9] and
project BIO-PROPSHIP [10]. Moreover, oscillating foils are studied for the development of hydrokinetic
energy devices, see, e.g., [11–13] or hybrid devices with enhanced performance exploiting combined
wave and tidal energy resources, see [14].

Living organisms through natural selection have been able to further enhance their locomotion
capabilities through passive or active deformations of fins. In this direction, computational and
experimental work on the principal mechanisms for thrust production in flexible oscillating bodies
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can be found in the review [15] with emphasis on aquatic locomotion as well as the works [16,17]
regarding aerodynamics and aeroelasticity. Further investigation on the parameters that result in
performance enhancement of flexible systems remains essential for the development of successful
engineering applications in the future.

Over the years many researchers have presented mathematical models and numerical schemes
to tackle this complex fluid–structure interaction (FSI) problem. One approach is to assume that the
deformations are known a priori, see, e.g., [18]. The coupled problem can also be treated with strongly
coupled methods; i.e., a fluid flow solver used in conjunction with a structural solver, employing
iterative processes to solve the coupled problem of passive deformations, see, e.g., [19,20].

Notable is the approach by [21,22] to investigate thrust production in flexible wings with a
potential-based model. Later, [23] presented a potential-based 2D flexible body vortex sheet model to
estimate propulsive forces and optimal efficiency, which was further validated experimentally in [24].
Fully coupled FSI simulations for flapping wings with chord-wise and span-wise flexibility were
carried out in the work of [25], with extensions in [26] allowing even the study of skeleton-strengthened
fins. By employing the vortex-based method for the fluid flow problem along with a finite difference
method for the structural response problem as presented in [27] it is shown that chord-wise flexibility
enhances up to 10% the propulsive performance of a flapping-foil thruster for AUV’s.

The effects of flexibility in propulsive performance enhancement are also illustrated in experimental
works, see, e.g., [28–30]. The effects of flexibility on the time-averaged thrust can be beneficial for
plunging foils even when the flexible region is confined to a small section near the trailing edge,
see, e.g., [31], compared to rigid foil cases. Moreover, proper selection of chord-wise flexibility
characteristics in 2D foils in flapping regimes leads to up to 36% increase in efficiency compared
to rigid ones, see, e.g., [32]. During experiments on elastic flat plates it has been observed that the
more flexible plates showed enhanced propulsion characteristics, see, e.g., [33]. Other works [34,35]
both theoretical and experimental, investigated the structural response of flexible flat plates under
heaving motions. The experiments revealed that the thrust displayed peaks in motion frequency values
coinciding with the resonance frequencies of the system comprised of the foil and the surrounding
fluid. Following a different approach, see, e.g., [36], the propulsive performance of a flapping system
that allows different inclinations of the robotic fin tip has been studied in terms of propulsive efficiency.
Despite the increased efforts and contributions in this field, investigation on the parameters that result
in performance enhancement of flexible systems remains essential for the development of successful
engineering applications in the future.

Especially for fluid flow problems at high Reynolds numbers, moderate angles of attack and
Strouhal number, which is the operating regime for marine thrusters, potential-based methods have
proven to be suitable for the study of elasticity effects on thrust production. In that sense, lower-fidelity
and cost-effective inviscid fluid flow simulations are a useful tool in the preliminary design phase
of biomimetic thrusters, where emphasis is given on parametric studies, whereas high-fidelity CFD
simulations, see, e.g., [37], are more computationally intensive and resource demanding compared to
potential-based solvers. A direct comparison between the two approaches can be found in [38].

The scope of the present work is to propose a non-linear fully coupled BEM–FEM scheme for
the solution of the FSI problem of chord-wise flexible flapping foils operating as marine thrusters,
including thickness and flexural rigidity profile variation. The major contribution of this work is that
the developed method and software could serve, after enhancement and further validation, as a useful
cost-effective tool for the preliminary design and optimum control of flexible biomimetic thrusters.
Although the proposed cost-effective method is less accurate than high-fidelity CFD methods at specific
regions of the operational parameters (large angles of attack and Strouhal number), it is suitable for the
investigation of the effects of flexibility on the propulsive performance of such systems, the accurate
prediction of hydrodynamic loads as well as the structural response of the foil.

In the present formulation, the flexible foil performs prescribed oscillatory motions and is
free to deform under inertial and reactive forces caused by its motion and hydrodynamic pressure.
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The hydro-elastic analysis is based on a non-linear time domain boundary element method (BEM) for
the unsteady lifting flow problem and a high-order finite element method (FEM) for the prediction
of the deformed body geometry using the Kirchhoff–Love thin plate theory for cylindrical bending
under plane strain conditions. The foil is considered clamped at a position along chord length, while
its trailing edge (TE) and leading edge (LE) act as free ends. The structural and hydrodynamic aspects
of the problem are coupled in an implicit manner, encapsulating forms of non-linearity.

The structure of the paper is as follows: In Section 2, we describe the physical problem of a
flexible flapping-foil thruster. Section 3 presents the mathematical formulation of the hydromechanical
problem and Section 4 the numerical methods as well as the proposed BEM–FEM coupling schemes.
In Section 5 we present numerical results consisting of a convergence study and comparisons of the
method with experimental data. The effects of elasticity over a range of design parameters, including
Strouhal number, heaving and pitching amplitudes are presented and discussed in a series of parametric
numerical studies, illustrating that chord-wise flexibility and flexural rigidity profile variations can
significantly improve the propulsive efficiency of the biomimetic thruster. Conclusions and a short
discussion are presented in Section 6.

2. Problem Description

In the present work we consider the unsteady motion of a large-aspect-ratio rectangular foil with
chord length c and thickness profile τ(x), see Figure 1. In general, a foil made of flexible material bends
and twists in all directions. However, for large-aspect-ratio foils under the assumption of cylindrical
bending, spanwise deformations are neglected. In this work, our aim is to predict the inertia and
fluid-driven chord-wise deformations of a foil that undergoes large general motions. The following
Cartesian coordinate systems are introduced in this work:

• the space-fixed frame (x, z), with respect to which the foil moves in the negative direction of
x− axis with constant cruising speed U

• the body-fixed (non-inertial) (x′, z′) positioned at the foil’s center of rotation with x′ − axis in the
direction of the un-deformed chord line

• the body-fixed (non-inertial) (x′′ , z′′ ) position at the leading edge (LE). This frame is exclusively
used for the structural response problem.J. Mar. Sci. Eng. 2020, 8, 56 4 of 26 
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Figure 1. Basic notation: (a) flexible flapping-foil kinematics with respect to a space-fixed Cartesian
coordinate system (x, z) and (b) thickness profile in a body-fixed cartesian coordinate system (x”, z”).

