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Abstract: The key to model-based Bayesian geoacoustic inversion is to solve the posterior probability
distributions (PPDs) of parameters. In order to obtain PPDs more efficiently and accurately,
the state-of-the-art Markov chain Monte Carlo (MCMC) method, multiple-try differential evolution
adaptive Metropolis(ZS) (MT-DREAM(ZS)), is integrated to the inverse problem because of its excellent
ability to fully explore the posterior space of parameters. The effective density fluid model (EDFM),
which is derived from Biot–Stoll theory to approximate the poroelastic model, and the published field
measurements of backscattering strength are adopted to implement the inversion. The results show
that part of the parameters can be estimated close to the measured values, and the PPDs obtained by
dual-frequency inversion are more concentrated than those of single-frequency inversion because
of the use of more measured backscattering strength data. Otherwise, the comparison between the
predicted backscattering strength of dual-frequency inversion results and Jackson’s prediction shows
that the solutions of the inverse problem are not unique and may have multiple optimal values.
Indeed, the difference between the two predictions is essentially the difference in the estimation of
the contribution of volume scattering to the total scattering. Nevertheless, both results are reasonable
due to the lack of measurement of volume scattering parameters, and the inversion results given
by the posterior probabilities based on the limited measurements and the adopted model are still
considered to be reliable.

Keywords: geoacoustic model; MT-DREAM(ZS); Bayesian inversion; backscattering strength

1. Introduction

In the field of oceanography, high-frequency underwater sound is widely used in active sonar
to detect underwater targets such as submarines, mines, underwater structures, and animals with
a relatively adequate resolution [1,2]. In this case, acoustic scattering from the seafloor becomes
a disturbance to the target signal, and that leads us to try to understand which kinds of acoustic
interference would be caused by different types of sediments. On the other hand, for applications
such as marine geology, marine biology, and coastal engineering, the sediment is the target, and the
acoustic interference becomes the target signal which can be used to obtain the detailed information
about sediment. In either case, it can be found that understanding the interaction between sound
waves and sediment is very important for the application of active sonar systems and the detection of
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sediment [3–5]. This motivates the modeling of acoustic scattering at the water–seabed interface and
deeper sediment layers [6,7].

Seabed acoustic modelers are trying to solve a forward problem. Predicted data are calculated by
dpre = f (m), where the function f represents the physical process of sound waves and m is a set of
measured model parameters. The predicted data dpre are then compared with the observed data dobs to
verify or correct the model. For seabed scattering, although it is artificial to divide this into interface
scattering and volume scattering, this distinguishing method has still been taken as a mathematical
approximation and fitting between measurements and model predictions. The earlier and simpler
model of seabed scattering—the fluid model, which takes the sediment as a fluid layer—has applied
this distinguishing method [8]. The comparison between the fluid model prediction and measurements
has been completed and has been shown to be successful to some extent [9,10]. As a porous medium,
sandy sediment is prevalent in coastal environments, and it may be more reasonable to model sandy
sediment by the poroelastic model than the fluid model. The earlier poroelastic model was derived
from Biot theory and used to model acoustic scattering by Stoll [11]. Then, the Born approximation
(first-order perturbation theory) of a fluid model was extended to the poroelastic model based on the
Biot–Stoll theory [12]. The comparison of the model predictions between the fluid and poroelastic
models indicated that the predicted backscattering levels of the poroelastic model for sandy sediments
are substantially lower than those of the fluid model and more consistent with the measurements [13].
In order to further reduce the mismatch between poroelastic model prediction and measurements,
the physics of grain–grain contact and multiple scattering losses were added, and the input parameters
were adjusted to increase the efficiency of simulating multiple sediment types [14]. Although such
poroelastic models have inherent advantages over the fluid model for sandy sediment, they suffer from
more computational cost. To solve this problem, an EDFM derived from Biot–Stoll theory was used to
model acoustic scattering at the seabed–water interface [15]. This model utilizes a bulk modulus and
an effective density derived from Biot–Stoll theory in the fluid model to obtain predictions including
dispersion, transmission, reflection, and scattering, which are very close to those of the poroelastic
model for sandy sediment [13,16,17]. As the fluid model does not include grain–grain contact by
fiat, additional acoustic dispersion and attenuation are added to EDFM though additional physical
mechanisms, which are the transfer of heat between the liquid and solid at low frequencies and the
effect of granularity at high frequencies [18].

Geoacoustic inversion workers aim to solve an inverse problem. When a validated model
function f with a set of observations dobs is obtained, the vector of the model parameters m can
be estimated by m̂ = f−1

