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Abstract: Propeller designers often need to base their design on the nominal model scale wake
distribution because the effective full scale distribution is not available. The effects of such incomplete
design data on cavitation performance are examined in this paper. The behind-ship cavitation
performance of two propellers is evaluated, where the cases considered include propellers operating
in the nominal model and full scale wake distributions and in the effective wake distribution, also in
the model and full scale. The method for the analyses is a combination of RANS for the ship hull
and a panel method for the propeller flow, with a coupling of the two for the interaction of ship and
propeller flows. The effect on sheet cavitation due to the different wake distributions is examined for
a typical full-form ship. Results show considerable differences in cavitation extent, volume, and hull
pressure pulses.

Keywords: propeller cavitation; wake scaling; effective wake; RANS-BEM coupling

1. Introduction

1.1. Motivation

Propeller cavitation is strongly influenced by the non-uniform inflow to the propeller. As the
ship wake is dominated by viscous effects, it is subject to major scale effects. Still, propeller designers
are generally only provided with the nominal wake field measured at model scale. This then needs
to be scaled to match the estimated full scale effective wake fraction from a self-propulsion test to
ensure that the average axial velocity in the propeller disk corresponds to the average effective inflow.
However, scaling the field uniformly will not result in the right velocity distribution. In addition to the
scale effects, the actual inflow field to the propeller is not the nominal field, but the effective wake field,
including hull–propeller interaction. As a result, the propeller designer might base design decisions
on insufficiently accurate information.

A successful propeller design is a trade-off between propeller cavitation performance and total
propeller efficiency. The ability to predict cavitation performance at early design stages will eliminate
the need for overly conservative designs. This paper intends to highlight the role of the wake field in
the design, analysis, and optimization of a conventional ship propeller.

1.2. Background

Due to the higher Reynolds number at full scale compared to model scale, the boundary layer
around the ship hull changes and hence the velocity distribution near the hull is altered. This difference
results in a narrower wake peak and a lower wake fraction in full scale. The presence of the propeller
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behind the ship adds to the complexity of the problem because the propeller–hull interaction modifies
the inflow field to the propeller as well.

Single-screw ship wake fields are usually characterized by a strongly non-uniform distribution
of velocities with a wake peak at the 12 o’clock position, where the axial velocities are particularly
low. This means that the blade sections of a propeller operating behind the ship experience strong
variations in angle of attack. As the hydrostatic pressure acting on the blade reaches its minimum at
the same time as the blade experiences high angles of attack while passing through the wake peak,
this region of the wake field is particularly critical in terms of cavitation.

Analyzing the different factors influencing propeller cavitation and related erosion and vibration
issues, an ITTC propulsion committee [1] pointed out that, for large container ships with highly-loaded
propellers, the wake field characteristics—and not propeller geometry details—are the key to achieving
decent propeller cavitation performance.

Especially the depth of the wake peak, i.e., the difference between the lowest axial velocity
occurring there and the maximum velocity in the propeller disk, is of decisive importance for the
cavitation performance of a propeller behind the ship. When uniformly scaling the nominal wake
velocities to match the effective wake fraction, the width and depth of the wake peak are unlikely to be
represented properly.

As this has been known for many years, different methods exist for estimating the full scale
wake field of a ship, covering a rather wide range of complexity and sophistication. Usually the
nominal wake field, measured at model scale, serves as input for these methods. A review of the most
commonly used scaling methods was carried out some years ago by an ITTC specialist committee
on wake field scaling [2]. That report mentions the simplest form of wake scaling, where one only
scales the wake field by changing the magnitude of the velocities uniformly to match a target wake
fraction, as already described above. In that case, the shape of the isolines of the input field (usually the
measured nominal wake field) remains unchanged. Therefore, even calling this procedure a “scaling
method” is questionable. While the shortcomings of this approach are well-known, it still appears to
be commonly used for its simplicity.

Adding complexity while still only requiring very limited effort, the semi-empirical scaling
method described by Sasajima and Tanaka [3] decomposes the wake into a frictional and potential
component and contracts the frictional wake based on horizontal velocity profiles. This still-popular
method was recommended (with warnings) by the above-mentioned ITTC committee in 2011 for the
case when full scale wake data are not available.