Additionally, the foil is subjected to a combination of harmonic heaving h(t) and pitching
θ(t) motions,

h(t) = ho sin(2π f (t− to)), θ(t) = θ sin(2π f (t− to) +ψ), (1a)

where ho,θ denotes the motion amplitudes, ψ the phase difference and f the oscillation frequency. In
that sense, the effective angle of attack ae f f is

αe f f (t) = arctan[
.
h/U] − θ(t). (1b)
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For the hydrodynamic performance of flexible oscillating foils with large aspect ratio, the following
modelling parameters identify as primary: (a) the non-dimensional heaving amplitude ho/c; (b) the
feathering parameter (ratio of pitching angle θ(t) compared to the maximum angle of attack induced
by the heave motion αe f f (t)); (c) the phase angle between heave and pitch ψ; (d) the relative position
of the pitching axis xR (center or rotation) and (e) Strouhal number as a measure of unsteadiness
St = f A/U, where f is the flapping frequency, A = 2ho is the nominal trailing edge amplitude, see,
e.g., [15]. In this study, the characteristic flexural rigidity E/ρsgc is also introduced, with ρs denoting
the material density and g the acceleration of gravity.

3. Mathematical Formulation

To investigate the coupled FSI problem, we initially consider the hydrodynamic and the structural
response problems independently. The former focuses on the transformation of the fluid flow around
the foil and the other on the determination of the structural response of the body under excitation.
Coupling is achieved through the fluid-induced structural deformations and subsequent nonlinear
variation of the body boundary condition governing the hydrodynamics.

3.1. Structural Dynamics of the Foil

The foil is represented by a perfectly elastic, homogeneous and isotropic thin elastic plate.
The dynamic structural response of the plate under cylindrical bending is modelled using the classical
plate theory (CPT) based on the Kirchhoff–Love hypothesis [39]. For the formulation, we consider the
body-fixed coordinate system, in Figure 1b, positioned at the leading edge (LE), such that the x′′−plane
coincides with the geometric mid-plane of the plate and z′′−axis is pointing upwards. The domain in
this formulation is Ω = [xLE, xTE], and the plate’s fabrication is assumed to be symmetric about the
mid-surface. The governing equation of the initial boundary value problem (IBVP) with respect to the
transverse displacement on the mid-plane is as follows

m(x) · ∂ttw(x; t) + ∂xx(D(x)∂xxw(x; t)) = q(x; t), x ∈ Ω, t > 0, (2)

q(x; t) = 0.5ρ f U2δCp −m(x)
(
x

..
θ(t) +

..
h(t) cosθ(t)

)
, (3)

where m(x) = ρsτ(x) denotes the mass distribution, ρ f the fluid density, D(x) = Eτ3/12(1− v2) the
flexural rigidity, v Poisson’s ratio and E Young’s modulus. The first term in Equation (3) consists of the
fluid-driven forces and the second of the inertia driven ones. For the fluid-driven forces, δCp denotes the
non-dimensional pressure difference between the upper and the lower sides of the foil supplemented
by the unsteady hydrodynamic problem, see Section 3.3. The inertia-driven (or fictitious) forces are
included in the modelling due to the non-inertial motions enforced at the body-fixed reference; see,
e.g., [27].

The thickness profile of the foil has finite values at the leading (LE) and trailing edge (TE), which
is assumed to be 0.02% of the foil’s maximum thickness. Regarding the boundary conditions, the
foil is assumed to be clamped at xR, with the leading and trailing edges remaining free from loading.
The center of rotation is assumed to be fixed with zero deflection and slope.

w(x; t)
∣∣∣
x=xR

= ∂xw(x; t)
∣∣∣
x=xR

= 0. (4)

Additionally, at the free edges, conditions of vanishing moment and shear force are applied,
as follows

D(x)∂xxw
∣∣∣
x=xLE

= ∂x(D(x)∂xxw)
∣∣∣
x=xLE

= 0

D(x)∂xxw
∣∣∣
x=xTE

= ∂x(D(x)∂xxw)
∣∣∣
x=xTE

= 0.
(5)
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supplemented by the following initial conditions,

w(x; t)
∣∣∣
t=0 = ∂tw(x; t)

∣∣∣
t=0 = 0. (6)

The equivalent weak formulation of the IBVP can be derived by multiplying Equation (2) by the
test functions ϕ(x; t) ∈ H2(Ω) and performing integration by parts using the appropriate boundary
conditions in Equations (4) and (5), see, e.g., [40]. The variational problem is formulated as follows.
Find w so that ∀ϕ ∈ H2(Ω) it holds,∫ L

0
∂xxϕD(x)∂xxwdx +

∫ L

0
ϕm(x)∂ttwϕdx =

∫ L

0

(
qhydro + qinertial

)
ϕdx, (7)

and
〈
w(x, 0),ϕ

〉∣∣∣
L2(Ω)

=
〈
∂tw(x, 0),ϕ

〉∣∣∣
L2(Ω)

= 0, where
〈
ϕ1,ϕ2

〉∣∣∣
L2(Ω)

=
∫ L

0 ϕ1,ϕ2dx denotes the L2(Ω)

inner product.

3.2. Modelling the Fluid Flow around the Foil

The mathematical formulation of the hydrodynamic problem is based on the theory of
incompressible, inviscid, potential flow under the assumption that the rotational part of the fluid flow is
contained in the trailing vortex sheet. The flow region D ⊆ IR2 is an open domain with time-dependent
boundaries assumed to be smooth everywhere except the TE ∂D(t) = ∂DB(t) ∪ ∂DW(t). The first
component ∂DB(t) refers to the foil’s deformable exterior surface and the latter ∂DW(t) to the trailing
vortex sheet with respect to the earth-fixed reference frame, see Figure 2. The body-fixed Cartesian
coordinate system denoted by (x’, z’) fixed at the foil’s centre of rotation ro, along chord length with no
inclination, undergoes large general motions. In the present work the flexible large-aspect-ratio foil is
fully submerged into the surrounding fluid, while its fabrication is symmetric to the camber line. It is
important to note that the camber line is free to deform under the fluid-driven loads.
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The governing equation for the potential field is,

∆Φ(x; t) = 0, x = (x, z) ∈ D, (8)

supplemented by the no-entrance boundary condition,

∂nΦ(x; t) = VB(x; t) · n(x; t), x ∈ ∂DB, (9)

where ∂nΦ(x; t) = ∇Φ(x; t) ·n denotes the normal derivative, with n the unit normal vector on the body
and VB the instantaneous velocity of the body due to oscillatory motions and elastic displacements.
We treat the above as an initial value problem, while it is assumed that the disturbance potential and
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velocity vanish at a large distance from the body. On the trailing vortex sheet, the following kinematic
and dynamic conditions must hold,

