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Abstract: The aim of this work is to evaluate UAV photogrammetric and GNSS techniques to
investigate coastal zone morphological changes due to both natural and anthropogenic factors.
Monitoring morphological beach change and coastline evolution trends is necessary to plan efficient
maintenance work, sand refill and engineering structures to avoid coastal drift. The test area is
located on the Northern Adriatic coast, a few kilometres from Ravenna (Italy). Three multi-temporal
UAV surveys were performed using UAVs supported by GCPs, and Post Processed Kinematic (PPK)
surveys were carried out to produce three-dimensional models to be used for comparison and
validation. The statistical method based on Crossover Error Analysis was used to assess the empirical
accuracy of the PPK surveys. GNSS surveys were then adopted to evaluate the accuracy of the 2019
photogrammetric DTMs. A multi-temporal analysis was carried out by gathering LiDAR dataset
(2013) provided by the “Ministero dell’Ambiente e della Tutela del Territorio e del Mare” (MATTM),
1:5000 Regional Technical Cartography (CTR, 1998; DBTR 2013), and 1:5000 AGEA orthophotos (2008,
2011). The digitization of shoreline position on multi-temporal orthophotos and maps, together with
DTM comparison, permitted historical coastal changes to be highlighted.
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1. Introduction

The morphology of coastal areas is influenced by both natural phenomena and anthropic activities.
The most characteristic feature of a coastal area is its shoreline, the boundary between land and a
water surface.

Its location varies continuously over time due to different factors which modify the shape of the
beach [1], which can create huge economic problems for the tourist industry. Coastal erosion has
always existed and, over the centuries, has contributed to shaping coastal areas, through the delicate
environmental balance between fluvial regulation and rising sea levels. The increase of anthropic activity
along the coasts has damaged the equilibrium, accentuating the dynamics of erosive—progradation.

The coastal erosion affecting the entire North Adriatic coast puts at risks local infrastructure,
environment and the tourist economy. Italian Regional Authorities, have adopted an “Integrated
Coastal Zone Management Plan” involving strategies based on coastal protection structures, submerged
breakwaters and, as preferred strategy for coastal protection, beach replenishment [2–4].

Over the years, research on strategies for coastal preservation has been carried out. In this context
the role of geomatic techniques is fundamental for mapping and monitoring [5].

Existing shoreline mapping techniques are characterized by different accuracy, expense and
training time requirements.
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Topographic observations and remote sensing methods are the most commonly used techniques
to detect the position of the shoreline, and monitor the shape and extension of coastal areas [6].
Point-based measurements are carried out by means of different measuring procedures with Levels,
Total Stations (TS) and Global Navigation Satellite System (GNSS) instruments.

GNSS surveys (by static, fast static, kinematic, real time kinematic methods) and those carried
out by means of TS (triangulation, trilateration, intersection—resection, traverses, radial sides shots
methods and more generally 3D or 2D networks) together with geometric or trigonometric levelling
require physical contact with the portion of land to be measured. The main limitation of these methods
is the huge amount of time required and the technical difficulties involved in surveying.

The geomatic surveying methods, such as aero photogrammetric surveys [7,8], unmanned
aerial vehicle (UAV) [9–15], remote sensing with satellite images [12,16], airborne light detection and
ranging (LiDAR) [17–22], synthetic aperture radar (SAR) [23,24], video systems [25–29] are widespread
techniques to measure wide areas, generate digital terrain models (DTMs) and maps, and to quantify
coastal changes by multi-temporal comparisons.

The shoreline is constantly changing therefore all the abovementioned remote sensing techniques
are fundamental because allow to acquire synchronous information that can be analysed in laboratory
at a later stage. To verify the efficacy of the beach nourishment works, monitoring topo-bathimetric
surveys are necessary.

The nourishment methods based on the artificial transport of sand in the areas subject to erosion,
can be implemented by land, transporting the sand by truck or taking it from submarine borrowing
areas located offshore and transporting the sand in situ by pipes. Given the high cost of handling
the sand transport, the monitoring interventions must allow the best resolution, with the ease of use
method and an excellent quality/cost ratio.

Due to the high mobility of the sand surface, for natural causes or following human intervention
(e.g., for the protection of the beach touristic infrastructures during the winter), the level of significance
of the comparison between two surveys of the beach surface can be quantified in ±10 cm vertically.
This precision threshold can be achieved, quickly and economically by using UAVs combined with
image matching photogrammetric procedures [30–33] over small-medium sized areas, making this
combination an efficient tool for high resolution investigation for coastal management.

GNSS provides high accuracy coordinates of points and can be used to describe surface and
volumetric changes. GNSS and photogrammetry are complementary because GNSS is fundamental
for solving image orientation procedures and assessing accuracy, while photogrammetry can produce
dense DSMs with radiometric content.

