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Abstract: Tsunamis are generated when landslides transfer momentum to water, and these waves
are major hazards in the mountainous coastal areas of lakes, reservoir, and fjords. In this study,
the influence of slide mobility on wave generation is investigated using new: (i) experimental
observations; (ii) theoretical relationships; and (iii) non-hydrostatic numerical predictions of the
water surface and flow velocity evolution. This is accomplished by comparing landslides with
low and high mobility and computing the momentum flux from landslides to water based on data
collected in laboratory experiments. These slides have different materials, different impact velocities,
different submarine runout distances, and generate very different waves. The waves evolve differently
along the length of the waves’ flume, and the experimental results are in close agreement with
high-resolution phase-resolving simulations. In this short communication, we describe new research
on landslide generated waves conducted at Queen’s University, Canada, and presented at Coastlab18
in Santander, Spain.

Keywords: landslide waves; tsunamis; laboratory experiments; momentum balance; numerical
wave modeling

1. Introduction

Landslide mobility (LM) describes the velocity and distal reach of the debris from a slide. This is a
complex phenomenon of interacting processes that depends on many landslide parameters including
the density, porosity, internal shear strength, basal friction, particle collisions, pore pressures, and
possible fluidization. Despite this complexity, a slide with a higher LM would have a higher velocity
and a longer runout distance at the base of a slope compared with a slide with the same volume but a
lower LM. These highly mobile slides that travel long distances are, therefore, more hazardous (e.g., [1]).
When a landslide impacts a body of water, momentum is transferred from the sliding mass to the water,
generating a wave or series of waves [2]. Unlike the case of tsunamis generation by earthquakes where
vertical and horizontal motions of the seafloor cause water displacement [3,4], subaerial landslides
generate waves primarily from the streamwise momentum flux or the along-channel component of
mass flow into water [5,6]. Other experimental studies (e.g., [7,8]) have found relationships between
the dependence of the wave energy and maximum wave amplitude on the slide impact velocity and
the hill slope angle.

Highly mobile landslides have the potential to be a more severe hazard due to the high speed
and longer runout distances that can be affected [9]. The analytical work of [2,10] attempt to capture
the proportion of the landslide contributing to the wave using the time and length scales of impact.
These scale parameters describe how quickly the submerged mass decelerates after impacting the
reservoir, which is a measure of landslide mobility. The influence of changing landslide mobility was
indirectly investigated by [11] using positively buoyant particles and a range in landslide porosity.
The study found that increasing the landslide porosity results in a decrease in the maximum near-field
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amplitude due to a larger deceleration upon impact. This potentially lends support to the hypothesis
that increasing landslide mobility will result in larger wave amplitudes, however, the influence of
landslide mobility has yet to be quantified directly.

In the present study, we investigate the influence of landslide mobility on wave generation by
postulating that a highly mobile slide carries higher momentum when it is transferred to water and
therefore, generates a larger wave. This is accomplished by comparing the waves generated by cases
for very different slide materials that include granular material (low LM) and water (high LM). These
are selected to be representative of a dry soil or rock landslide (using the granular particles) a mudflow
or saturated debris flow (using water). We perform laboratory experiments (Section 2), calculate the
theoretical momentum balance (Section 3) and conduct non-hydrostatic numerical simulations of
surface elevation and flow velocity evolution (Section 4) to investigate the differences between the
landslides with different mobility and the waves they generate. The goal of this paper is to highlight
the importance of landslide mobility on the near field wave properties and wave evolution into the far
field by a discussion of recent advances in understanding landslide-generated tsunamis from large
scale experiments, consideration of the momentum transfer, and a numerical phase-resolving wave
propagation model.

2. Laboratory Experiments

Experiments were performed in a landslide flume consisting of an 8.23 m long slope inclined
at 30◦ to the horizontal to gravitationally accelerate landslides into a 33.0 m long and 2.1 m wide
horizontal wave flume described in detail by [12], shown in Figure 1. Tests with different mobility
were selected as end-member examples in the present study. However, a considerable number of
experiments have been conducted by [13], and some of these tests are described by [14]. Material is
released from a source volume box at the top of the slope, accelerates down the landslide slope, impacts
the water with thickness s and velocity vs where it generates waves, propagates along the flume and
runs up the slope at the end of the flume. In the present study, a triangular source volume V of 3 mm
diameter ceramic beads was used as the more collisional landslide material with lower mobility, and a
similar volume of water was used as the highly mobile material. The mean water depth h was very
similar for both tests, differing by 0.01 m. The landslide and near field wave properties were observed
using a system of high-speed cameras, and these slides generate very different waves, as illustrated
by the images of the near-field waves in Figure 2. The observational methods and accuracy of data
obtained in the experiments are described in detail by [13,14]. The water surface was also measured
using nine capacitive probes (P1–P9) along the flume that sample at 100 Hz, and the maximum wave
amplitudes were 0.09 m and 0.29 m at P1 for the low LM and high LM tests, respectively. The fluid
velocity was measured 0.012 m above the flume bottom using an acoustic velocimeter (Nortek Vectrino
Profiler) operating at 100 Hz at station P2.
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Figure 2. Images of the waves generated by landslides with different mobility: (a) low mobility; (b)
high mobility.