∂nΦ+
W(x; t) = ∂nΦ−W(x; t), x ∈ ∂DW , (10)

p+W(x; t) = p−W(x; t) , x ∈ ∂DW , (11)

with superscripts {+,−} denoting the upper and lower side of the wake, respectively, stating that the
pressure pW and normal velocity ∂nΦW are continuous through the wake ∂DW . Using Equations (10)
and (11) in conjunction with Bernoulli’s theorem

p(x; t)
ρ

+ ∂tΦ(x; t) +
1
2
[∇Φ(x; t)]2 = 0, x ∈ ∂D, (12)

we obtain
DµW(x; t)

Dt
= 0, x ∈ ∂DW , (13)

where µW = ΦW = Φ+
W −Φ−W is the potential jump on the wake and D/Dt = ∂/∂t + Vm · ∇ the

material derivative based on the mean velocity Vm = 0.5(∇Φ+ +∇Φ−) on the trailing vortex sheet.
Under this approach, ∂DW evolves in time as a material curve, whose motion is part of the solution
introducing an implicit non-linearity. In the present study, a time-stepping method (TSM), namely
the free wake method, is employed for the trailing vortex sheet modelling. The generated vortex
curve emanates parallel to the bisector of the TE, and the hydrodynamics of the freely moving- trailing
vortex sheet is based on [41], where the position of the vortices evolves in time and using the unsteady
wake rollup mollifier filtering technique [42]. In Figure 3, we present a comparison between the
time-evolution of the free wake trailing vortex sheet and the simplified wake model, see [43]. The latter
assumes that the vortices remain were shed. This linearization provides satisfactory predictions on
integrated quantities such as the thrust, lift and moment coefficients in cases of low to moderate
unsteadiness; see, e.g., [42,44].
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simplified wake model (upper) and the free wake model (lower) are shown with the blue vectors
denoting the potential jump. In the lower figure the simplified wake model (dashed line) is included
for comparison purposes.

The study of lifting flows around hydrofoils in the context of potential theory requires another
condition to be enforced on the trailing edge. In the present work we implement a nonlinear
pressure-type Kutta condition. This condition requires the pressure difference at the trailing edge (TE)
to be zero, see, e.g., [44],

∂t
(
Φ+
−Φ−

)
+ 0.5

(
∇Φ+

TE −∇Φ−TE

)(
∇Φ+

TE +∇Φ−TE

)
= 0. (14)
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Applying the representation theorem to Equations (8)–(11), for every point x0 ∈ ∂DB the following
boundary integral equation (BIE) is obtained,

1
2 ΦB(x0; t) +

∫
∂DB(t)

ΦB(x; t)∂nG(x0
∣∣∣x)ds(x) =

=
∫

∂DB(t)
(VB · nB)G(x0

∣∣∣x)ds(x) −
∫

∂DW(t)
ΦW(x; t)∂nG(x0

∣∣∣x)ds(x),
(15)

with ΦW = Φ+
W −Φ−W = µW , (16)

where b(x; t) = VB · nB, and G(x0
∣∣∣x) denotes the fundamental solution of the Laplace equation

G(x0|x) =
1

2π
ln r(x0|x) , r = |x0 − x| . (17)

Next, ∂nG(x0
∣∣∣x) denotes the directional derivative and µW the potential jump or dipole intensity

on the wake, i.e., a quantity that changes over time, thus representing the history of circulation.

3.3. Hydrodynamic Pressure and Force

From Equation (12) we can derive the non-dimensional pressure coefficient along the
body boundary,

CP = (p− p∞)/(0.5ρU2), (18)

where p∞ stands for the ambient pressure at infinity. The forces and moments excited on the foil are
given below in the form of non-dimensional coefficients for the instantaneous lift, thrust and moment,
respectively

CL = L(t)/
(
0.5ρU2c

)
= −

1
c

∫
∂DB

(Cp · n) · ŷds, (19)

CT = T(t)/
(
0.5ρU2c

)
=

1
c

∫
∂DB

(Cp · n) · x̂ds, (20)

CM = M(t)/
(
0.5ρU2c2

)
= −

1
c2

∫
∂DB

(Cp · n) · r(s|s∗; t )ds, (21)

where r(s|s∗; t ) denotes the reference vector for moment calculation. In addition, the instantaneous
power input coefficient is defined as

CPin(t) = Pin(t)/
(
0.5ρU3c

)
, (22)

Pin(t) = L(t)
.
h + M(t)

.
θ . (23)

The Froude efficiency is calculated as follows, where the bar denotes the mean value in time

η = UT/Pin = CT/CPin. (24)

4. Numerical Methods

4.1. Finite Element Method (FEM)

4.1.1. Discretization Scheme for FEM

For the numerical solution of the variational problem defined by Equation (7), the domain of
interest is discretised, while the unknown response is approximated by 5th order Hermite polynomials.
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The employed Hermite element features three nodes and six degrees of freedom. Hence, approximate
solutions are taken as,

wh =
6∑
i

wh
i (t)Hi(x), (25)

where wh
i (t) denote the time-dependent nodal unknowns and Hi(x) are the Hermite shape functions.

A second order system of ODEs is derived when the approximate solution in Equation (25) is
substituted into a discretized Equation (7) and the resulting formula is tested with the shape functions.
Finally, the discretized system is written in matrix form as,

Mglob
..
U+KglobU=F, (26)

where Mglob, Kglob are the global mass and stiffness matrices of dimension N T, respectively, Fglob is the
global load vector and U is the vector containing the nodal unknowns for the partitioned domain Ωh.
Finally, NT refers also to the total degrees of freedom (DOFS). The global load vector in our study of
chord-wise flexible foil introduces an implicit non-linearity to the problem through the fluid-driven
term, see Section 3.1. The integrals appearing in the coefficients of Equation (26) are calculated by
Gaussian quadrature. Details concerning the numerical implementation of the FEM scheme can be
found in [39]. The addition of the proportional damping terms yields an extended global equation

Mglob
..
U+C

.
U + KglobU=F, (27)

C=a1Mglob + a2Kglob, (28)

where α1,α2 denote the proportional (or Rayleigh) damping coefficients. In the present work, these
coefficients are approximated using the procedure described in [45] and adjusted based on comparisons
with previous experimental work; see Section 5.3.

4.1.2. Time Integration

We proceed with implementing order reduction in Equation (27) and deriving the following
system of non-linear first order differential equations,

A
.

Q = BQ + F, Q = [U
.