(
dobs

)
. However, for the nonlinear model of acoustic scattering from the

seabed, an analytic form of f−1 rarely exists. An iterative search and global optimization algorithm
are naturally applied to model-based geoacoustic inversion, and a point estimate of parameters can
be obtained [5,19]. By contrast, Bayesian inference is perfectly applicable to an inverse problem
as it can rigorously provide nonlinear quantitative uncertainty distributions of parameters which
are treated as random variables instead of point estimates [20–23]. The key task in model-based
Bayesian geoacoustic inversion is to solve the PPDs, and the basic idea is to use MCMC methods.
A random walk within the Markov chain can explore the posterior space and iteratively find a relatively
stable probability distribution, which is an approximate estimate of the target posterior probability
distribution [24–27]. When faced with a PPD which has higher parameter dimensions and a more
complex posterior distribution, the original MCMC methods such as the well-known random walk
Metropolis (RWM) algorithm [28] and the Metropolis–Hastings algorithm (MH) [24] may suffer from
low convergence efficiency because of the selection of the proposal distribution. To solve this problem,
the idea of self-adaptive proposal is adopted in MCMC methods such as the adaptive Metropolis
(AM) [25] and the delayed rejection adaptive Metropolis (DRAM) [27] algorithms. However, these
MCMC methods are essentially single-chain, and this motivates a major improvement in that multiple
chains running in parallel are adopted to explore the target posterior distribution. This improvement
allows the MCMC methods to handle more complex posterior distributions and avoid premature
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convergence. Representative multi-chain MCMC methods include the shuffled complex evolution
Metropolis (SCEM) [29] and differential evolution Markov chain (DE-MC) [30]. Vrugt and coworkers
further enhanced the efficiency of DE-MC using self-adaptive randomized subspace sampling and
the explicit consideration of aberrant trajectories. Then, a series of differential evolution adaptive
Metropolis (DREAM) algorithms was proposed [31,32]. As the most advanced one within the series of
algorithms proposed by Vrugt and coworkers, MT-DREAM(ZS) combines the strengths of differential
evolution, subspace exploration, sampling from past states, snooker updating, and multiple-try
Metropolis sampling and can achieve the more efficient exploration of the parameter posterior space of
highly parameterized models [33].

Indeed, MCMC methods have already been applied to Bayesian geoacoustic inversion. Dosso
has successfully applied a single-chain MCMC method to quantify uncertainty in geoacoustic
inversion [20,34,35]. Bonomo utilized the Metropolis-Hastings algorithm to explore the parameter
posterior space and compared several models [36]. However, Bonomo also pointed out that low
likelihood regions in the parameter space may not be fully explored using the Metropolis–Hastings
algorithm. Most geoacoustic inversion workers do not focus on the method of solving PPDs,
although this is a crucial step and has a great impact on the inversion efficiency and results.
Therefore, it is necessary to introduce a more efficient and accurate method for solving PPD into
Bayesian inversion. Although the original DREAM methods have been successfully applied to
geoacoustic inversion to evaluate the main scattering mechanism and select the model that best
matches the measurements [37,38], the inversion results based on DREAM have not been verified by
field measurements.

The aim of this paper is to integrate the state-of-the-art MCMC method—MT-DREAM(ZS)—to
model-based Bayesian geoacoustic inversion. EDFM is used as the inversion model due to its relatively
small computational cost and a model prediction that is close to the poroelastic model. Published field
backscattering strength data at the Quinault site [8] are used here to implement geoacoustic inversion,
and the inversion results can be compared with the measured sediment properties. The authors believe
that this is the first time that MT-DREAM(ZS) is applied to model-based Bayesian geoacoustic inversion
using field measurements. Although this method was originally applied to the field of hydrology [33],
the intent of the method developers is to apply it to complex system models with observations for the
purpose of learning and scientific discovery, enhancing the growth of environmental knowledge. In this
paper, the environmental knowledge includes the characteristics of seabed sediment, and the remainder
of this paper is organized as follows: An introduction of the EDFM and a brief review of model-based
Bayesian geoacoustic inversion and MT-DREAM(ZS) methods are given in Section 2. The field
experiments at the Quinault site, parameter inversion results, and comparison with measurements are
presented in Section 3. Finally, this work is concluded in Section 4.

2. Methodology

Model-based Bayesian geoacoustic inversion is the process of obtaining parameters of sediment
properties by Bayesian inversion based on a particular geoacoustic model and measured model outputs.
In an inverse problem, the focus is not on the validity of the model, which is the topic of the forward
problem. That is, when a model is selected for inversion, it is accepted that the model may have a
limited validity, and the purpose of inversion is to give the best answer based on the selected model
and measurements. In this paper, a validated model with moderate computational cost is selected for
inversion. In order to give the inversion results with rigorously quantitative uncertainty, Bayesian
inversion is adopted. MT-DREAM(ZS) is selected and applied to geoacoustic inversion due to its proven
efficiency and accuracy for estimating PPDs. Below, we will briefly explain the content of these aspects.

2.1. Acoustic Scattering Model Based on Effective Density Fluid Approximation

EDFM is an effective density fluid approximation for the poroelastic model based on the full
Biot–Stoll theory. The essence of the approximation is to start by setting the two relatively small frame
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moduli in Biot–Stoll theory to zero. Then, the effective density can be derived from the equations of
motion. The final scattering strength can be obtained through the fluid interface scattering model
and volume scattering model through the simple parameter replacement of density by effective
density. The specific approximate derivation process can be found in [15], and below, we give the main
calculation process of scattering strength.

The fluid model requires seven input parameters: The roughness spectral exponent γ2, roughness
spectral strength ω2, density fluctuation spectral exponent γ3, density fluctuation spectral strength ω3,
ratio of compressibility to density fluctuation in sediment µ, density ratio aρ, and complex velocity
ratio a1. The scattering strength Sb can be obtained by [39]

Sb = 10 log10 (σbI + σbV) (1)

σbI = (k4
w|[1 + Vww(θi)][1 + Vww(θs)]G|

2Ik)/(8π∆K2∆k2
z) (2)

σbV =

∣∣∣1 + Vww(θi)
∣∣∣2∣∣∣1 + Vww(θs)