3. Theoretical Momentum Balance

The generation and propagation of tsunamis are highly complex. However, by considering the
momentum balance under idealized conditions, theoretical relationships for the maximum wave
amplitude in the near-field zone can be derived [2]. Following this approach, the landslide momentum
flux (Ms) can be estimated as

Ms =
ρssvscosα

∆te
(1)

where the sliding mass with bulk density ρs impacts the water on slope α at velocity vs parallel to
the slope. It has thickness s on impact with the water, and the resulting wave is generated over the
effective time ∆te that momentum is imparted from the slide to the water [12]. The fluid momentum
flux (Mf) is given by:

Mf =
ρg
(
ham + 1

2 am
2
)

L
(2)

This depends on the maximum wave amplitude am above the still water level, the initially still
water depth h, the fluid density ρ, gravitational acceleration g, and submarine runout length L over
which the wave is generated. The idealized momentum flux between the slide (Ms) and the fluid
(Mf) is expressed per unit length of the slide and per unit width of the flume in units of kg/(ms2), and
this is equivalent to force per unit area (N/m2). In this approach, idealized theoretical equations are
developed for landslides with a significant horizontal velocity component on moderate slopes, and are
not valid for vertical rockfalls. The vertical fall velocity of a landslide is also important, and this is
accounted for in the development of a limiting relationship based on the fluid continuity equation [2].

In the present study, we examined the balance of momentum between the landslide and the
fluid at the wave probe closest to the impact region (P1) for the low LM and high LM experiments.
The terms in Equations (1) and (2) were evaluated using the bulk landslide properties in Table 1 that
were measured using cameras and wave probes. This table provides the experimental conditions
and indicates the differences in forcing for the end-member mobility cases, and each experiment
results in very different wave characteristics. The time series of water surface elevations at P1 are
shown in Figure 3, with the maximum wave amplitude of 0.29 m for the high LM experiment and a
significantly smaller value of 0.09 m for the low LM experiment. The runout distances were 3.0 and
1.6 m, and the effective times were 0.5 and 1.0 s for the high and low LM cases, respectively. The value
of the momentum terms for these experiments and a larger dataset with varying slide volume and
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reservoir depth are shown in Figure 4. The momentum contained in both the landside and the fluid
was greater for the high LM slides compared to the low LM landslides. Overall there was a high
correlation for the high mobility slides (R = 0.89 for 12 tests) and for the low mobility slides (R = 0.92
for 4 tests), and these values are high considering that other momentum terms, such as dissipation
are neglected.

Table 1. Experimental conditions for examples of landslides with different mobility.

Mobility ρs (kg/m3) V (m3) vs(m/s) s (m) h (m) am (m)

low LM (granular) 1400 0.34 4.00 0.040 0.30 0.09
high LM (water) 1000 0.30 5.38 0.043 0.31 0.29

J. Mar. Sci. Eng. 2019, 6, x FOR PEER REVIEW  4 of 9 

 

momentum terms for these experiments and a larger dataset with varying slide volume and reservoir 
depth are shown in Figure 4. The momentum contained in both the landside and the fluid was greater 
for the high LM slides compared to the low LM landslides. Overall there was a high correlation for 
the high mobility slides (R = 0.89 for 12 tests) and for the low mobility slides (R = 0.92 for 4 tests), and 
these values are high considering that other momentum terms, such as dissipation are neglected.  

Table 1. Experimental conditions for examples of landslides with different mobility. 

Mobility  𝝆𝒔 (kg/m3) V (m3)  𝒗𝒔 (m/s) s (m) h (m)  am (m) 
low LM 

(granular) 
1400 0.34 4.00 0.040 0.30 0.09 

high LM 
(water) 1000 0.30 5.38 0.043 0.31 0.29 

The results indicate that the significantly larger waves in the high LM cases were generated by 
higher slide impact velocities and the longer submarine runout distances. This greater length 
provides a larger near-field region over which the momentum is transferred to the water before the 
wave speed c exceeds the decelerating submarine part of the slide and the wave propagates along the 
flume.  

 
Figure 3. Example time series of water surface elevation near the impact site for landslides with low 
and high mobility, adjusted such that the maximum amplitude occurs at t = 1 s. These waves were 
observed at wave probe P1 and correspond to the experimental conditions listed in Table 1. 