U
]T

, (29)

where A =

[
0
−I

Mglob
0

]
,B = −

[
Kglob

0
C
I

]
,F=

[
Fglob

0

]
and the identity matrix denoted as I. For

numerical time integration of Equation (29) we use the Crank–Nicolson time integration scheme,(
A−

1
2

∆t ·B
)
Q(tn+1) −

(
A +

1
2

∆t ·B
)
Q(tn) −

1
2

∆t[F(tn+1) + F(tn)] = 0. (30)

4.2. Boundary Element Method (BEM)

4.2.1. Boundary Integral Equation (BIE) & Discretization

Following a low-order panel method, see, e.g., [46], the boundary ∂D is decomposed into piecewise
linear boundary elements. Concerning the representation of the potential, its normal derivative and
the potential jump at each time step are assumed to be represented by piecewise constant distributions,
as follows,

Φ(x; t) = Φi(t), i = 1 . . . , NB,
∂nΦ(x; t) = ∂nΦi(t), i = 1 . . . , NB,
µW(x; t) = µWk(t), k = 1 . . . , NW(t).

(31)
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Particularly, the boundary element on the wake that is closest to the TE is denoted as Kutta
element. Finally, following a collocation scheme, the BIE in Equation (16) is satisfied in a finite number
of points (collocation points), and in order to avoid singularities, the centroids of the elements have
been chosen as collocation points. The discretized BIE is as follows,

A ·Φ = S · b + W · µW + WKµW1, (32)

where
A =

{
δi j
2 + Bi j

}
,S =

{
Ai j

}
, i ∈ {1, . . .NB

}
, j ∈ {1, . . .NB

}
,

W =
{
−Bik

}
, WK =

{
−Bi1

}
, i ∈ {1, . . . , NB}, k ∈

{
2, . . . , NW(t)

}
.

In the above equations, δi j is the Kronecker delta, Φ = {ΦBi},b = {∂nΦBi},µW =
{
µWk

}
. In the

following sections we will denote with bold the quantities containing the values of piecewise constant
hydrodynamic functions on the panels at various parts of the boundary. For the induction factors
it holds

Ai j =

∫
panel j

Gs(xi
∣∣∣x)dS (x), Bi j =

∫
panel j

∂nGs(xi
∣∣∣x)dS (x). (33)

In the case of straight-line panels, the integrals in Equation (33) are calculated analytically, see,
e.g., Kress [47], Katz-Plotkin [48]. Multiplying Equation (32) with A−1 we obtain

Φ = D · b + P · µW + ZµW1, (34)

D = A−1S, P(µW) = A−1(W · µW), Z = A−1WK. (35)

Equation (34) denotes the Dirichlet-to-Neumann (DtN) operator that sets a mapping between
the boundary values of the potential and its normal derivative. In the present work we propose
two approaches for the solution to the hydrodynamic problem based on the use of BIE presented in
Equations (34) and (35).

4.2.2. Solution Schemes

The unsteady hydrodynamics problem is the core of the coupled BEM–FEM numerical scheme,
as presented in Section 4.3 that follows. The numerical treatment of the coupled FSI problem is
quite computationally demanding, and for that reason, we propose the use of the two solution
approaches developed for this problem, based on Strouhal number. For low-frequency simulations
with Str < 0.25, we employ the least computationally demanding methodology, a BEM based on
the Adams–Bashford–Moulton scheme (BEM–ABM). For problems of high unsteadiness, a more
numerically stable and accurate methodology is used, a BEM based on a Newton–Raphson scheme
(BEM–NR). Details regarding the behavior of these methodologies are presented below in Sections 5.1
and 5.3.

(i) BEM–ABM: The DtN operator, derived from the BIE, acts as a constraint to the dynamical
system evolution equation that is constructed using the pressure-type Kutta condition. We consider
µW1 as the dynamic variable of the problem, and thus, the formulation allows for the treatment of
an initial value problem (IVP). In order to express the pressure-type Kutta condition as a function of
υ = µW1, we use the DtN map in Equation (34), in conjunction with the discretized form of Equation
(14), to obtain a (spatially and temporarily) nonlocal differential equation, with explicit and implicit
nonlinearities with respect to υ = µW1. The latter is finally put in the following form,

dυ
dt

= f(υ), υ(to) = υo, (36)

f(υ) =
−1 d()

dt
· υ+

−1 d(D · b + P)
dt

+
N(υ) + L(υ)

, (37)
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where L(µW1), N(µW1) are linear and non-linear terms coming from the discretized version of the
pressure-type Kutta condition, D = {D}i j

i=NB
i=1 is a vector and P = Pi

i=NB
i=1 , Z = Zi

i=NB
i=1 are scalars.

Note that Ψ symbolizes the difference of a function Ψ at the trailing edge. For the numerical solution
of the IVP Equations (36) and (37), we implement a higher-order Adams–Bashford–Moulton (ABM)
scheme that provides accuracy, stability and efficiency. The following scheme requires the calculation
of only two derivative quantities at each time step and has error of order (∆t5), where ∆t is the time
step. More details about the evolution of Equations (36) and (37) and the use of the Adams–Bashford
numerical scheme can be found in [49].

(ii) BEM–NR: The BIE along with the discretized form of the pressure-type Kutta condition,
detailed in Appendix A, is used to construct the complete system of equations, with the boundary
fields ΦB and µW1 as unknowns. A set of NB + 1 equations can be solved for the unknown values of
ΦBi and µw1 at each time step, which can be written in a compact form

f(x) = 0, x = [Φ1 . . . Φ µw1 ]
T. (38)

For the present problem, a Newton–Raphson (NR) method is implemented at each time step as

xn+1 = xn − J(xn)
−1f(xn), (39)

where J(xn)
−1 denotes the inverse of the system’s Jacobian, which can be analytically calculated for

the present formulation, see Appendix B. Finally, the BIE can be used for the calculation of Φ in
the domain.

4.3. Non-Linear BEM-FEM

The fluid dynamic equations and the structural response are treated numerically with the same
temporal discretization. The BEM approximates the solution to the unsteady hydrodynamic problem
at each time step and provides predictions for the pressure and velocity fields. The pressure difference
between the upper and lower sides of the foil acts as the fluid-driven load for the structural problem
treated by FEM. By utilizing the proposed iterative scheme (coupling), the BEM solver also receives
data from the FEM to re-evaluate (a) the foil-body geometry and (b) the velocities for the no-entry
boundary condition at each iteration loop to finalize the solution approximation at each time step of
the simulation.