The aim of this work is to evaluate photogrammetric and GNSS techniques for performing 3D
surveys of coastal environments in the context of coastline change studies. The techniques used
have the advantage of carrying out an almost synchronous survey on medium-sized areas with the
required resolution. Three multi-temporal UAV surveys were performed using UAVs. In order to
allow a robust possibility of a quantitative comparison between the surfaces surveyed in subsequent
epochs, the positions of the ground control points (GCPs), were surveyed, by means of a network
real time kinematic (NRTK) service. In this way, in fact, the connection to the international geodetic
reference system is guaranteed by a network of permanent GNSS stations. At the same time, post-
processed kinematic (PPK) surveys were carried out to produce three-dimensional models by means
of interpolations of the tracks used for comparison and validation. DTMs, sections and orthophotos
were obtained through photogrammetry processing with similar geometric resolution. Vectorial
elaborates were numerically compared to understand and quantify the geomorphological changes
while orthophotos were used to highlight variations in the coastal shoreline.

A test was carried out to evaluate the effects of the number and distribution of GCPs used
to orient the blocks of images acquired from the UAV. A subset of GCPs arranged along the same
route was adopted and the differences between the DTMs obtained were analysed. Furthermore,
multi-temporal analysis was carried out by collecting a LiDAR dataset (CC BY-SA 3.0 IT) surveyed in
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2013 provided by “Ministero dell’Ambiente e della Tutela del Territorio e del Mare” (MATTM) within
the context of “Piano Straordinario di Telerilevamento Ambientale” (PST-A), 1:5000 Regional Technical
Cartography (CTR, 1998) Regional Topographic Database (DBTR 2013), and 1:5000 AGEA orthophotos
(2008, 2011) from the GeoER, GIS Office of Emilia Romagna Region, Italy (“Archivio Cartografico
Regione Emilia—Romagna”, https://geoportale.regione.emilia-romagna.it/it).

2. Study Area

The area surveyed is located between the villages of Punta Marina and Lido Adriano, on the
Northern Adriatic coast 7 km away from the city of Ravenna, Italy (Figure 1). The southern jetty of
Ravenna is 7 km to the North. The nearest river is Fiumi Uniti, which flows 3 km south of the area.
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The area studied is approximately 450 m long in the NW-SE direction and 110 m wide. It is a
portion of beach especially chosen to test several geomatic techniques of surveying. Four cross-sections
labelled S1–S4 from North to South (Figure 1) are defined in the study area for the analysis carried out
in this work. S1–S4 are perpendicular to the average shoreline and equally spaced with a distance of
100 m between them.

The area is of considerable touristic interest, as the beach is an important resource for recreation,
and also for research into the engineering of coastal zone management. From a geological point of
view, the beach is characterised by fine sands covering muddy-clayey materials from alluvial deposits
and ancient swamps.

The extension of the beach is a function of river and marine coastal processes influenced by
anthropic activities and natural phenomena. The predominantly erosive tendency of the area is due to
the limited supply of river sediments and is amplified by the rate of subsidence [26,34]. The position of
the coastline is also influenced by tides and winds. As in all of the northern Adriatic, the tides are
strongly asymmetrical, with a diurnal and semi-diurnal component. The characteristic tidal sea-level
variations at Lido Adriano beach are 30–40 cm at neap tide and 80–90 cm at spring tide. The tidal effect
combined with storm surges, and the action of winds can produce significant morphological changes
to the beach [2].

The main winds are Bora and Scirocco [35]. The Bora is a cold, intense wind that comes from
the NE and is more common in winter. The Scirocco is a warm wind that usually comes from the SE
and is typical of the spring and autumn seasons and is one of the main factors responsible for events
associated with high water levels. The beach is protected by offshore coastal protection structures that
minimize erosive processes. To the North and South of the study area there are detached breakwaters
perpendicular to the coast while offshore, semi-submerged barriers are parallel to the coast protecting
the beach.

3. Data Availability

The current dataset of observations was acquired in three steps (2017, 2018, 2019) by means of DJI
Matrice 600 (M600) and Spark UAVs (Figure 2, Table 1) in order to produce DTMs and orthophotos.
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Table 1. Summary of the photogrammetric dataset characteristics.

Data 07/12/2017 25/05/2018 24/05/2019

Camera Model M600_X5 M600_X5 FC1102
Resolution (pixel) 4000 × 2250 4000 × 2250 3968 × 2976
Sensor dimension (mm) 17.3 × 13.0 17.3 × 13.0 6.17 × 4.56
Focal Length (mm) 15 15 4.49
Pixel Size (µm) 4.33 4.33 1.57
N◦ images 450 99 296
Relative height (m) 113 * 66.7 53.1
Mean scale 7533 4447 11826
Ground resolution
cm/pixel 3.26 1.92 1.86

* Maximum flight height of a set of experimental flights on the same area.

These UAVs are multi-rotor systems:

DJI Matrice 600, 525 × 480 × 640 mm, max take-off weight 15.5 kg, with a max. payload of 5.5 kg and
flight time of approximately 30 min, equipped with a DJI M600-X5 camera;
DJI Spark, 143 × 143 × 55 mm, lightened to a weight less than 300g and flight time of approximately 16
min, equipped with a DJI FC 1102 camera.