∣∣∣2σv

2kw
∣∣∣aρ∣∣∣2Im

(√
1/a2

1 − cos2 θi +
√

1/a2
1 − cos2 θs

) (3)

where σbI represents the rough scattering cross-section using small-slope approximation, σbV represents
the volume scattering cross-section, and kw is the acoustic wavenumber in water. The flat-interface
reflection coefficient Vww, factor G, and Kirchhoff integrals Ik, ∆K, ∆kz which, respectively, denote
the magnitude of the horizontal and vertical vector difference between the scattered wave and the
incident wave, are given in the Appendix A. The expression of σbV is the basis of several sediment
volume scattering models, which differ only in the assumptions used to obtain the factor σv. Indeed,
the inhomogeneities within the sediment are so difficult to measure that Jackson had to take the
sediment volume scattering parameter as a free parameter [8]. As the simplest approach, σv can be
obtained by a data fitting parameter σ2 empirically [40]:

σv = σ2αp (4)

where αp is the attenuation in dB/m, and σ2 is a dimensionless parameter used as a fitting adjustment
parameter. In contrast, the theory-based σv is adopted in the inversion of this paper and can be obtained
using the small-perturbation fluid approximation in [10,41]:

σv =
π
2

k4
w

∣∣∣∣∣µ/a2
1 + cosθi cosθs cos∅s −

√
1/a2

1 − cos2 θi

√
1/a2

1 − cos2 θs

∣∣∣∣∣2 w3(
∆kp

)γ3
(5)

where ∆kp is the real part of the vector difference of the scattered and incident waves that propagate in
sediment and is given in the Appendix A. Definitions of all angles θi, θs, ∅s are also in the Appendix A.
By the comparison of Equations (4) and (5), it can be seen that the empirical σv is fixed while the
theoretical σv varies with the angle if the frequency is fixed.

The above is a brief calculation process of the fluid scattering model. The following is the
calculation process of the density ratio aρ and complex velocity ratio a1 derived from Biot–Stoll theory.
Ten input parameters are required: The mean grain diameter d, tortuosity α, porosity β, dynamic
viscosity of water η, permeability κ, mass density of water ρw, mass density of grains ρg, bulk modulus
of water Kw, bulk modulus of grains Kg, and compressional wave speed in water cw. As the inversion
in this paper is based on the measurements at high frequencies, the improved EDFM with the effect of
granularity is given here. The density ratio aρ and complex velocity ratio a1 can be obtained by [15,18]

aρ = ρe f f /ρw (6)

a1 =

√
ξDM(λ, d;θ = 30◦)

[
(1− β)/Kg + β/Kw

]−1
/ρe f f /cw (7)
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where λ = cw/ f is the wavelength of a sound wave in water. The effective density ρe f f and granularity
effect correction factor ξDM are given in the Appendix A. The compressional velocity ratio can be
obtained by

v1 =
1

cw
/Re(1/a1/cw) (8)

Since the effect of granularity does not have enough physics to account for additional multiple
scattering loss, the effect is added to the attenuation calculated via the imaginary part of the sound
speed equation using the following expression [42]:

αms = 24(2π f d/cw)
4 (9)

The final attenuation is expressed as

αp = 40π f Im(1/a1/cw)/ln(10) + αms (10)

It needs to be noted here that the unit of attenuation is dB/m. Then, the final modified complex
velocity ratio a1 can be obtained by

a1 =
[
1/v1/cw + iαpln(10)/(40π f )

]−1
(11)

By substituting the density ratio aρ and complex velocity ratio a1 into the original fluid scattering
model, the fluid model is extended to poroelastic media.

2.2. Model-Based Bayesian Inversion

When estimates of model inputs are obtained based on model and measured outputs, there
may be multiple optimal estimates. The global optimization algorithm is an intuitive solution to this
problem, although repeated runs may yield different answers. Indeed, it is not rigorous to provide
an answer with only one or a set of point estimates. Bayesian inversion is the most appropriate and
rigorous way to solve such problems as it considers the model input parameters as random variables
and can give quantitative uncertainties. This solution is truly complete from a mathematical point of
view. Bayesian inversion has been widely applied to various geoacoustic model inversions and more
complete treatments of Bayesian inversion can be found elsewhere [43–47]. Only a brief description is
given here, and the original Bayesian formula is

P(m|d)P(d) = P(d|m)P(m) (12)

In an inverse problem, we can take m as the model input parameter vector and d as the vector of
measurements. Then, P(m|d) represents the PPD of m based on the model and is the complete solution
of the inverse problem. P(d|m) denotes the conditional probability distribution of measurements and
is interpreted as a likelihood function in Bayesian inversion. P(d) is independent of m and can be
regarded as equal to one. P(m) represents the prior distribution of m. Then, the PPD can be rewritten as

P
(
m

∣∣∣dobs
)
∝ P

(
dobs

∣∣∣m)
P(m) = L(m)P(m) (13)

where L(m) ∝ exp[−E(m)] and E(m) is the misfit function. For assumed Gaussian errors, E(m) can be
expressed as

E(m) =
(
dobs
− dpre

)
∗C−1

d

(
dobs
− dpre

)
(14)

where Cd is the data error covariance matrix and ∗ represents the conjugate transposition. Indeed, the
error of observations, which consists of the measurement error and model error, are difficult to specify.
Nevertheless, the errors of measurements can be estimated simultaneously with the model inputs
within the inversion process, and this is a simple and effective method. Assuming the measurement
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errors are independent Gaussian-distributed random processes, then the covariance matrix Cd and the
likelihood function can be expressed as

Cd = diag
(
σ1, σ2, . . . , σNd

)
(15)