The FSI is implicitly non-linear, which is inherent to the present passive deformation problem.
The forcing term in the right-hand side of Equation (2) is dependent on the mid-plane deformation,
which coincides with the foil’s camber line and vice versa. Thus, the pressure forcing term should
be formally written as q(x, t; w). In that sense, the coupling mechanism between the two solvers is
introduced through the no-entrance boundary condition, see Equation (9). The instantaneous velocity
for the latter boundary condition is the following

VB = Vrigid + ∂tw · nrigidwith nrigid = [− sinθ(t), cosθ(t)]T, (40)

where Vrigid is the velocity due to the oscillatory motions of a rigid foil, and the second term is
deformation velocity (as calculated in the body-fixed reference frame with the FEM solver projected
to the previously un-deformed camber line). The unit normal vector nrigid = [− sinθ(t), cosθ(t)]T

depends only on the pitching motion, see, e.g., [27] for a similar approach. For the structural response
problem, Equation (30) is written in a more compact form as,

G(Qn+1) = 0. (41)
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For the solution of Equation (41), we employ a Newton–Raphson iterative scheme. Having
determined an initial guess Qn+1

0, the unknown vector is recursively approximated using

Qq+1
n+1 = Qq

n+1 − J−1
(
Qq

n+1

)
·G

(
Qq

n+1

)
, q = 1, 2, . . . , (42)

where J is the Jacobian of the function G, the n-index refers to the time marching and q to the
Newton–Raphson iterations. The initial guess can be obtained under various assumptions. In the
present version of the computational code, the foil is assumed to be un-deformed at the beginning of
the simulations, and the calculation of Qn

0 is obtained with the (a) geometry and (b) velocity field data
from the previous time step.

The calculation of the Jacobian matrix requires knowledge of the partial derivatives of the scalar
components Gi(Q), i = 1, . . . , 2NT of the function G(Q), where NT denotes the total degrees of freedom
(DOFs) for the FEM and depends on chosen shape functions and the boundary conditions (BC).
For example, for discretization with Nelem = 5, and the BC presented in Section 3.1, the total DOFs
are NT = 20. For the numerical approximation of the partial derivatives we implement a central
difference scheme,

∂Gi
∂Q j

≈

Gi
(
Q j + ε j

)
−Gi

(
Q j − ε j

)
2ε j

, (43)

where ε j is sufficiently small and in practice it is selected as a small percentage of
∣∣∣Q j

∣∣∣. Therefore, by

defining a perturbation vector εn
q =

[
ε

q
1, ε2

q, . . . , εq
2N

]T
we have

J(Qn+1
q) ≈

[
G

(
Qq

n+1 + ε
q
n+1

)
−G

(
Qq

n+1 − ε
q
n+1

)]
/2εq

n+1. (44)

5. Results

Regarding the BEM solver, as presented in Section 4.2 for the hydrodynamic analysis of rigid
flapping foils, extensive validation against experimental data as well as calculations concerning the
solver’s numerical performance over a range of motion parameters can be found in [49] and [37].
An indicative comparison of the 2D-BEM and experimental data in the case of a rigid flapping
foil is shown below in below in Section 5.2, used as a reference for illustration of the effect of
elastic deformation.

As concerns the accuracy of the present FEM solver, as a first example results concerning the
free vibration analysis of tapered cantilever beams with taper ratio a, are considered. The thickness
distribution along the beam is linear. The relative error for the first five eigenfrequencies, between the
present FEM for a mesh of Nelem = 15, and the analytical solution from [50], is listed in Table 1 for two
values of the taper ratio. The present method results are in excellent agreement with reference values
and are further enhanced with refined discretization.

Table 1. Modal analysis for double-tapered cantilever beams.

Mabie et al. [50] Relative Error with FEM (% ×10−3)

frequency α = 5.0 α = 10.0 α = 5.0 α = 10.0

Ω1 30.9820 72.0487 0.1451 0.0231
Ω2 91.9273 186.802 0.0410 0.2007
Ω3 199.1682 371.238 0.0197 0.1413
Ω4 356.2088 635.049 0.0198 0.1609
Ω5 564.1394 981.657 0.0835 0.5628

Another example concerns the static behavior of cantilever beams of length L = 10 m of variable
thickness under tip load forcing F = −100 kN; see [51]. In Figure 4, we present a comparison between
the FEM and data obtained from [51] regarding the transverse displacement. Finally, the FEM solver
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is validated against a dynamic test case of a cantilever beam of a constant thickness profile, under
transverse dynamic tip loading F. The beam’s response in terms of tip transverse displacement profile
is compared in Figure 5 against the analytic solution presented in [52].
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5.1. Convergence Characteristics of the Numerical Scheme

In this section, results concerning the convergence characteristics of the proposed numerical
schemes are presented. To begin with the hydrodynamic problem, we present in Figures 6 and 7 the
relative error concerning the calculated thrust coefficient and the efficiency of a rigid flapping foil
against the time discretization parameter ∆t/T and the number of elements NB subdividing the foil
contour. The former represents the ratio of the time stepping over the motion’s period and the latter the
characteristic panel length on the hydrofoil, whereas the contours correspond to constant values of the
ratio λ = U∆t/∆x. The results were obtained using both solver options, as presented in Section 4.2.2,
including free wake modelling. Both numerical schemes converge for rigid flapping-foil simulations,
i.e., the relative error is close to zero for the finest space and time discretization. In Figure 6, we can
observe that a coarse discretization in time corresponds to greater values of relative error (up to 4%).
For the propulsive efficiency, the relative error is significantly lower for discretization domain (up to
0.3%). It is important to note that the Adams–Bashford method is not as stable, since simulations that
correspond to a coarse discretization in time and a finer mesh in space lead to numerical instabilities,
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which explains the non-symmetric mesh-grid. Particularly, for λ = U∆t/∆x = 3.5,∆t/T = 0.35%, the
error is of the order of 0.5%, and thus the latter values are selected for the simulations.
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Figure 6. Relative error (%) of (a) the thrust efficiency coefficient CT (left) and (b) the propulsive
efficiency ηF (right) with respect to the value of the finest discretization simulated with BEM–ABM.
The error is denoted by the color-bar, and the contours display the iso-λ values. For the following
kinematic parameters ho/c = 0.75, αe f f = 22◦, Str = 0.2, xR = xLE, ψ = −90◦.
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On the other hand, the BEM based on the Newton–Raphson iterative scheme shows a difference
behaviour. In Figure 7, the relative error has its maximum value of 1% and coincides with the
region of coarse mesh both in space and time. This behaviour is a significant advantage that
this numerical scheme shows quantitively along with the fact that it is more stable. Similarly, for
λ = U∆t/∆x = 2.8,∆t/T = 0.85%, the error is of the order of 0.25%, and thus the latter values are
selected for simulations.