The on-board digital cameras provide useful imagery for aerial photogrammetric surveys and are
georeferenced with an onboard GNSS receiver, which provides the cameras with positional accuracy
of about 10 m. The three multi-temporal UAV flights (2017, 2018, 2019) were drawn up using an
orthophoto of the area and the relative height of flight was selected to obtain a ground sampling distance
(GSD) of about 2 cm (Table 1). Longitudinal and side image overlapping within photogrammetric
blocks were fixed respectively at 80% and 70%. The direction of the flight strips was established within
the flight planning software in order to minimize the number of images and the time of flight. The
positions of GCPs were surveyed by means of NRTK technique using 50 cm diameter plywood targets,
surveyed before each fly. These GCPs were visible in the images and were adopted to orient the blocks
of images as described in the following paragraph. PPK surveys were carried out, for a direct survey of
crossing profiles of the beach during the 2019 photogrammetric survey, for DTM accuracy evaluations
(Figure 3).
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The accuracies in positioning of RTK, NRTK and PPK methods, in our test conditions, are in the
order of a couple of cm horizontally and 3–5 cm vertically. In order to carry out a multi-temporal
analysis, DTM, maps and orthophotos were collected from the “Ministero dell’Ambiente e della Tutela
del Territorio e del Mare” (MATTM), and from the GeoER, GIS Office of Emilia Romagna Region, (Italy;
Table 2).

Table 2. Summary of the available data used for multitemporal comparison.

Source Date Origin Description Scale Accuracy (m)

CTR 1977–1998 Scan of Traditional map 1:5000 2
DBTR 1997–2013 Cartographic representation of the contents of the DBTR 1:5000 2
AGEA 2008 Orthophotos; GSD 0.5 m; GCPs from CTR 1:5000 1:10000 4
AGEA 2011 Orthophotos; GSD 0.5 m; GCPs from CTR 1:5000 1:10000 4
LiDAR 2013 Digital Surface Model; GSD 2.0 m 0.3

CTR—Regional Technical Map; DBTR—Regional Topographic Database; AGEA—“AGenzia per le Erogazioni in
Agricoltura”; GSD—Ground Sampling Distance (m/pixel); GCP—Ground Control Point.

4. Photogrammetric Analysis

Dense point clouds and orthophotos were generated with a commercial software (Agisoft
Metashape, Professional Edition 1.5.5, Agisoft LLC, St. Petersburg, Russia) which performs automatic
tie point extraction and feature matching with bundle block adjustment [30]. The software is based
on the structure from motion (SfM) algorithms [30–33]. In the first stage an algorithm is applied that
detects points in the source photos which are stable for viewpoint and lighting variation. Secondly, a
descriptor for each point based on its local neighbourhood is generated. These descriptors are used
to detect correspondence between the photos. Intrinsic and extrinsic orientation parameters of the
camera are than solved and refined by bundle-adjustment algorithm.

A self-calibration procedure is used in the image orientation process adopting a unique camera
model for each project, evaluating the interior orientation parameters: Focal length, coordinates of
principal point, lens distortion (K1, K2, K3, p1, p2), affinity and shear parameters. GNSS-assisted
block orientation was applied using as a priori values the GNSS coordinates of the camera projection
centre (PC) locations, stored in the ancillary information of the images contained in the Exchangeable
image file format (Exif) file. A dense surface reconstruction is produced from the aligned images using
processing methods based on pairwise depth map computation.

Finally, after a mesh calculation, texture mapping is applied and then source photos are projected
onto the model (Supplementary Materials, Figures S1 and S2). GCPs were adopted to frame the bundle
block adjustment and to register DTMs in the same datum and mapping projection (EPSG: 25833;
Table 3). The orientation process was based on a set of GCPs uniformly distributed over the study area
(Figure 4).

Table 3. Summary of the Orientation process and DTM characteristics.

Data 07/12/2017 25/05/2018 24/05/2019

GCP 1 n◦ 9 12 9
RMSE 2 (cm) 15 6.3 2.3
DTM 3 resolution (cm) 2.7 4.3 3.3
DTM 3 density (points/m2) 1360 532 903

1 Ground Control Point; 2 Root Mean Square Error; 3 Digital Terrain Model.

The accuracy of the aerial triangulation process is summarized in Table 3. The last survey was
identified as the most accurate by root mean square errors. The distribution of GCPs is decisive and
at the same time critical in coastal contexts. Uncontrolled deformations in the derived models can
be induced when GCPs in the study area are not distributed homogeneously, as may happen in long
stretches of the coast. In our experience it was possible to evaluate this effect, by processing the
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dataset surveyed in 2019 a second time with only four GCPs aligned with each other. This processing
introduced a rotation of the model as shown in Figure 4.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 7 of 16 
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5. PPK and NRTK GNSS Surveys

In order to allow georeferencing of the photogrammetric blocks within the UTM-ETRS89 grid
system, nine GCPs were measured before the acquisition of the images, with a Topcon Hiper V Series
GNSS receiver. NRTK mode using a correction mode based on virtual reference stations (VRS) through
the service Topcon, Netgeo (http://www.netgeo.it/) was adopted.

Easily transportable GCPs were constructed from of 50 cm diameter plywood targets, printed
with a black and white pattern and a code for easy detection. They were distributed uniformly over
the area to be surveyed before flights.