L(m) =
1

(2π)Nd/2 ∏Nd
i=1 σi

exp

−1
2

Nd∑
i=1

(
dobs

i − dpre
i

)2

σ2
i

 (16)

where Nd is the dimension of dobs, dobs
i and dpre

i represent the ith element of dobs and dpre, respectively,

and σi, i = 1, . . . , Nd is the standard deviation for dobs
i . The P

(
m

∣∣∣dobs
)

is multidimensional, and some
more intuitive features are used to represent parameter estimates and uncertainties such as the
maximum a posteriori (MAP) model estimate, the posterior mean model estimate, and posterior
marginal probability distributions. These are defined as

m̂MAP = Argmax

[
P
(
m

∣∣∣dobs
)]

(17)

m̂mean =

∫
m′P

(
m′

∣∣∣dobs
)
dm′ (18)

P
(
mi

∣∣∣dobs
)
=

∫
δ
(
m′i −mi

)
P
(
m′

∣∣∣dobs
)
dm′ (19)

respectively, where δ is the Dirac delta function, and mi is the ith element of the parameter vector m.
For geoacoustic inversion, the integral in Equations (18) and (19) does not have an analytic solution.
Based on Monte Carlo theory, if a large number of samples m1, m2, . . . mNs can be obtained from
P
(
m

∣∣∣dobs
)
, the integral can be approximately equal to

m̂mean ≈
1

Ns

Ns∑
i=1

mi (20)

P
(
mi

∣∣∣dobs
)
≈

1
Ns

Ns∑
i=1

δ
(
m′i −mi

)
(21)

In general, the key to Bayesian geoacoustic inversion is to approximate the PPD using a set of
samples. The MT-DREAM(ZS) described below is an efficient and accurate sample acquisition MCMC
method to estimate PPD.

2.3. PPDs Exploration Using Multiple-Try DREAM(ZS)

Since Vrugt and co-workers first proposed the original DREAM [31], this method has received
extensive attention and application [48–50]. Motivated by the good performance of sampling from
an archive of past states within the chains, this idea was added to the original DREAM, and the new
method was entitled DREAM(ZS). This improvement can reduce the number of parallel chains required
and the time for burn-in and increase the sampling efficiency, especially in dealing with problems
involving many parameters and complex posterior distribution. The MCMC method adopted in
this paper is the latest improved version of DREAM(ZS) in which the multiple-try Metropolis [51] is
added to further enhance the acceptance rate of candidates within the chains. The state-of-the-art
MCMC method, entitled MT-DREAM(ZS), can efficiently explore high-dimensional and multimodal
PPDs by the combination of differential evolution, subspace exploration, sampling from past states,
snooker updating, and multiple-try Metropolis sampling. This method is specially designed for
parallel implementation on a distributed computing cluster. MT-DREAM(ZS) is essentially a fusion of
multiple-try Metropolis sampling and DREAM(ZS), and previous studies have shown that DREAM(ZS)
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can handle most problems within a hundred dimensions with excellent sampling efficiencies using only
three parallel chains, that is, it does not require a large number of computation nodes for MT-DREAM(ZS)

which can be easily implemented by even casual users. Its excellent performance has been verified
and a detailed method description can be found in [33]. The main steps of MT-DREAM(ZS) are briefly
shown in Figure 1.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 7 of 19 
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Figure 1. Sketch of the distributed implementation of multiple-try differential evolution adaptive
Metropolis(ZS) (MT-DREAM(ZS)).

The initial values are randomly obtained from the prior distribution P(m). Proposals for each
of the N chains are generated by adding a value to the current state of each chain [32]. Due to the
addition of the multiple-try Metropolis, multiple proposals Z1, . . .Zk, X1, . . .Xk−1 are needed instead
of one in each chain. Although this has been shown to increase the acceptance rate and convergence
efficiency, the computation cost of the forward model to obtain the probability Π(Z) also increases
exponentially. Distributed parallel computing can take advantage of multiple-try Metropolis without
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significantly increasing the computational time. The convergence of MT-DREAM(ZS) is determined
by the diagnostic R̂i proposed by Gelman and Rubin [52], which is calculated using the last 50% of
the samples in each chain for mi. When R̂i are all less than 1.2 for all i, it can be considered that the
algorithm has converged, and the parameter posterior space has been fully explored. The advantages
of MT-DREAM(ZS) over other optimization and MCMC methods have been demonstrated through
case studies with increasing complexity [33].

3. Experiment, Results, and Discussion

This section discusses the parameter inversion results based on the field measurements. First,
the field measurements which were performed by Jackson and co-workers and used as the basis of
the inversion are reviewed. Then, the inversion results of the model input parameters are compared
with the measured model inputs. Finally, the uncertainties of the model prediction are compared with
measurements and Jackson’s prediction.