The main challenges related to scale effects on the effective wake field and the corresponding
effect on propeller cavitation are outlined in a review by van Terwisga et al. [4]. The work by
Bosschers et al. [5] is one of the relatively few examples that explicitly show and discuss differences
in propeller cavitation due to the effect of hull–propeller interaction and local changes in the wake
distribution. That paper focuses on scale effects, offers comparisons with experiments at model and
full scale, and uses similar methods as the present work for computation of effective wake fields and
sheet cavitation prediction.

Gaggero et al. [6] compared the cavitation performance of conventional propellers in nominal
full scale wake fields from CFD calculations to the performance in nominal full scale wake fields
obtained by applying an empirical wake scaling method to measured nominal fields at model scale,
and observed noticeable differences.

The present work focuses on the differences in predicted sheet cavitation behavior purely due
to the wake distribution, using computed nominal and effective wake fields at both model and full
scale. Section 4 presents analysis results for one propeller and different wake distributions. Section 5
introduces another propeller designed for the same ship, showing the difference in cavitation behavior
between propellers designed for different wake distributions.
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2. Methods

2.1. Boundary Element Method for Propeller Analysis

A potential-based boundary element method (“panel code”) serves as the main tool for propeller
analysis in the present work. As for all potential flow-based methods, inviscid, incompressible,
and irrotational flow is assumed. Sheet cavitation is modeled in a partially nonlinear way.
The present implementation’s approach to cavitation modeling—whose basic formulation is
reproduced below—follows the approach initially introduced by Kinnas and Fine [7] and is able
to predict unsteady sheet cavitation in inhomogeneous inflow, including supercavitation.

Mathematical Formulation

The velocity potential must satisfy the Laplace equation:

∇2Φ = 0. (1)

Given the linearity of Equation (1), the total velocity vector UTotal = ∇Φ can be split into a known
onset part UOnset (dependent on the wake field with the local velocity UWake and the propeller rotation)
and the gradient of a propeller geometry-dependent perturbation potential φ that is to be determined:

UTotal = UOnset +∇φ. (2)

For a domain bound by the blade surface SB (with a continuous distribution of sources and
dipoles) and the force-free wake surface SW (with a continuous distribution of dipoles), application
of Green’s second identity gives the potential at a field point p, when the integration point q lies on
the domain boundary. G is defined as the inverse of the distance R between these two points, G = 1

R .
The term ∆φq corresponds to the potential jump across the wake sheet at an integration point q on
SW . An additional term appears in the presence of supercavitation, as additional sources—with the
strength ∆ ∂φq

∂n —are placed on the cavitating part of the wake, SCW ⊂ SW .
If the field point p lies on the blade surface, the potential φp is found from

2πφp =
∫

SB

[
φq

∂G
∂n
− G

∂φq

∂n

]
dS−

∫
SCW

[
G∆

∂φq

∂n

]
dS +

∫
SW

[
∆φq

∂G
∂n

]
dS. (3)

As the surface SW in principle consists of two surfaces collapsed into one infinitely thin wake
sheet, the integral equation reads slightly differently if the field point lies on SW . The potential φp for a
field point on the wake surface is

4πφp = 2π∆φq +
∫

SB

[
φq

∂G
∂n
− G

∂φq

∂n

]
dS−

∫
SCW

[
G∆

∂φq

∂n

]
dS +

∫
SW

[
∆φq

∂G
∂n

]
dS. (4)

Equations (3) and (4) are then discretized using flat quadrilateral panels arranged in a structured
mesh. Introducing influence coefficient matrices A through H that describe the influence from unit
strength singularities located on panel j on the control point of panel i, a system of JB + JCW equations
and unknowns results. For each panel on the blade, one equation of the following form exists:

2πφi = ∑
JB

(
−φj Aij

)
+ ∑

JB

(
σj Bij

)
+ ∑

JCW

(
σj Cij

)
−∑

JW

(
∆φj Gij

)
, (5)

and, for each cavitating wake panel, there is an additional equation of the form

4πφi = ∑
JB

(
−φj Dij

)
+ ∑

JB

(
σj Eij

)
+ ∑

JCW

(
σj Fij

)
−∑

JW

(
∆φj Hij

)
+ 2π∆φj. (6)
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On the wetted part of the blade, the source strengths σi =
∂φ
∂n are known from the kinematic

boundary condition, Equation (8), and the dipole strength is the unknown:

∇Φ · n = UOnset · n +
∂φ

∂n
= 0, (7)

∂φ

∂n
= −UOnset · n. (8)

On the cavitating part of the blade and wake surfaces, a dynamic boundary condition is
applied, prescribing the pressure to correspond to the given cavitation number σn. To achieve this,
the corresponding local “cavity velocity” needs to be found. For convenience, this part is formulated
in curvilinear coordinates aligned with the panel edges. The v-direction is pointing outwards in the
spanwise direction and the s-direction is the chordwise direction, positive towards the trailing edge
on the suction side of the blade. The angle between the ŝ and v̂ vectors of a panel is designated θ and
is usually close to 90◦. With Us and Uv as the s- and v-components of the onset velocity vector and z
as the vertical distance from the propeller shaft, the chordwise cavity velocity corresponding to the
cavitation number σn at shaft depth is

∂φ

∂s
= −Us + cos (θ)

(
∂φ

∂v
+ Uv

)
+ sin (θ)

√
f , (9)

where

f = (nD)2 σn + |UOnset|2 −
(

∂φ

∂v
+ Uv

)2
− 2

∂φ

∂t
− 2gz. (10)

To be able to provide a Dirichlet boundary condition on the potential, Equation (9) is integrated
in chordwise direction and added to the potential at the chordwise detachment point φ0, which is
assumed known and practically expressed by extrapolation from the wetted part ahead of the cavity:

φ = φ0 +
∫ sp

0

∂φ

∂s
ds. (11)

The cavity extent on the blade (and wake) needs to be found iteratively. After an initial guess
based on the non-cavitating pressure distribution and cavitation number, the cavity thickness is
computed. The cavity extent is then changed until the cavity thickness is sufficiently close to zero at
the edges of the cavity sheet, so it detaches from the blade and closes on the blade or wake. For the
cavity closure, the pressure recovery model described in [7] is used.

The present implementation also includes additional features described in [8], such as the
split panel technique for faster convergence and more flexibility in terms of mesh and timestep
size. However, the present implementation (the panel code “ESPPRO”, developed at the Technical
University of Denmark), uses lower-order extrapolation schemes throughout for increased numerical
stability. In addition, spatial derivatives in the cavity height equation are discretized using lower-order
finite differences.

The results obtained with the “ESPPRO” code agree well with the results reported for similar
methods in validation studies for ship propellers, such as [9,10].

2.2. RANS-BEM Coupling

In recent years, viscous flow simulations around the hull coupled with potential flow-based
propeller models have become a popular choice for numerical self-propulsion simulations. Usually,
field methods solving the Reynolds-averaged Navier–Stokes (RANS) equations are used for the hull
part, and panel methods (boundary element methods, BEM) are a common choice for the propeller
calculations, as they allow for a good representation of the flow physics while only requiring limited
computational effort. Computational approaches using this combination of tools are commonly called
“RANS-BEM Coupling”.
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In such an approach, the exact propeller geometry is not resolved in CFD, but the propeller is
accounted for by modeling its effect on the flow by introducing body forces, provided by the propeller
model. This is an iterative process: the total velocity field in the coupling plane (an approximation
of the propeller plane) is passed from the RANS solver to the propeller model, which then returns
the propeller forces that correspond to this inflow field. The key part here is that the inflow field
to the propeller model is not the total wake field as extracted from the global CFD simulation, but
rather the effective wake field, i.e., with the propeller-induced velocities subtracted from the total
wake field. The induced velocity field is approximated by using the values from the previous coupling
iteration. Thereby, the effective wake field is not only a byproduct but also an inherent part of this
iterative coupling.

By being able to compute not only the effective wake fraction but also the distribution of the
effective wake velocities in the propeller disk, the RANS-BEM coupling approach provides a major
advantage over all CFD simulations beyond substantially reducing the computational effort.