The number of GCPs was chosen to minimize survey time and therefore costs. At the same time
the total number of GCPs was significantly higher than the minimum necessary. This allowed a more
rigorous control of the study area and redundancy in the photogrammetric orientation procedures
using some of the surveyed coordinates as check points. The expected precision is 2–3 cm in horizontal
coordinates and 5–10 cm for elevation, also considering the precision of the geoid model used to
transform the ellipsoidal heights into orthometric ones (Geoid model ITALGEO 2005) [36].

The NRTK stationing over GCPs was fixed at two minutes of static acquisition for each point.
PPK surveys were carried out to produce three-dimensional models of the topographical surface, by
mounting the surveying system in rigid backpacks (GPS rover), enabling it to track the 3D profile
followed by the operators.

A reference GNSS station was established close to the beach, to collect GNSS data at 1s sync rate,
throughout each survey. For georeferencing of PPK surveys, the coordinates of the master station
were estimated in the ETRF2000 system through the classical static differenced approach using the
simultaneous acquisitions carried out at the closest EUREF reference station MSEL (Medicina, Bologna).

http://www.netgeo.it/
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Then the processing of the kinematic data was performed with the open source software RTKLIB
v 2.4.3 (www.rtklib.com). Considering the small extension of the studied area (a few hundred metres)
absolute errors of a few centimetres characterised the survey. For the PPK tracks, the positions of
the GNSS rover stations were evaluated in kinematic mode starting from the known master station
coordinates, obtaining a single position for each acquisition time (1 s).

Latitudes and longitudes were then projected in the EPSG 25833, using ITALGEO 2005 geoid model
to transform the ellipsoidal heights into orthometric ones. The sparse points were then interpolated
using a linear Kriging approach.

6. Empirical Accuracy Assessment of PPK and Photogrammetric Surveys

In order to check the internal accuracy of the PPK surveys carried out during the 2019 survey,
the crossover error analysis (CEA) was performed on the tracks surveyed, according to Hsu [37]. The
procedure is based on height determination and comparison at the intersections of PPK track lines [38].

A routine was elaborated by means of QGIS software to obtain precise height values along the
track intersections. The procedure used was articulated in several steps. Firstly, each 3D point of
the track was connected by lines (“linestring” function) and transformed in a Well-Known Binary
(WKB) format. Then, by means of line Intersection function, each line crossover was detected. For each
planimetric intersecting PPK line, a height interpolation was performed at crossover point. Finally,
height differences were computed at crossover points.

As result, the histogram of the observed residuals exhibits an almost normal distribution with a
mean value close to zero and a RMSE of 0.03 m for 697 intersection points (Figure 5).

The dense static clouds of points recorded during operator stops in the tracks were eliminated
manually in order to optimize comparison. Statistical results (Figure 5C) reveal that these data are
consistent with the expected accuracy for kinematic surveys in walking mode with antenna mounted
on backpacks and so are sufficiently accurate to validate photogrammetric DTMs.

Then the accuracy of the photogrammetric survey was evaluated firstly by comparing the GCP
coordinates extracted manually from DTMs with those from NRTK surveys as reference. The statistical
results are shown in Table 4.

Table 4. Statistics of the differences between the coordinates of the GCPs and those measured on the
photogrammetric DTMs.

Data 07/12/2017 25/05/2018 24/05/2019

Mean (m) −0.01 −0.01 0.00
RMSE (m) 0.09 0.10 0.02
Max (m) 0.24 0.83 0.06
Min (m) 0.06 0.03 0.01

These values are affected both by mismatching errors and the local density of DTMs.
PPK GNSS surveys provided the second opportunity to evaluate the accuracy of the 2019

photogrammetric DTM. The assessment was carried out both by computing the height difference of
each PPK point with respect to photogrammetric derived DTM, and calculating the difference between
two DTMs: The first derived by interpolating PPK points and the second obtained by photogrammetric
processing (Figure 6).

In particular, the first comparison was made to minimise the effects of interpolation, as
points located along the tracks were directly compared with the corresponding ones located on
photogrammetric DTM, while the second test was made by interpolating PPK points with a kriging
algorithm, then transforming them in raster format with cell size of 10 cm. Statistical data and the
range of differences shown in Figure 6 confirm good agreement between the models. In fact, both
approaches provided similar results.

www.rtklib.com
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Statistical values of cases A and B (Figure 6) are similar because the area surveyed is predominantly
flat, so as a result the spacing between the PPK tracks was sufficient to represent the shape of the beach.

Shorelines were digitized on orthophotos and technical regional maps (Emilia Romagna Region,
CTR and DBTR 1:5000 scale) and analysed from a qualitative and quantitative point of view.

The photogrammetric model of 2019 was then compared with LiDAR DTM and the differences
evaluated numerically.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 9 of 16 
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in mm.
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7. Results

The shoreline of the studied area, located at the village of Lido Adriano in Ravenna province is
subjected to natural phenomena and anthropic actions which have led to the construction of groins to
protect the beach [39,40]. Both shoreline and sand surface are constantly changing. UAV combined to
GNSS techniques may be an efficient tool for coastal management. Surveys carried out by means of
these techniques are synchronous, characterised by the necessary accuracy and quickly to perform.
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The digitization of shoreline position on multi-temporal orthophotos and maps, together with
DTM comparison, permitted historical coastal changes to be highlighted (Figures 7 and 8). Distances
between shorelines were determined along the S1–S4 transects using the most recent measurement as
reference, shown in Table 5.
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Figure 8. Multi-temporal comparison and transect analysis in Lido Adriano area: (A) difference
between 2019 UAV derived DTM and 2013 LIDAR DTM; (B) cross-shore profiles of the beach (S1–S4),
2019 UAV derived DTM (red) and 2013 LIDAR DTM (blue).