A convergence study for the case of a chord-wise flexible flapping foil is presented in Figure 8.
These simulations are obtained with the proposed coupled BEM–FEM scheme based on the
Newton–Raphson iterative scheme for the fluid-flow problem. The region that corresponds to
greater values of the relative error appears for simulation with a coarse discretization in time. The same
behaviour is also observed for the propulsive efficiency. The iso-λ curves for the coupled BEM–FEM
are not correlated to relative error minimization regions; therefore, we introduce ∆t/T < 0.45 as a
parameter constraint that is used for the numerical results that follow. In the sequel, numerical results
obtained by the present model are compared against experimental measurements and data from other
methods for validation.
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5.2. The Case of a Flexible Flapping Foil

The effects of chord-wise flexibility on the propulsive efficiency of two-dimensional flapping
foils have been investigated experimentally in [32], showing that when properly selected, it leads to
significant increase in the efficiency with small loss on thrust compared to the rigid foil. Simulations
were performed for a NACA 0014 flapping foil with xR = 1/3c and the following kinematic parameters
Str = 0.3, αe f f = 15◦, U = 0.4 m/s, ho/c = 0.75, ψ = 90◦. For the flexible foil, the thickness
distribution along chord length coincides with the hydrodynamic shape of the foil, whereas the
material properties correspond to relatively hard rubbers with Young’s modulus E = 3.4617(·107) Pa,
Poisson’s ratio v = 0.4 and material density ρs = 1100 kg/m3.

The time history of flapping motion (pitch and heave), lift and thrust forces for both the rigid
and the flexible foil are shown in Figures 9 and 10, respectively. These results were obtained using
space and time discretization NB = 160, Nelem = 5, TSR = 0.4. For the case of the rigid foil in
Figure 9, the present BEM provides a very accurate prediction of the hydrodynamic forces as was
expected. The experimental data in Figure 10 are also in good agreement with the present numerical
predictions in terms of the time averaged values and the overall periodic behavior of the instantaneous
lift and thrust. In both cases, the proposed method predicts the maximum thrust with 1% accuracy.
The differences in the peak thrust values in Figure 10 are attributed to the non-linear structural
behavior and/or viscous effects, which are not modelled. It is interesting to note here that, in this case,
the maximum displacement is small and occurs at the TE of the foil. Thus, incorporating effects of
chord-wise flexibility, leads to significant enhancement in propulsive efficiency with a slight decrease
of the thrust coefficient.
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Figure 9. Time history of foil pitch and heave against thrust and lift forces for the chordwise rigid foil
with simple harmonic motion and comparison with the experimental data from [32]. (a) Pitch angle, (b)
Heave, (c) Horizontal force, (d) Vertical force of the foil.
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Figure 10. Time history of foil pitch and heave against thrust and lift forces for chordwise flexible foil
with simple harmonic motion profile and comparison with the experimental data from [32]. (a) Pitch
angle, (b) Heave, (c) Horizontal force, (d) Vertical force of the foil.

5.3. The Case of a Flexible Heaving Foil

In order to further validate the present method and illustrate its ability to capture the main
hydro-elastic effects of chord-wise flexible foils, we performed another series of simulations based
on the experimental work of [34], for which case semi-analytical predictions are also available in [35].
In the latter work, the response of flexible plates performing heaving-only motions across a range of
frequencies and heaving amplitudes was experimentally studied.

In this case, a flat plate with material properties D = 0.018 Nm, ρs = 1200 kg/m3 is actuated at
the LE with heaving amplitude ho/c = 0.033, oscillating frequency within the interval ω/ω = [0.3, 8]
and Re = 6000. For a plate immersed in fluid, see [34], it is reported that the first resonance frequency
is equal to ω = 4.71 rad/s, whereas for the same structure in vacuo the corresponding frequency is
estimated to be 14.96 rad/s.

A comparison between the present method and the experimental data from [34] is shown in
Figures 11–14. The trailing edge/leading edge (TE/LE) amplitude response (ATE/ALE) as a function
of the non-dimensional frequency ω/ω is presented in Figure 11a. For comparison purposes we
performed simulations with both solution approaches for the hydrodynamics problem. Particularly,
for the simulations performed with BEM–NR, the following space and time discretization are used:
NB = 140, Nelem = 5, TSR = 0.35. Moreover, the damping terms (Section 4.1.1) were tuned to a =

2.5, b = 0.03. The first coefficient (mass) affects the plate’s response near the first resonance frequency,
while the second coefficient (stiffness) has a more significant role in the higher frequency regime.
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Figure 11. Comparison with experimental data (denoted by circles) from [34] for the case of a flexible
flat plate with D = 0.018 Nm, ho = 0.004 m and Re = 6000: (a) TE/LE amplitude response ratio and (b)
maximum pressure difference recorded at the TE during simulations.
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Figure 12. Pressure coefficient instantaneous distribution comparison between (a) BEM–ABM and (b)
BEM–NR, for the purely-heaving flexible plate with ω/ω = 3. The deformed foil deflection is added
for illustration purposes.
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Figure 13. (a) Phase lag as a function of the frequency and comparison with experimental data (denoted
by black triangles) from [34]. (b) Thrust nondimensionalized by the characteristic elastic force, as a
function of the frequency.
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Figure 14. Envelopes of the foil’s elastic deflection during the last period of motion for two frequency
values, one corresponding to the first resonance (upper figure) and the other (lower figure) for an
intermediate frequency.

It is observed that the present method, based on either the BEM–NR or BEM–ABM, displays general
agreement with the experimental results, especially around the first resonant frequency. Interestingly,
the BEM–ABM provides very accurate prediction up to some values. A second resonance frequency is
also evident in the range of frequency examined, where the elastic response is considerably smaller. In
this case, the behavior of the BEM–ABM becomes less efficient. This is due to the enforcement of the
pressure-type Kutta condition concerning the pressure difference at the trailing edge. The solution
scheme based on the BEM–NR satisfies exactly the pressure-type Kutta condition for all frequencies;
however, the BEM–ABM despite the fine discretization used (NB = 150, Nelem = 5, TSR = 0.05) leads
to a finite pressure difference at the TE, as shown in Figure 11b.
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This is further illustrated in the comparison between the distribution of pressure coefficient in
Figure 2, for the case of BEM-ABM and BEM-NR. The pressure distributions are very similar, leading to
compatible predictions of integrated forces and moments on the foil. However, the calculated pressure
difference at the trailing edge by the BEM–ABM, affects the value of the shed vorticity and produces
error in the numerical solution as the frequency increases further, see Figure 11b.

In this example, for ω/ω > 5, results have been obtained only by the BEM–NR model, and the
second resonant peak is underestimated, a finding that agrees with similar predictions from the work
by [35], which is attributed to the inability of potential-based methods to account for viscous effects
manifesting at higher frequencies. In the present work, a proportional damping is employed, and the
use of a more complex damping model, see, e.g., [27,35], that could further improve the results is left
to be examined in future work.