In the present work, the RANS-BEM coupling approach is used to determine effective wake fields
at model and full scale to later investigate differences in propeller cavitation. On the RANS side,
the XCHAP solver from the commercial SHIPFLOW package is used. XCHAP solves the steady-state
RANS equations on overlapping, structured grids using the finite volume method and employs the
EASM (Explicit Algebraic Stress Model) turbulence model. Nominal wake fields are found using the
same RANS solver and identical grids, but with the propeller model switched off.

The DTU-developed panel code ESPPRO (whose basic formulation is described in the previous
section) serves as the propeller model. The unsteady propeller forces are time-averaged over one
revolution before being passed to XCHAP. In line with that, the induced velocity field is also
time-averaged to compute the effective wake field in the subsequent coupling iteration.

When modeling the propeller in RANS by a body force distribution only, the blade blockage effect
is present in the BEM, but not transferred to the RANS side of the computation. The implications of
this are shown in [11], which also discusses two possibilities to address this problem in a consistent
manner: either by accounting for the blockage on the RANS side by mass sources, or by removing the
blockage from the BEM side. In the present work, the latter option—the approach initially described
in [12]—is followed, excluding the contribution of all sources when computing forces and velocities
used as part of the RANS-BEM coupling.

To reduce computational effort, the non-cavitating condition is assumed in self-propulsion and
the cavitation model described previously remains disabled. This is not expected to have a noticeable
effect on the computed effective wake distributions, as in the present model a sheet cavity is primarily
represented by the presence of additional sources. As mentioned above, sources do not contribute to
relevant quantities used in the RANS-BEM coupling. The remaining relevant effect of the sheet cavity
on the computed effective wake field, the change in the dipole strength distribution on the blade, is
considered negligibly small for the expected cavitation extent.

Previous work on computing effective wake fields using RANS-BEM coupling by Rijpkema et al. [12]
highlighted the importance and influence of the location of the coupling plane on self-propulsion
results. As singularities are placed on the propeller blade surfaces in the panel method, the induced
velocities can not be computed in the propeller plane directly. To avoid evaluating induced velocities
too close to the singularities, the coupling plane is usually chosen to be upstream of the propeller.
Extrapolating the effective wake to the propeller plane linearly from two upstream planes was
found [12] to give the best results in terms of predicting the self-propulsion point (effective wake
fraction in self-propulsion).

For the present work, the distribution of effective velocities in the coupling plane is of higher
interest than the mean velocity, i.e., the absolute value of the wake fraction. Therefore, and to remove
any potential extrapolation artifacts that affect the distribution, the effective wake is computed on a
single curved surface that follows the blade leading edge contour closely (at an axial distance of 2% of
the propeller diameter), essentially resulting in a curved coupling plane just upstream of the propeller.
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3. Case Study

All calculations are carried out for a state-of-the-art handysize bulk carrier, representing a modern
single-screw full hull form. The block coefficient is 0.82 and the aftbody is of pram-with-gondola-type.
The simple conventional propeller used for the analyses was specifically designed for this ship and the
present work (see Section 5 for more details on the design method).

In this work, nominal wake fields at model and full scale for this ship are obtained by running
steady-state RANS-based CFD simulations. Effective wake fields at the self-propulsion point, also at
both model and full scale, are computed using the hybrid RANS-BEM method described in the
previous section. Additionally, Sasajima’s wake scaling method is applied to the computed model
scale nominal wake field for comparison with the computed full scale fields.

The effect of the wake distribution on propeller cavitation performance, including cavitation
extent, cavitation volume, and hull pressure pulses, is examined by using the panel code with the
sheet cavitation model described in Section 2.1.

For the cavitation analyses, the axial components of all five wake fields (nominal and effective at
model and full scale, plus the result of Sasajima’s scaling method) are then uniformly scaled to the
same axial wake fraction, so the propeller is running at the same operating point in all wake fields.
Any differences in results are then due to the different velocity distributions in the propeller disk and
different in-plane velocity components.

All cavitation simulations are carried out at a cavitation number (based on the propeller speed n)
of σn = 1.8, corresponding to the full scale condition. The propeller for this ship is moderately
loaded (CTH = 1.4) at the operating point considered.