Maximum recession between shorelines is recorded comparing CTR to DBTR. AGEA 2008 and
2011 shorelines remain essentially stable in the central and southern parts while a small difference is
detected towards the North. Accretion trends are observed matching these shorelines with the UAV
2019 survey. A small erosional effect can be observed in the studied area from 2017 to 2019 (Figure 7).

In Figure 8A the differences obtained by comparing the DTM detected with 2019 UAV with the
2013 LiDAR model are shown in different colours. The variations in the central part of the beach show
the seasonally man-made actions carried out to flatten and enlarge the beach.

The positive values (green), clearly show the operations of beach nourishment. Not significant
changes can be seen along the dune parallel to the shoreline (orange). Negative values on the
breakwaters perpendicular to the shoreline can be observed in the period considered. In the 2019
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model these blocks of rocks were lower, with different areal extension and show a rate of settling of a
few cm per year. For these comparisons high vegetation was removed from the UAV derived model.

Table 5. Differences expressed in m between the multitemporal shorelines along the four cross-sections
(S1–S4) and statistical data. The most recent shoreline detected with the 2019 UAV survey, was used
as reference. Values are in metres. CTR—Regional Technical Map; DBTR—Regional Topographic
Database, AGEA—“AGenzia per le Erogazioni in Agricoltura”.

Source CTR DBTR AGEA AGEA

Date 1977–1998 1977–2013 2008 2011

S1 −53.77 26.56 3.36 7.98
S2 −76.29 25.69 7.81 14.32
S3 −81.11 29.83 13.51 13.56
S4 −71.23 15.98 −0.30 0.49

Mean (m) −70.60 24.52 6.10 9.09
Std Dev (m) 11.92 5.96 5.95 6.39

Max (m) −53.77 29.83 13.51 14.32
Min (m) −81.11 15.98 −0.30 0.49

8. Discussion and Conclusions

Beach morphology and long-term shoreline changes derive from the sum of natural phenomena
and anthropic activities. The coastal shoreline is the indicator traditionally used to define the trend of
the sandy coasts, highlighting depositional or erosional phenomena. In beaches subject to anthropic
activities like those of the Northern Adriatic coast, this interpretation becomes invalid, because
shorelines migrate landward or seaward depending not only on changing sea-level or subsidence
of coastal regions, but also on the presence of low-crested structures and nourishment carried out
periodically for beach protection (Arpae Emilia-Romagna, www.arpae.it).

In order to use beaches for tourism it is fundamental to preserve their width. Therefore, monitoring
morphological beach changes and coastline evolution trends is necessary to plan efficient maintenance
work as well as replenishment and constructing engineering structures to avoid coastal drift.

This study highlights that changes in the shoreline derived from orthophoto and regional maps
do not follow a constant positive or negative rate because they are due to human intervention designed
to protect the coast. Since the 1980s a number of defence structures have been built and replenishment
repeatedly carried out. The artificial supply of sand, and the periodical flattening of the beach by
bulldozer have contributed to decreasing erosional rates and widened the beach [2,41,42].

The purpose of this study was to test fast and cheap geomatic techniques for coastline mapping and
detecting shoreline changes. Three UAV photogrammetric surveys integrated with GNSS measurement
of GCPs and PPK tracks on a beach protected by a system of breakwaters located in Lido Adriano,
Italy was presented.

The images acquired by UAV were elaborated with image matching algorithms [30–33] that
allowed maps to be produced automatically and DTM to be extracted with high spatial resolution
and accuracy.

In addition to investigating the shape of the beach, quantitative and qualitative analyses of the
differences were carried out using freely available multitemporal maps and DTMs from the “Ministero
dell’Ambiente e della Tutela del Territorio e del Mare”, GeoER, GIS Office of Emilia Romagna Region,
and “AGenzia per le Erogazioni in Agricoltura”.

The survey procedures adopted were cheaper and faster compared to the traditional ones. The
kinematic positioning techniques PPK, RTK and NRTK allow, in undisturbed operating conditions,
better accuracies than 5 cm in planimetry and height. Applying these surveying techniques in the
estimation of the positions of the shutter centres of the cameras, together with a cross-strip flight,
and just a single GCP positioned in the central area of the block, it is possible to obtain accuracies

www.arpae.it
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comparable to those obtainable through the use of a homogeneous distribution of GCPs [43]. In case
of significant offsets between the GNSS antenna and the position of the camera, the presence of a
synchronized onboard strapdown inertial navigation system (SINS) mechanically connected to the
camera, allows to correct the orientation up to 0.10◦–0.05◦, even if the camera is mounted within
a gimbal.