 

Figure 3. Example time series of water surface elevation near the impact site for landslides with low
and high mobility, adjusted such that the maximum amplitude occurs at t = 1 s. These waves were
observed at wave probe P1 and correspond to the experimental conditions listed in Table 1.
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Figure 4. Balance of momentum terms for a set of experiments with waves generated by landslides
with low and high mobility. The solid line represents perfect correlation, the dashed lines are ±15%
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The results indicate that the significantly larger waves in the high LM cases were generated by
higher slide impact velocities and the longer submarine runout distances. This greater length provides
a larger near-field region over which the momentum is transferred to the water before the wave speed
c exceeds the decelerating submarine part of the slide and the wave propagates along the flume.
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4. Numerical Modelling

4.1. Model Set-up

The numerical model is SWASH (Simulating WAves till SHore), a non-hydrostatic wave-flow model
that uses a finite-difference approach to solving the fluid momentum and continuity equations [15]
and has been used to simulate surface waves observed in laboratory [16] and field [17] conditions.
This phase-resolving wave model includes discretization of the oscillating water column into vertical
layers and numerically solves for the vertical pressure gradient, important for simulating propagation
and dispersive characteristics of the wave field [18,19]. Aligned with a previous study [20] for waves
generated by granular landslides, the model was applied in the present study to landslide-generated
waves, with new results corresponding to data obtained from new experiments. Here we applied
boundary conditions developed from water surface elevation observations from the low LM (granular
particles, representing a dry soil or rock landslide) and high LM (water, representing a mudflow or
saturated debris flow) experiments. The measurements were made at the first wave probe near the
source region, and the model was used to simulate propagation and transformation along the flume.
The model grid is shown in Figure 1, with the boundary condition applied at x = 0 m. The boundary
conditions were provided by the water surface elevation measurements at wave probe 1 (P1), and only
ηwas as input, and not fluid velocity at or below the surface. Comparison between measurements and
model results were made at the other wave probe locations (P1–P9). The horizontal grid spacing was
0.10 m, and the model used 20 layers in the vertical direction. Important processes in the model that
control the wave transformation and evolution are horizontal mixing, vertical mixing, breaking, and
bottom friction.

4.2. Model Results

The simulated water surface elevations are compared with laboratory wave probe observations in
Figures 5 and 6 for the low LM and high LM cases, respectively. The results indicate that the different
landslide mobility generated waves with very different initial shapes that also evolved differently
as they propagate away from the landslide source region. The low LM case had a smaller initial
wave (Figure 5a) that propagates away from the source with little change in amplitude or shape along
the flume (Figure 5b–f). The model results indicate that for the low LM slide, only bottom friction
influences the wave evolution, with equivalent results obtained when other processes were turned
off (horizontal mixing, vertical mixing, breaking). In contrast, the much larger wave in the high LM
case (Figure 6a) significantly changes in amplitude and shape along the flume (Figure 6b–f). Despite
the general agreement, this case was more difficult to simulate, and the amplitude, timing, and shape
were not in perfect agreement with the observations. Small differences in the observed and simulated
water surface were evident, particularly in the high mobility case, likely due to the high degree of
non-linearity and the complexity of wave breaking. In the high mobility case, more complex fluid
processes were actively changing the wave (horizontal mixing, vertical mixing, wave breaking, bottom
friction) and were needed to simulate the wave evolution.
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Near-bed velocity measurements were made at P2, and the raw data has been smoothed using a
low-pass Butterworth filter. The smoothed observations are shown in Figure 7a with the model results
for the lowest vertical layer. The data and model are in fairly close agreement, particularly with the
timing of the fluid velocity for the first and largest wave in the train. The amplitude was over-predicted
by the model by about 20%, but only for a brief time at the leading edge of the wave. A second peak in
velocity at t = 2.8 s was due to the arrival of the submarine bubble plume flow at the sensor. Since
only the water surface elevation was prescribed as the boundary condition, this was not simulated by
the model. Further experiments to collect velocity measurements and continue numerical modeling
is the subject of ongoing research. The results shown in Figure 7a have small oscillations following
the higher velocity fluctuation of the leading wave. It is important to note that in time, small waves
follow the leading wave and therefore, occur after it (e.g., t > 6 s). These waves, measured at site P2
near the landslide slope, were not influenced by reflection from the far end of the flume as it takes
reflected waves 30–35 s to arrive back to this location. The simulated horizontal velocity field is shown
in Figure 7b over the vertical profile, indicating the high positive along-channel flow at the wave crest
followed by the longer duration and weaker current associated with the trough.
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5. Summary and Conclusions

This short communication provides new insight for predicting landslide waves by combining
results from experimental observations, theoretical relationships, and non-hydrostatic numerical
modeling. We investigated the role of landslide mobility, the combination of different materials and
landslide behavior that controls the speed and impact properties, on the generation of waves by
comparing two cases with different mobility. The larger wave was forced by the higher impact velocity
and the longer submarine runout distance from the slide with high mobility, as greater momentum
was transferred from the slide to the water over this larger length scale. The results indicated that the
landslide with low mobility had a smaller initial wave that propagates away from the source with little
change in amplitude or shape along the flume, and in contrast, the much larger wave generated by the
high mobility landslide significantly evolved in amplitude and shape with distance from the region of
impact. Overall, landslide mobility plays a major role in determining the size of the near-field wave
and therefore, also influences its evolution with distance from the impact site due to breaking and fluid
mixing. Using the combination of large-scale laboratory experiments and other numerical methods,
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the complex process of wave generation by landslides can be even more accurately quantified and
better understood. Future research could focus on the near-field velocity with new experiments and
numerical modeling, as this would lead to a more refined boundary condition for simulating landslide
waves in coastal environments.
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