Note that approach, case, and all simulation conditions are identical to those used in the earlier
version of the present work, presented and published by the authors at the Fifth International
Symposium on Marine Propulsors (smp’17) [13]. Nominal and effective wake fields are unchanged,
while there are differences in cavitation simulation results. These differences are due to changes
made to the ESPPRO code and the corresponding preprocessor. The improvements allow for higher
spatial resolution and higher-quality meshes, and an improved cavity shape-finding mechanism that
reduces the openness tolerance by one order of magnitude compared to previous versions. Apart from
increasing accuracy, the latter also affects the rate at which the cavity can grow and shrink. The present
results thereby reflect progress made between January 2017 and January 2018. The authors are not
aware of major problems in either of the two versions, and the results primarily differ in magnitude,
showing the same trends and leading to the same conclusions.

4. Results and Discussion

4.1. Wake Fields

Figure 1a–d show the nominal and effective wake distributions based on the RANS and
RANS-BEM results. Figure 1e shows the full scale wake field after applying Sasajima’s scaling
method, based on the computed nominal wake at model scale and the potential wake (see Figure 2),
computed using the panel code SHIPFLOW-XPAN.

Note, however, that all fields shown have been “scaled” or “corrected” to match the same axial
wake fraction of 0.25. This value corresponds to the full scale prognosis for the effective wake fraction
based on model tests with a stock propeller for a ship very similar to the case considered here.
Apart from this number, no further model test results have been used in any part of this work. For an
original wake fraction w0 and a target value of wt, the “corrected” non-dimensional axial velocity u at
any point is u = 1− f + u0 f , where u0 is the original non-dimensional axial velocity at that point and
f = wt

w0
.
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(a) Nominal Wake Distribution – Model Scale
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(b) Effective Wake Distribution – Model Scale
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(c) Nominal Wake Distribution – Full Scale
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(d) Effective Wake Distribution – Full Scale
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Figure 1. Wake fields for cavitation analysis, all scaled to w = 0.25.
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Figure 2. Potential wake field.

The uncorrected wake fractions are listed in Table 1. As expected, the wake fractions of the
model scale fields are substantially higher than the fractions in full scale, and the computed effective
wake fractions are lower than their nominal counterparts. Applying Sasajima’s semi-empirical scaling
method to the computed nominal model scale wake field results in a wake fraction that is surprisingly
close to the computed effective wake fraction in full scale. Still, while the axial wake fractions are
similar, the differences in axial and radial wake distribution are substantial, as can be seen from
Figure 1d,e.

Table 1. Wake fractions before scaling.

Wake Field Axial Wake Fraction

Nominal Model Scale 0.360
Effective Model Scale 0.300

Nominal Full Scale 0.240
Effective Full Scale 0.237

Sasajima Scaling 0.236

Target Value 0.250

A strong bilge vortex can be seen in Figure 1a, which results in low axial velocities in the region
between the hub and 40% of the propeller radius. It should be noted that, in this radial range of this
particular wake field, the axial velocities in the usual “wake peak” region between 330◦ and 30◦ are
actually higher than in the lower half of the field.

Looking at the effective wake distribution resulting from the self-propulsion simulation at model
scale, Figure 1b, the bilge vortex appears substantially weaker and closer to the centerline. This is also
obvious from the radial and tangential velocity components, which are otherwise of similar magnitude
as in Figure 1a. The effective field shown in Figure 1b exhibits a much more defined and pronounced
wake peak at 12 o’clock, the axial velocities reaching consistently low values in this region.

The asymmetric flow at the innermost radii seen in Figure 1b is attributed to the lack of the
propeller hub in both the RANS and the BEM part of the simulation. No propeller shaft, hub, or even
stern tube was part of the RANS grids. The lack of the hub in the propeller panel code results in an
unrealistic flow around the open blade root. Consequently, secondary flow structures emerge at low
Reynolds numbers. While undesirable, the effect is local and is not expected to influence the cavitation
behavior. As can be seen in Figure 1d, this is of less concern at full scale.

Moving to full scale, the nominal wake distribution (Figure 1c) changes significantly compared
to model scale, as expected. The bilge vortex is remarkably less dominant, and the isolines of the
axial wake distribution are more U-shaped. With a thinner boundary layer and a weaker bilge
vortex, the in-plane velocity components change as well. In both computed full scale fields, the radial
and tangential components indicate a less vortical and more upwards-directed flow. Except for
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the remainders of the bilge vortex, the in-plane velocity distribution approaches the potential one
(Figure 2).