Low-cost, professional, commercial UAVs can be used with good results to produce maps, detect
topographical changes, and estimate variations in rate and volume. This represents a tool for coastal
managers and the regional authorities to improve their “Integrated Coastal Zone Management Plans”.
In further developments, the use of NRTK GNSS receivers onboard of the UAVs and high-performance
inertial platforms directly connected and synced to the UAV cameras, may reduce the number of GCPs
in the survey of long shorelines. Nowadays long-distance surveys are limited by the flight autonomy,
which is significantly longer for fixed wing UAVs and the evolving flight regulations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-1312/8/1/52/s1, Figure
S1: 2019 UAV derived Orthophoto, Figure S2: DTM, EPSG:25833, GSD:0.05m.

Author Contributions: Conceptualization of the study, L.V., A.Z.; methodology, A.L., L.V., A.Z.; software, A.L.;
validation, L.V.; investigation, L.V., A.L., A.Z.; data curation, A.L., L.V., A.Z.; writing—original draft, A.L., L.V.,
A.Z.; writing—review and editing, A.L., L.V., A.Z.; supervision, L.V. All authors have read and agreed to the
published version of the manuscript.

Funding: This study received no external funding.

Acknowledgments: We are thankful to Ing. Luca Poluzzi, Ing. Luca Tavasci for their valuable help during the
fieldwork activities. Special thanks to the student Ing. Riccardo Collina for his help in the GNSS-assisted block
orientation test to produce Figure 4, in the frame of his second level Civil Engineering thesis (University of
Bologna). The authors would like to thank MATTM, Emilia Romagna Region and AGEA for providing LiDAR
data, maps and multitemporal orthophotos. The authors thank the Guest editor Donatella Dominici, the assistant
editor Zara Liu, and the four referees for their constructive comments and suggestions, which greatly improved
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Smith, A.W.S.; Jackson, L.A. The variability in width of the visible beach. Shore Beach 1992, 60, 7–15.
2. Armaroli, C.; Ciavola, P.; Perini, L.; Lorito, S.; Valentini, A.; Masina, M. Critical storm thresholds for significant

morphological changes and damage along the Emilia-Romagna coastline, Italy. Geomorphology 2012, 143–144,
34–51. [CrossRef]

3. Cantasano, N.; Pellicone, G.; Ietto, F. Integrated coastal zone management in Italy: A gap between science
and policy. J. Coast Conserv. 2017, 21, 317–325. [CrossRef]

4. Ciavola, P.; Armaroli, C.; Chiggiato, J.; Valentini, A.; Deserti, M.; Perini, L.; Luciani, P. Impact of storms along
the coastline of Emilia-Romagna: The morphological signature on the Ravenna coastline (Italy). J. Coast. Res.
2007, 540–544.

5. Moore, L.J. Shoreline mapping techniques. J. Coast. Res. 2000, 16, 111–124. [CrossRef]
6. Boak, E.; Turner, I.L. Shoreline definition and detection: A review. J. Coast. Res. 2005, 21, 688–703. [CrossRef]
7. Michalowska, K.; Glowienka, E.; Pekala, A. Spatial-Temporal detection of changes on the southern coast of

the Baltic sea based on multitemporal aerial photographs. In Proceedings of the International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Prague, Czech
Republic, 12–19 July 2016; Volume 41, pp. 49–53. [CrossRef]

8. Schwarzer, K.; Diesing, M.; Larson, M.; Niedermeyer, R.O.; Schumacher, W.; Furmanczyk, K. Coastline
evolution at different time scales—Examples from the Pomeranian Bight, southern Baltic Sea. Mar. Geol.
2003, 194, 79–101. [CrossRef]

9. Benassai, G.; Aucelli, P.; Budillon, G.; De Stefano, M.; Di Luccio, D.; Di Paola, G.; Montella, R.; Mucerino, L.;
Sica, M.; Pennetta, M. Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV
observation. Nat. Hazards Earth Syst. Sci. 2017, 17, 1493–1503. [CrossRef]

http://www.mdpi.com/2077-1312/8/1/52/s1
http://dx.doi.org/10.1016/j.geomorph.2011.09.006
http://dx.doi.org/10.1007/s11852-016-0479-z
http://dx.doi.org/10.1098/rspb.1979.0006
http://dx.doi.org/10.2112/03-0071.1
http://dx.doi.org/10.5194/isprsarchives-XLI-B2-49-2016
http://dx.doi.org/10.1016/S0025-3227(02)00700-4
http://dx.doi.org/10.5194/nhess-17-1493-2017


J. Mar. Sci. Eng. 2020, 8, 52 15 of 16

10. Casella, E.; Rovere, A.; Pedroncini, A.; Stark, C.P.; Casella, M.; Ferrari, M.; Firpo, M. Drones as tools for
monitoring beach topography changes in the Ligurian Sea (NW Mediterranean). Geo-Mar. Lett. 2016, 36,
151–163. [CrossRef]

11. Duo, E.; Trembanis, A.C.; Dohner, S.; Grottoli, E.; Ciavola, P. Local-scale post-event assessments with GPS
and UAV based quick-response surveys: A pilot case from the Emilia—Romagna (Italy). Coast. Nat. Hazards
Earth Syst. Sci. 2018, 18, 2969–2989. [CrossRef]