A successful comparison between the numerical model and the experimental results regarding the
TE/LE phase lag, as observed in the earth-fixed reference frame, is presented in Figure 13a. For higher
values of the frequency, the error in the phase lag prediction increases. This is also the case for the
TE/LE amplitude response ratio in Figure 11a. Nevertheless, the present method predictions are still
within acceptable limits. Moreover, in Figure 13b it is shown that for thrust predictions the two solution
approaches, namely the BEM-ABM and the BEM-NR, for the hydrodynamic problem are in very good
agreement, justifying the hybrid time-integration numerical scheme presented in Section 4.2.2.

Finally, in Figure 14, the deflection plots for time instances in a period of the heaving motion are
plotted. Results are presented for two values of the non-dimensional frequency. We observe that, for
ω/ω = 3, the response of the plate displays a neck at around 2/3 of the chord due to the second plate
mode excitation. These results agree well with the experimental data presented in [34,35].

5.4. Effects of Flexural Rigidity on Froude Efficiency

Carefully chosen flexibility characteristics have the potential to further enhance the propulsive
performance of flapping-foil thrust, as has been reported in [32] and confirmed from the simulations
presented in Section 5.2. To further investigate the effect of flexibility on Froude efficiency and thrust,
additional simulations were performed, and results are shown and discussed in this section. For this
study, a NACA 0012 hydrofoil with c = 0.1 and center of rotation at 1/3c is considered. The kinematic
parameters of the flapping foil are the following Str = 0.3, U = 0.4 m/s, ho/c = 0.75, ψ = 90◦.
The average thrust coefficient and Froude efficiency are studied as functions of the non-dimensional
flexural rigidity E/(ρsgc) for a selection of pitch amplitudes θ = {0◦, 10◦, 20◦, 30◦}. Results are
presented in Figure 15, where it is observed that as Young’s modulus is reduced, the propulsion
efficiency rises. Indeed, an efficiency increase of 6% is observed for θ = 30deg, as compared to the
rigid case. This, however, is at the cost of thrust reduction. Especially, in cases when the kinematic
parameters are not optimized, i.e., purely heaving motion, carefully choosing flexibility has the
potential to enhance the propulsion efficiency considerably. Motivated by the work of [25], we
estimated the maximum effective angle of attack am for the flexible foil based on Equation (1b) with
θe = θ(t) = tan−1[(zLE − zTE)/(xTE − zLE)].

For the most stiff foil with E ∼ 108Pa, the estimated maximum effective angle of attacks, that
correspond to θ = {0◦, 10◦, 20◦, 30◦} are am = {43◦, 33◦, 23◦, 13◦}. Typically a decreasing am leads
to a decrease in thrust and an increase in efficiency for rigid foils. In that sense, the value am = 40◦

corresponding to zero pitching amplitude for the most flexible foil E ≈ 105 Pa explains the behavior
of the results in Figure 15. A qualitative explanation is also provided in Figure 16, where typical
configurations of the instantaneous curvature of the flexible foil compared to the camber line of the
rigid equivalent are presented on the trajectory of the LE presented.
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Figure 15. Propulsive performance of a chord-wise flexible NACA 0012 flapping foil in terms of the
(a) thrust coefficient and (b) Froude efficiency as functions of Young’s modulus for the following
parameters Str = 0.3, U = 0.4 m/s, ho/c = 0.75, ψ = 90◦, xR = 1/3c, c = 0.1 m.
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Figure 16. Typical configurations of the un-deformed (black) and deformable camber line (blue curves)
on the trajectory of the leading edge (LE; dashed line) for a purely heaving foil.

In Figure 17, numerical results are presented to illustrate the effect of chordwise flexibility
on the thrust and Froude efficiency over a range of Strouhal numbers with heaving amplitude
h/c = {0.25, 0.5, 0.75, 1.0} as a parameter. The simulations are performed for a flapping NACA 0012
hydrofoil with c = 0.12 m, xR = 1/3c and the rest of parameters: U = 0.3 m/s, θo = 10◦, ψ = 90◦.
The chosen material corresponds to one of the most elastic ones examined before, characterized by
E = 3.45 · 105 Pa. It is clearly observed in this figure that chordwise flexibility leads to decrease of thrust
as Strouhal number increases, especially for higher amplitudes of heaving motion. On the contrary,
flexibility enhances the propulsive efficiency with increasing amplitude of heaving motion and higher
value of Strouhal number.
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flapping foil (solid lines) compared to the equivalent rigid foil (dashed lines). (a) Thrust coefficient and
(b) Froude efficiency for U = 0.3 m/s, θo = 10◦, ψ = 90◦, xR = 1/3c, as functions of Strouhal number.

6. Conclusions

Flapping foils with chord-wise flexibility were studied in this work as unsteady thrusters with
enhanced propulsive performance. To investigate the hydroelasticity effects on the thrust and
propulsive efficiency of such systems, a mathematical model is proposed for the FSI problem. The
fluid flow modelling is based on potential theory, whereas the elastic response of the foil is based
on the Kirchhoff–Love theory for thin plates under cylindrical bending. A non-linear fully coupled
BEM–FEM numerical scheme is developed to simulate the time-dependent structural response of the
flexible foil undergoing large prescribed general motions. The proposed iterative scheme ensures
stability and convergence of the coupled numerical simulation, as proven by the convergence study
shown in Figures 6–8. The present method is also extensively compared against experimental data for
validation, demonstrating its ability to capture the main aspects of the FSI problem.

The proposed method has been successfully compared with experimental data found in [32] for
the case of a chord-wise flexible foil performing combined heaving and pitching motions; see Figures 9
and 10. The results indicate that incorporating chord-wise flexibility in flapping-foil design could lead
to 13% enhancement of propulsive efficiency, as compared to rigid foils.

The response of flexible plates performing heaving-only motions across a range of forcing
frequencies and heaving amplitudes, found in the experimental work of [34], has also been studied
for comparison purposes. These numerical results were in good agreement with the experimental
measurements for various aspects of the non-linear dynamic system; see Figures 11–14. The present
method is shown to satisfactorily predict both the TE/LE amplitude response as a function of the
oscillating frequency, see Figure 11a, and the phase lag between the LE and TE as reported during the
experiments; see Figure 13a. The first and second resonant frequencies were quite accurately predicted;
however, our model slightly underestimates the TE amplitude response near the second resonance.
Furthermore, the envelopes of the foil’s elastic deflection, see Figure 14, agree with the predictions
presented in the work of [35]. In that sense, the non-linear BEM–FEM scheme is shown to successfully
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predict the hydrodynamic loads as well as the fluid-driven deformation of flexible flapping foils with
general thickness profile and flexural rigidity.