3.1. Geoacouctic and Backscattering Measurements at the Quinault Site

Jackson and Briggs have made sufficient geoacoustic measurements to conduct an unambiguous
comparison between the model and measured data in [8]. As model inputs, the measured geoacoustic
parameters include the porosity β, grain size phi, compressional velocity ratio v1, density ratio aρ,
attenuation αk, and interface roughness spectral parameters. The measured model outputs are
the backscattering strength data, which are taken as a function of the grazing angle. Because the
backscattering strengths measured at the Quinault site are dual-frequency data and have larger angular
coverage, they are selected for the inversion performed in this paper. As the bottom of the Quinault
site was composed of fine sand with well-defined ripples, the roughness spectral parameters were
measured from two orthogonal directions, which are along-strike (direction parallel to ripple crests)
and across-strike (direction perpendicular to ripple crests). In this paper, the across-strike roughness
spectral parameters are used for the comparison with the inversion results due to the corresponding
backscattering strengths being obtained with the acoustic beam pointed approximately across the strike
of the ripples. The comparison between the predicted backscattering strength by Jackson and measured
values has also adopted the across-strike roughness spectral parameters. In addition, as the model and
scattering measurements belong to the high-frequency bottom acoustic interaction, the geoacoustic
values for the upper 2 cm of the sediment are selected, and the average values of all parameters are
shown in Table 1.

Table 1. Geoacoustic values measured at the Quinault site.

Parameter Symbol Value Unit

Porosity β 0.405 dimensionless
Grain size phi 2.97 ∅

Ratio of sound velocity of sediment to water v1 1.113 dimensionless
Ratio of mass density of sediment to water aρ 1.94 dimensionless

Attenuation αk 0.30 dB/m/kHz
Roughness spectral exponent (across) γ2 3.67 dimensionless
Roughness spectral strength (across) ω2 0.00422 m4

The measured backscattering strength and the model predictions calculated by Jackson using the
values in Table 1 are both shown in Figure 2. It needs to be noted that the model used by Jackson is the
original acoustic scattering fluid model, while the model used in this paper is EDFM, which has been
extended to porous elastic media. In fact, Jackson used the parameters in Table 1 for the data–model
comparison, except for porosity and grain size, which belong to the category of poroelastic theory. The
input parameters of the model adopted in this paper include these two parameters so that they can be
estimated in the inversion and compared with the measurements. Besides this, the composite roughness
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approximation and the Kirchhoff approximation are used for a different range of angles in the interface
rough scattering model adopted by Jackson, while the lowest-order small-slope approximation is
used in this paper, which can provide a single expression that covers all angles [39]. In Jackson’s
data-model comparison, the volume scattering parameters are unmeasured, and they are treated
as fitting parameters empirically according to Equation (4). In contrast, the theory-based volume
scattering model is adopted in this paper for geoacoustic inversion.

It can be seen from Figure 2 that the results of the data–model comparison are satisfactory.
However, it is obvious that the results of 25 kHz are better fitted than those of 35 kHz. This is actually
the best fitting obtained by adjusting the volume scattering and taking the roughness scattering portion
as a fixed quantity, which is calculated by the values in Table 1. The authors have pointed out that
the volume scattering is comparable to the rough scattering in the medium angular range based on
the fitting results. Besides this, it has been concluded that the primary scattering mechanism for
sandy sediment is the interface roughness scattering, which is characterized by an obvious drop in
backscattering strength near a 30◦ grazing angle (critical angle) [8,13,53]. The drop may be weakened
when volume scattering and rough scattering are comparable. However, the backscattering strength
measured at 35 kHz has an obvious drop, which was not well-fitted. Due to the 3 dB uncertainties in
the backscattering strength measurements, the data of the two frequencies have obvious differences in
the trend near the critical angle, and the contribution of volume scattering to total scattering cannot
be determined completely. In the absence of the measurement of volume scattering parameters,
the dominant scattering mechanism needs to be regarded as tentative.
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Quinault site.

3.2. Geoacoustic Inversion

The parameter priors used in this work are bounded, uniform distributions, and bounds of the
parameters are presented in Table 2. With reference to the available published information, the priors
are chosen to be minimally informative and represent attempts at capturing the full range of possible
values that the model input parameters can take for sandy sediments. The parameters that describe
the characteristics of water and the speed of sound in water are supposed to be known parameters,
which refer to values listed in [54]. It can be seen that the parameters in Table 1 all have appeared in
Section 2.1 except for phi and αk. In order to compare the inversion results with the measured values,
the two parameters need to be obtained by other parameters. phi is related to d by phi = − log2 d. αk is
calculated through a simple relationship:

αp = αk f n (22)
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where n is the exponent of frequency f , αk is a constant and its unit is dB/m/kHz. Indeed, Equation (22)
has been used by Hamilton to describe the frequency dependence of attenuation [55]. The experimental
evidence indicates that n probably varies in saturated sediments between 0.9 and 1.1. Jackson also
used this description of attenuation, so his attenuation measurement is αk. Nevertheless, in the model
adopted in this paper, the attenuation is modeled by Equation (10), which is more consistent with the
measurements due to the addition of more physical mechanisms as described in [18,42]. The PPD of αp

in Equation (10) can be obtained by the model parameter inversion and uncertainty transfer carried
out in this paper. For comparison with the αk measured by Jackson and co-workers, the uncertainty of
αp is converted into the uncertainty of αk by Equation (22). The exponent of frequency n is set to 1,
as Jackson did in [8].

A total of five chains was used during the Bayesian inversion, and the other algorithmic variables
of MT-DREAM(ZS) are set by defaults listed in the literature [32]. The chain began to converge
after about 1500 iterations. In order to obtain more stable and reliable results, 20,000 samples after
convergence are retained in each inversion, and the process is repeated three times, with a total of
60,000 samples used for the estimation of PPDs by kernel density estimation. Since the backscattering
strength measurements have two different frequencies (25 and 35 kHz), we have carried out three
different inversions, comprising two inversions based on two sets of single-frequency scattering
strength data and one inversion based on a dual-frequency scattering strength data set. Indeed,
compared with DREAM, which has been applied to geoacoustic inversion [37,38], the convergence
efficiency of MT-DREAM(ZS) is greatly improved, and we will not repeat the comparison of the two.
This is not the focus of this paper, and a detailed comparison is available in [33].