12. Giordan, D.; Notti, D.; Villa, A.; Zucca, F.; Calò, F.; Pepe, A.; Dutto, F.; Pari, P.; Baldo, M.; Allasia, P. Low cost,
multiscale and multi-sensor application for flooded area mapping. Nat. Hazards Earth Syst. Sci. 2018, 18,
1493–1516. [CrossRef]

13. Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using Unmanned Aerial Vehicles
(UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal
Environments. Remote Sens. 2013, 5, 6880–6898. [CrossRef]

14. Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24.
[CrossRef]

15. Van Puijenbroek, M.E.; Nolet, B.; de Groot, C.; Suomalainen, A.V.; Riksen, J.M.; Berendse, M.J.P.M.;
Limpens, F.J. Exploring the contributions of vegetation and dune size to early dune development using
unmanned aerial vehicle (UAV) imaging. Biogeosciences 2017, 14, 5533–5549. [CrossRef]

16. Guariglia, A.; Buonamassa, A.; Losurdo, A.; Saladino, R.; Trivigno, M.L.; Zaccagnino, A.; Colangelo, A. A
multisource approach for coastline mapping and identification of shoreline changes. Ann. Geophys. 2006, 49,
295–304. [CrossRef]

17. Bazzichetto, M.; Malavasi, M.; Acosta, A.T.R.; Carranza, M.L. How does dune morphology shape coastal EC
habitats occurrence? A remote sensing approach using airborne LiDAR on the Mediterranean coast. Ecol.
Indic. 2016, 71, 618–626. [CrossRef]

18. Charlton, M.E.; Large, A.R.G.; Fuller, I.C. Application of airbourne LiDAR in river environments: The River
Coquet, Northumberland, UK. Earth Surf. Process. Landf. 2003, 28, 299–306. [CrossRef]

19. Le Mauff, B.; Juigner, M.; Ba, A.; Robin, M.; Launeau, P.; Fattal, P. Coastal monitoring solutions of the
geomorphological response of beach-dune systems using multi-temporal LiDAR datasets (Vendée coast,
France). Geomorphology 2018, 304, 121–140. [CrossRef]

20. Middleton, J.H.; Cooke, C.G.; Kearney, E.T.; Mumford, P.J.; Mole, M.A.; Nippard, G.J.; Rizos, C.; Splinter, K.D.;
Turner, I.L. Resolution and accuracy of an airborne scanning laser system for beach surveys. J. Atmos. Ocean.
Technol. 2013, 30, 2452–2464. [CrossRef]

21. Pye, K.; Blott, S.J. Assessment of beach and dune erosion and accretion using LiDAR: Impact of the stormy
2013-14 winter and longer term trends on the Sefton Coast, UK. Geomorphology 2016, 266, 146–167. [CrossRef]

22. Stockdonf, H.F.; Sallenger, A.H., Jr.; List, J.H.; Holman, R.A. Estimation of shoreline position and change
using airborne topographic lidar data. J. Coast. Res. 2002, 18, 502–513.

23. Nunziata, F.; Buono, A.; Migliaccio, M.; Benassai, G. Dual-polarimetric C-and X-band SAR data for coastline
extraction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4921–4928. [CrossRef]

24. Tajima, Y.; Wu, L.; Fuse, T.; Shimozono, T.; Sato, S. Study on shoreline monitoring system based on satellite
SAR imagery. Coast. Eng. J. 2019, 61, 401–421. [CrossRef]

25. Alesheikh, A.A.; Ghorbanali, A.; Nouri, N. Coastline change detection using remote sensing. Int. J. Environ.
Sci. Technol. 2007, 4, 61–66. [CrossRef]

26. Archetti, R. Quantifying the evolution of a beach protected by low crested structures using video monitoring.
J. Coast. Res. 2009, 25, 884–899. [CrossRef]

27. Brignone, M.; Schiaffino, C.F.; Isla, F.I.; Ferrari, M. A system for beach video-monitoring: Beachkeeper plus.
Comput. Geosci. 2012, 49, 53–61. [CrossRef]

28. Holman, R.A.; Stanley, J. The history and technical capabilities of Argus. Coast. Eng. 2007, 54, 477–491.
[CrossRef]

29. Kroon, A.; Aarninkhof, S.G.J.; Archetti, R.; Armaroli, C.; Gonzalez, M.; Medri, S.; Osorio, A.; Aagaard, T.;
Davidson, M.A.; Holman, R.A.; et al. Application of remote sensing video systems for coastline management
problems. Coast. Eng. 2007, 54, 493–505. [CrossRef]

30. Triggs, B.; McLauchlan, P.; Hartley, R.; Fitzgibbon, A. Bundle Adjustment-A Modern Synthesis. In Proceedings
of the International Workshop on Vision Algorithms, ICCV’99, Corfu, Greece, 20–25 September 1999; Springer:
Berlin/Heidelberg, Germany, 2000; pp. 298–372. [CrossRef]