Motivated by the propulsive performance enhancement offered by flexible foil-thrusters, we
performed parametric studies, see Figures 15 and 17, in order to further investigate the effects of elasticity
over a range of design parameters, including Strouhal number, heaving and pitching amplitudes. The
results illustrate that chord-wise flexibility and flexural rigidity profile variations can significantly
improve the propulsive efficiency of the biomimetic thruster. Particularly, it is shown in Figure 15
that as flexural rigidity is reduced, the propulsion efficiency rises, leading to an efficiency increase as
large as 6% observed for θ = 30deg, as compared to the rigid case. This, however, is obtained at the
cost of thrust reduction. The results in Figure 17 illustrate that chord-wise flexibility leads to a more
pronounced decrease in the thrust as Strouhal number increases, especially for higher amplitudes of
heaving motion. On the contrary, flexibility enhances the propulsive efficiency for high amplitudes of
heaving motion and Strouhal numbers.

To conclude, future work is planned towards the detailed investigation and systematic examination
of the structural response of the flexible foil over a range of design and operation parameters, including
flexural rigidity profiles inspired by nature. Additional comparisons and benchmark studies between
the present non-viscous BEM–FEM scheme and high-fidelity viscous CFD solvers is also left for future
work. Direct extensions include modelling various nonlinearities associated with large deflections and
viscous effects [37,53]. Another aspect concerns the code optimization using GPGPU programming
and message passing interface (MPI) techniques to significantly reduce computational time and cost,
see, e.g., [13,38,44]. This step will allow three-dimensional modelling as well as shape and material
optimization, supporting applications concerning realistic designs. Finally, the present method could
also find useful application to calculate the flexibility effects on the performance of novel marine
renewable energy devices based on oscillating foils; see [13].
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Abbreviations

BEM Boundary element method
FEM Finite element method
TE Trailing edge
LE Leading edge
GIM General iterative method
TSM Time stepping method
IBVP Initial boundary value problem
IVP Initial value problem
BIE Boundary integral equation
c Chord length
g Nominal gravitational acceleration
xR Location of pivot axis from leading edge
h Heave response
θ Pitch angle
θ Pitch amplitude
h Heave amplitude
ω Angular frequency of motion
ρ f Water density
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ρs Material density
m Foil mass
a, b Proportional damping coefficients
L(t) Instantaneous lift force
η Froude efficiency
Φ Potential field

Appendix A

The discretized pressure-type Kutta condition is given by the following set of equations:

d(Φ −Φ1)

dt
= L + N (A1)

L =
(g1 − g2)τ1

2d1

(
Φ,2 −Φ,1

)
−
(g1 + g2)τNB

2dNB−1

(
Φ, −Φ,NB−1

)
−

g1g2
2
− g3 (A2)

N = −
1
2

[
τNB

dNB−1

(
Φ, −Φ,NB−1

)
+
τ1
d1

(
Φ,2 −Φ,1

)]
·

[
τNB

dNB−1

(
Φ, −Φ,NB−1

)
−
τ1
d1

(
Φ,2 −Φ,1

)]
(A3)

g1 = (b · n)B,NB
+ (b · n)B,1 −VB,NB −VB,1 (A4)

g2 = (b · n)B,NB
− (b · n)B,1 −VB,NB + VB,1 (A5)

g3 =
1
2

[(
VB,1

)2
− (VB,NB )

2
]

(A6)

where τ is the unit tangent vector on the body contour defined in the clockwise direction, and d j is the curvilinear
distance between the midpoints of the ( j, j + 1) panels.

Appendix B

A finite difference method (FDM) is used for the temporal and spatial discretization of the pressure-type
Kutta condition in order to form a system of nonlinear equations along with the BIE relation with respect to the
unknown boundary fields ΦBi and µW1 at the vicinity of the trailing edge. The resulting system of equations
can be solved numerically after the appropriate discretization at each time step of the simulation. Particularly, a
backward finite difference scheme in time combined with forward and backward differences in space has been
used for the discretization of the pressure-type Kutta condition in the set of Equations (A7)–(A11) as follows,(

(g1−g2)·c1

2d1
−

3
2∆t

)
ΦB1 −

(g1−g2)·c1

2d1
ΦB2 −
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+ 3

2∆t
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+ 1
2
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dNB

ΦBNB −
cNB
dNB

ΦBNB−1 +
c1
d1

ΦB2 −
c1
d1

ΦB1

)(
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dNB
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cNB
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ΦBNB−1 −
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d1

ΦB2 +
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)
=

= g0 −
g1g2

2 − g3

(A7a)

The linearized form of the above equation is(
(g1−g2)·c1

2d1
−

3
2∆t

)
ΦB1 −

(g1−g2)·c1

2d1
ΦB2 −

(g1+g2)·cNB
2dNB

ΦBNB−1 +
(
(g1+g2)·cNB

2dNB
+ 3

2∆t

)
ΦBNB
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2 − g3

(A7b)

where ck =
(
τx,Bki + τy,Bkj

)
k = 1, NB. In the relations above, τ in the above relations refers to the unit tangent

vector on the body contour defined in the clockwise direction, and d j is the curvilinear distance between the
midpoints of the ( j, j + 1) panels. In addition,

g0 =
4(Φ ,t−∆t −Φ1,t−∆t) − (Φ ,t−2∆t −Φ1,t−2∆t)

2∆t
(A8)

g1 = (b · n)B,NB
+ (b · n)B,1 −VB,NB −VB,1 (A9)

g2 = (b · n)B,NB
− (b · n)B,1 −VB,NB + VB,1 (A10)

g3 =
1
2

[(
VB,1

)2
− (VB,NB )

2
]

(A11)
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Returning now to the discretized form of the boundary integral Equation (38), we derive the following
expression by re-arranging terms, so that for (xi, yi) , i = 1, . . . , NB :

NB∑
j=1

(
δi j

2
+ Bi j

)
ΦBj +

(
Bi1

)
µW1 =

NB∑
j=1

(
Ai j

)
b j+

NF∑
j=2

(
−Bi j

)
µW j, b j = [VB · nB] j . (A12)

In this form, all the quantities in the rhs are known from the prescribed kinematics of the foil and the history
of circulation of the foil that has been evaluated at previous time steps. Equations (A7a) and (A8)–(A12) form a set
of NB + 1 equations, which can be solved for the unknown values of ΦBi and µw1 at each time step. Equations
(A7b) and (A8)–(A12) consist of a linear system of equations that can be solved explicitly for the unknown values,
that is, the initial guess for the solution of the nonlinear system of Equations (A7a) and (A8)–(A12) using a general
iterative method.
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