Table 2. Parameter bounds used to construct uniform priors for model input parameters and the
known parameters.

Parameter Symbol Value Lower
Bound

Upper
Bound Unit

Roughness spectral exponent γ2 - 2 4 dimensionless
Roughness spectral strength ω2 - 0.00001 0.006 m4

Density fluctuation spectral
exponent γ3 - 1 8 dimensionless

Density fluctuation spectral
strength ω3 - 0.001 0.01 m3

Ratio of compressibility to
density fluctuation µ - −3 2 dimensionless

Mean grain diameter d - 62.5 × 10−6 1 × 10−3 m
Tortuosity α - 1 3 dimensionless
Porosity β - 0.2 0.8 dimensionless

Permeability κ - 6.5 100 µm2

Ratio of mass density of grains
to water ρr - 2 3 dimensionless

Ratio of bulk modulus of
grains to water Kr - 5 30 dimensionless

Mass density of pore fluid ρw 1023 - - kg/m3

Bulk modulus of pore fluid Kw 2.395 × 10−9 - - Pa
Dynamic viscosity η 0.00105 - - kg/ms

Compressional sound speed
in water cw 1530 - - m/s

3.2.1. Parameter Uncertainty Analysis

Figure 3 displays the estimates of one-dimensional PPDs of model parameters for the three
inversions. An inspection of the figure reveals that the roughness spectral exponent γ2 and porosity β
were well resolved by the inversion, as their PPDs are much narrower than their respective priors.
The roughness spectral strength ω2 and density fluctuation spectral exponent γ3 were somewhat
resolved by the inversion, as their PPDs changed appreciably from their respective priors. The PPDs of
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the remaining parameters only have a weak peak compared to their priors and provide an unreliable
parameter inference. By comparing the three inversion results, it can be found that the PPDs of the
dual-frequency inversion results are more concentrated than those of the single-frequency inversion
results for the resolved parameters, and the reason is obvious, in that more data contains more
information and can thus provide more accurate posterior estimates. The peak values of the PPDs of
resolved parameters are different, and the reason for this is that each inversion is based on the best
fitting with each set of backscattering strength data, which contains measurement error. The results of
the dual-frequency inversion try to fit the measurements of the two frequencies and make a compromise.
The comparison between the PPDs and the measured values show that γ2 is the most accurate, ω2 and
β have appreciable deviations, and the parameter d is unable to obtain a reliable estimate due to its
insensitivity to backscattering strength.
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Figure 3. Estimates of one-dimensional marginal posterior probability distributions (PPDs) of
model parameters.

The ratio of the sound velocity of sediment to water v1, attenuation αk and the ratio of the mass
density of sediment to water aρ are indirectly inverted through uncertainty transfer, and the results
are presented in Figure 4. The method substitutes all samples into the model to calculate these three
quantities to form their respective sample sets which can be used for PPD estimation. There is no doubt
that the sound velocity and attenuation of sound are frequency-dependent, which is not apparent in
Figure 4 because of there being only two frequency points. The PPDs of the sound velocity ratio and
density ratio for the three inversions in Figure 4 are similar to the results in Figure 3. The PPDs of the
sound velocity ratio and density ratio of dual-frequency inversion results are much narrower than
those of the other two single-frequency inversions. The PPDs of attenuation differ from those of the two
parameters, and this could be attributed to the insensitivity of attenuation and errors of the measured
data. Compared with the measurements, it can be seen that the MAP of the sound velocity ratio is the
closest to the measured value, and there are appreciable deviations in attenuation and density ratio.
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3.2.2. Model Prediction Uncertainty Analysis

Similarly, the samples obtained based on inversion can also be used to obtain the uncertainty of the
predicted backscattering strength, which can be used for comparison with the measured values, and we
can thus intuitively analyze the fitting performance of the inversion. The uncertainties of the predicted
backscattering strength are represented by the colored part in Figure 5. The backscattering strength
is calculated by the sample sets to obtain the backscattering strength sets of each angle at different
frequencies (25 and 35 kHz), which were statistically transformed into a probability distribution and
represented by a vertical color strip. All the vertical color strips for the angle range (5◦–75◦) were
spliced together along the x-axis to form the subgraphs in Figure 5. On the whole, the uncertainty
distributions of backscattering strength predicted by dual-frequency inversion are obviously narrower
and more concentrated than those by single-frequency inversion. This is consistent with the PPDs
of sensitive parameters in Figure 3. Nevertheless, the predicted values with maximum probabilities
of single-frequency inversions are still well fitted to the corresponding measured values, although
they have a wider uncertainty distribution, as shown in Figure 5c,d. In other words, dual-frequency
inversion can reduce the uncertainty of partial model parameters and enhance the fitting performance
between the predicted value and the measurements. Moreover, theoretically, we can also add more
data at other frequencies to further reduce the uncertainties, but this is not necessarily worthwhile
because reliable parameter estimation results have already been obtained and additional data require a
higher measurement cost.
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Figure 5. Comparison of Jackson’s prediction, measured data and uncertainties of (a) a backscattering
strength of 25 kHz predicted by dual-frequency inversion, (b) backscattering strength of 35 kHz predicted
by dual-frequency inversion, (c) backscattering strength of 25 kHz predicted by single-frequency (25 kHz)
inversion, (d) backscattering strength of 35 kHz predicted by single-frequency (35 kHz) inversion.