http://dx.doi.org/10.1007/s00367-016-0435-9
http://dx.doi.org/10.5194/nhess-18-2969-2018
http://dx.doi.org/10.5194/nhess-18-1493-2018
http://dx.doi.org/10.3390/rs5126880
http://dx.doi.org/10.1016/j.coastaleng.2016.03.011
http://dx.doi.org/10.5194/bg-14-5533-2017
http://dx.doi.org/10.4401/ag-3155
http://dx.doi.org/10.1016/j.ecolind.2016.07.044
http://dx.doi.org/10.1002/esp.482
http://dx.doi.org/10.1016/j.geomorph.2017.12.037
http://dx.doi.org/10.1175/JTECH-D-12-00174.1
http://dx.doi.org/10.1016/j.geomorph.2016.05.011
http://dx.doi.org/10.1109/JSTARS.2016.2560342
http://dx.doi.org/10.1080/21664250.2019.1619252
http://dx.doi.org/10.1007/BF03325962
http://dx.doi.org/10.2112/07-0994.1
http://dx.doi.org/10.1016/j.cageo.2012.06.008
http://dx.doi.org/10.1016/j.coastaleng.2007.01.003
http://dx.doi.org/10.1016/j.coastaleng.2007.01.004
http://dx.doi.org/10.1007/3-540-44480-7_21.33


J. Mar. Sci. Eng. 2020, 8, 52 16 of 16

31. Seitz, S.; Curless, B.; Diebel, J.; Scharstein, D.; Szeliski, R. A Comparison and Evaluation of Multi-View Stereo
Reconstruction Algorithms. In Proceedings of the 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2006), New York, NY, USA, 17–22 June 2006; pp. 519–528. [CrossRef]

32. Snavely, N.; Seitz, S.M.; Szeliski, R. Photo tourism: Exploring photo collections in 3D. ACM Trans. Graph.
2006, 25, 835–846. [CrossRef]

33. Ullman, S. The interpretation of structure from motion. Proc. R. Soc. Lond. B 1979, 203, 405–426.
34. Teatini, P.; Ferronato, M.; Gambolati, G.; Bertoni, W.; Gonella, M. A century of land subsidence in Ravenna,

Italy. Environ. Geol. 2005, 47, 831–846. [CrossRef]
35. Zavatarelli, M.; Pinardi, N. The Adriatic Sea modelling system: A nested approach. Ann. Geophys. 2003, 21,

345–364. [CrossRef]
36. Barzaghi, R.; Borghi, A.; Carrion, D.; Sona, G. Refining the estimate of the Italian quasi-geoid. Boll. Geod. Sci.

Affin. 2007, 66, 145–160.
37. Hsu, S.K. XCORR: A cross-over technique to adjust track data. Comput. Geosci. 1995, 21, 259–271. [CrossRef]
38. Baldi, P.; Bonvalot, S.; Briole, P.; Marsella, M. Digital photogrammetry and kinematic GPS applied to the

monitoring of Vulcano Island, Aeolian Arc, Italy. Geophys. J. Int. 2000, 142, 801–811. [CrossRef]
39. Giambastiani, B.M.; Greggio, N.; Sistilli, F.; Fabbri, S.; Scarelli, F.; Candiago, S.; Gabbianelli, G. RIGED-RA

project-Restoration and management of Coastal Dunes in the Northern Adriatic Coast, Ravenna Area-Italy.
In Proceedings of the IOP Conference Series Earth Environment Science, World Multidisciplinary Earth
Sciences Symposium (WMESS 2016), Prague, Czech Republic, 5–9 September 2016; Volume 44, pp. 38–52.
[CrossRef]

40. Sytnik, O.; Del Río, L.; Greggio, N.; Bonetti, J. Historical shoreline trend analysis and drivers of coastal
change along the Ravenna coast, NE Adriatic. Environ. Earth Sci. 2018, 77, 779. [CrossRef]

41. Harley, M.D.; Ciavola, P. Managing local coastal inundation risk using real-time forecasts and artificial dune
placements. Coast. Eng. 2013, 77, 77–90. [CrossRef]

42. Scarelli, F.M.; Sistilli, F.; Fabbri, S.; Cantelli, L.; Barboza, E.; Gabbianelli, G. Seasonal dune and beach monitoring
using photogrammetry from UAV surveys to apply in the ICZM on the Ravenna coast (Emilia-Romagna,
Italy). Remote Sens. Appl. Soc. Environ. 2017, 7, 27–39. [CrossRef]

43. Forlani, G.; Dall’Asta, E.; Diotri, F.; Morra di Cella, U.; Roncella, R.; Marina Santise, M. Quality Assessment
of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning. Remote Sens. 2018, 10,
311. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/CVPR.2006.19
http://dx.doi.org/10.1145/1141911.1141964
http://dx.doi.org/10.1007/s00254-004-1215-9
http://dx.doi.org/10.5194/angeo-21-345-2003
http://dx.doi.org/10.1016/0098-3004(94)00070-B
http://dx.doi.org/10.1046/j.1365-246x.2000.00194.x
http://dx.doi.org/10.1088/1755-1315/44/5/052038/meta
http://dx.doi.org/10.1007/s12665-018-7963-8
http://dx.doi.org/10.1016/j.coastaleng.2013.02.006
http://dx.doi.org/10.1016/j.rsase.2017.06.003
http://dx.doi.org/10.3390/rs10020311
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area 
	Data Availability 
	Photogrammetric Analysis 
	PPK and NRTK GNSS Surveys 
	Empirical Accuracy Assessment of PPK and Photogrammetric Surveys 
	Results 
	Discussion and Conclusions 
	References