The backscattering strength predicted by dual-frequency inversion captures the characteristic
drop near the critical angle, leading to a better-fitting performance at 35 kHz in Figure 5b than at
25 kHz in Figure 5a. The predicted value of 25 kHz in Figure 5a shows a characteristic drop which is
not found in the measurements. This result is exactly the opposite of the fitting performance between
Jackson’s prediction and the measurements, as described in Section 3.1. This is indeed the result of
different errors in the backscattering strength measurements at the two frequencies and potential
multiple optimal values of the inverse problem. Actually, Jackson’s prediction at 25 kHz obtained
well-fitting performance with measurements, which led him to believe that volume scattering and
roughness scattering were comparable, while the predicted scattering strength in this paper captured
the unique drop characteristics of sandy sediment near the critical angle at 35 kHz, which means that
roughness scattering is dominant. In the case of sandy sediment, it is more likely for us to accept the
results with distinct drop characteristics, which has been confirmed by many field measurements.
Nevertheless, both results are indeed reasonable when no volume scattering parameters are measured.

In order to compare the fitting performance of predicted backscattering strength more intuitively
and quantitatively, the MAP and posterior mean of the backscattering strength sets of each angle at
different frequencies are presented in Figure 6, where the median and width of the green strip represent
the posterior mean and standard deviation, respectively. The standard deviations of backscattering
strength predicted by dual-frequency inversion are obviously less than those by single-frequency
inversion, and this is consistent with the results in Figure 5. For all the results in Figure 6, it can be seen
that the posterior mean and MAP basically have the same trend except in the middle of the angle range,
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where appreciable differences can be observed. This also indicates that the predicted backscattering
strength has more complex posterior distributions and greater uncertainty in this angle range.
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Figure 6. Comparison of Jackson’s prediction, measured data and maximum a posteriori (MAP),
posterior mean of (a) a backscattering strength of 25 kHz predicted by dual-frequency inversion,
(b) backscattering strength of 35 kHz predicted by dual-frequency inversion, (c) backscattering strength
of 25 kHz predicted by single-frequency (25 kHz) inversion, (d) backscattering strength of 35 kHz
predicted by single-frequency (35 kHz) inversion.

Compared with the measurements, it can be obviously seen that the fitting performance of
backscattering strength’s MAPs predicted by the inversion results and Jackson’s prediction have
appreciable differences, which corresponds to the differences of PPD estimates for the parameter in
Figures 3 and 4. The predicted value of backscattering strength by dual-frequency inversion in this
paper seems to fit the measurements from a different perspective compared with Jackson’s prediction.
As analyzed above, the predicted results of dual-frequency inversion at 35 kHz have a better-fitting
performance than Jackson’s results near the critical angle. On the contrary, Jackson’s results fit with the
measured values better than the predicted results in this paper at 25 kHz in the same angle range.

For further analysis, the root-mean-square error (RMSE) between the measured value and
corresponding estimates are calculated as shown in Table 3. The RMSE of the MAP, posterior mean and
measured values are close or even the same for both single-frequency and dual-frequency inversion.
The RMSE of the MAP and measurements for single-frequency inversion results are equal to or less
than those for Jackson’s results. Dual-frequency inversion reduces the RMSE at 35 kHz at the expense
of increasing RMSE at 25 kHz, which can be clearly observed by comparing the results in Figure 6a,c.
In general, the RMSE of the MAP, posterior mean, and measurements for dual-frequency inversion
is similar to that of Jackson’s prediction and measurements, and they differ only in their RMSE
values at different frequencies. This also indicates that the inverse problem is likely to have multiple
optimal solutions. Therefore, the form of posterior distribution is more reliable and acceptable when
compared with the results given by point estimation. We can assume that Jackson simply inverted the
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volume scattering parameters and took other measured model input parameters as prior information.
The comparison of different predictions exactly confirms that the amount of prior information will
have a significant impact on the inversion results in an inverse problem. Although the inversion in this
paper only uses the simplest prior knowledge of uniform distribution and limited measured model
outputs, we still achieve satisfactory inversion results where appreciable differences can be observed
when compared with measured model inputs.

Table 3. Root mean square error (RMSE) between the measured backscattering strength and Jackson’s
prediction, and corresponding estimates of the MAP and posterior mean.

Inversion Type RMSE Type 25 kHz 35 kHz

Dual-frequency MAP and measurements 1.6 1.2
Posterior mean and measurements 1.6 1.1

Jackson’s model prediction and measurements 1.0 1.6

Single-frequency MAP and measurements 1.0 1.3
Posterior mean and measurements 1.3 1.3

4. Conclusions

This study integrated the state-of-the-art MT-DREAM(ZS) method to achieve an efficient and
accurate solution of PPDs in model-based Bayesian geoacoustic inversion. The EDFM, which is a
convenient approximation for the poroelastic model, and the published field measurements are adopted
to implement the inversion. The PPDs of parameters indicate that the roughness spectral exponent
γ2, porosity β, roughness spectral strength ω2, and density fluctuation spectral exponent γ3 can be
resolved satisfactorily. By comparing the results of single-frequency and dual-frequency inversions,
it can be seen that dual-frequency inversion results can provide more concentrated PPDs with fewer
uncertainties. It can be considered that the inversion results given by the posterior probabilities based
on the measurements and models adopted are reliable, although there may be a gap between the
MAP and the measurements of the parameters due to the existence of measurement error. Meanwhile,
the differences between the parameter MAP and the measured value are also reflected in the predicted
outputs of the model. When comparing with Jackson’s prediction, the dual-frequency inversion
has completed the matching with the measured backscattering strength from a different perspective,
and they both have a similar fitting error level.

In fact, there is a marked difference between the predicted backscattering strength based on
the dual-frequency inversion and Jackson’s prediction. The results in this paper match well with
the measured backscattering strength at 35 kHz, while Jackson’s prediction matches well with the
measurements at 25 kHz. This difference is essentially the difference in the estimation of the contribution
between volume scattering and rough scattering to total scattering strength. By using volume scattering
as a fitting parameter without measuring it, Jackson argues that the contributions of the two types of
scattering to the total scattering at the Quinault site are comparable. By contrast, the Bayesian inversion
results based on EDFM and MT-DREAM(ZS) are well matched with the unique drop characteristics of
the sandy sediment near the critical angle at 35 kHz, which means that rough scattering is considered
to be dominant. The source of this difference is the measurement error of backscattering strength,
and it can be considered that both results are reasonable in the absence of measured volume scattering
parameters. Therefore, for an inverse problem, the solution given by Bayesian inversion is the most
reasonable one due to the existence of multiple optimalities and measurement errors, and the way to
make the solution more accurate is to provide more measured model outputs and prior information of
model input based on limited measurement costs.
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Appendix A

The definitions of all angles are shown in Figure A1 [38]. The needed quantities for the acoustic
scattering model based on effective density fluid approximation are given by the following expressions.
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The Kirchhoff integral 𝐼௞ can be obtained by 
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The effective density 𝜌௘௙௙ derived from Biot–Stoll theory can be obtained by 𝜌௘௙௙ = (𝜌𝜌෤ − 𝜌௪ଶ ) ∕ (𝜌෤ + 𝜌 − 2𝜌௪) (A5) 

where 𝜌෤ = 𝛼𝜌௪ 𝛽⁄ + 𝑖𝐹𝜂 (2𝜋𝑓𝜅)⁄ , 𝜌 = 𝛽𝜌௪ + (1 − 𝛽)𝜌௚ and 𝐹 is the complex correction factor for 
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where 𝑇ଵଵ = cos 𝜃, 𝑇ଶଵ = cos(60∘ − 𝜃), 𝑇ଷଵ = −cos(60∘ + 𝜃). 
The three wave vector differences ∆𝑲, ∆𝒌𝒛 and ∆𝒌𝒑 can be obtained by ∆𝑲 =  𝑘௪(cos𝜃௦cos∅௦ − cos𝜃௜cos∅௜)𝐞௫ + 𝑘௪(cos𝜃௦sin∅௦ − cos𝜃௜sin∅௜)𝐞௬ (A8) 
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Figure A1. Definition of angle of incident and scattered waves.

The expressions of the flat-interface reflection coefficient Vww(θ) and factor G are

Vww(θ) =
(
aρa1 sinθ/

√
1− a2

1 cos2 θ− 1
)
/
(
aρa1 sinθ/

√
1− a2

1 cos2 θ+ 1
)

(A1)

G =

(
1−

1
aρ

)cosθi cosθs cos∅s −

√
1− a2

1 cos2 θi

√
1− a2

1 cos2 θs

a2
1aρ

− 1 +
1

a2
1aρ

(A2)

The Kirchhoff integral Ik can be obtained by

Ik =

∞∫
0

J0(u)e
−

1
2 C2

h∆k2
z ∆K−2(

γ2
2 −1)u2(

γ2
2 −1)

udu (A3)

C2
h = 2πw2Γ

(
3−

γ2

2

)
2−2(

γ2
2 −1)/

[(
γ2

2
− 1

)(
2−

γ2

2

)
Γ
(
γ2

2

)]
(A4)

The effective density ρe f f derived from Biot–Stoll theory can be obtained by

ρe f f =
(
ρρ̃− ρ2

w

)
/(ρ̃+ ρ− 2ρw) (A5)

where ρ̃ = αρw/β+ iFη/(2π fκ), ρ = βρw + (1− β)ρg and F is the complex correction factor for
dynamic viscosity:

F = −
√

iεJ1

(√
iε
)
/
[
4J0

(√
iε
)
+ 8i
√

iJ1

(√
iε
)
/ε

]
(A6)

where ε =
√

16ακπ fρw/η/β, J0 and J1 are Bessel functions of the first kind.
The granularity effect correction factor ξDM can be expressed as

ξDM(λ, d,θ) =
1

4
∑3

i=1 T4
i1

∑3

j=0

[
(−1) j(d/λ)2 j 2(2 j+3)π2 j

(2 j + 2)!

∑3

i=1
T(2 j+4)

i1

]
(A7)
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where T11 = cosθ, T21 = cos(60◦ − θ), T31 = − cos(60◦ + θ).
The three wave vector differences ∆K, ∆kz and ∆kp can be obtained by

∆K = kw(cosθs cos∅s − cosθi cos∅i)ex + kw(cosθs sin∅s − cosθi sin∅i)ey (A8)

∆kz = (sinθs + sinθi)ez (A9)

∆kp = Re
{
∆K− kw

(√
1/a2

1 − cos2 θs −

√
1/a2

1 − cos2 θi

)
ez

}
(A10)

We may set ∅i = ∅s = 0, θs = π− θi for backscatter.
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