The trend towards a more defined and narrower wake peak continues moving on to the effective
wake distribution at full scale, shown in Figure 1d. A bilge vortex can hardly be observed anymore.

Applying the method by Sasajima and Tanaka [3] leads to a very different wake distribution.
The method works by contracting the nominal model scale wake field horizontally while also scaling
the axial velocities, depending on the relationship of frictional and potential wake. For this particular
case—with the above-described flow features in the nominal wake field at model scale—this results in
a box-shaped region of very low axial velocities, visible in Figure 1e. Given that all fields shown in
Figure 1 are uniformly scaled to the same wake fraction, the velocities in the outer and lower regions
are very high, compensating for the large low-velocity region described previously.

4.2. Sheet Cavitation

The unsteady sheet cavitation behavior of a conventional propeller was analyzed in the five wake
fields shown in Figure 1 using ESPPRO, the panel code for propeller analysis described in Section 2.1.
As mentioned before, the input to the simulations differed only in the wake distribution. Wake fraction,
cavitation number, scale, and all other parameters are identical across all cases presented below.
All results discussed in this section refer to Propeller “M”. A second propeller called Propeller “F” will
be introduced and discussed in Section 5.

Figure 3a gives an overview over the global differences in sheet cavitation over one revolution.
The lines indicate the radial extent of sheet cavitation for all blade angles in the different wakes.
The lower cutoff threshold for these plots is a cavity thickness of 5% of the blade section thickness at
r/R = 0.7.
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Figure 3. Radial cavitation extent.

As can be seen from Figure 3a, there is little variation in cavitation inception angle (around 330◦)
yet noticable variation in terms of radial extent between the five wake fields over a relatively wide
range of blade angles. The nominal wake distribution at model scale clearly results in the smallest
cavitation extent, underpredicting the extent seen in the full scale effective field, especially at the
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blade angles with maximum cavitation extent. Using the full scale distribution obtained by Sasajima’s
method, the extent is overpredicted significantly, which is not surprising given the wake field seen in
Figure 1e. The other three curves—representing the effective distribution at model scale and the two
full scale fields—result in remarkably similar extents. There also appear to be differences in the closing
behavior of the cavity, as can be seen from Figure 3a in the range 30–90◦.

The time-variation in sheet cavitation is more easily quantified by looking at the cavity volume on
one blade (non-dimensionalized by D3), as shown in Figure 4a. Confirming the general trends between
the wakes visible in Figure 3a, the small differences in inception and closure angle and large differences
in maximum cavitation extent appear more clearly from Figure 4a. The plot also already indicates that
the time-derivatives of the cavity volume are rather different between wake distributions when the
cavity is shrinking between approx. 10–70◦ blade angle, hinting at major differences in associated hull
pressure pulses. The second derivative of a B-Spline interpolation of the cavity volume with respect to
blade angle (or time) is shown in Figure 5a.
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Figure 4. Cavitation volume.
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Figure 5. Second derivatives of cavitation volume.

Disregarding the curve corresponding to the field scaled by Sasajima’s method, particularly large
differences exist between the results based on the nominal model scale distribution and the other
computed curves. In that inflow field, the maximum cavity volume is more than 20% smaller than for
the same propeller in the full scale effective wake distribution. In addition, second derivatives of the
cavity volume (see Figure 5a) appear to be considerably different, the nominal model scale distribution
again resulting in the smallest amplitudes.



J. Mar. Sci. Eng. 2018, 6, 34 11 of 14

Hull pressure pulses are evaluated in a single point, located on the centerline, 17% of the
propeller diameter above the propeller plane. These calculations were done in the BEM part of
the simulation, applying the Bernoulli equation at an offbody point and Fourier-transforming the time
signal. The results are given in Figure 6, which provides the amplitudes at first and second harmonic
of the blade frequency. The pressure pulse results also reflect the findings described previously.
For example, in the full scale effective wake distribution, the value for the first harmonic is 17% larger
than in the nominal distribution at model scale. The differences are even larger for the second harmonic.
Higher harmonics have not been evaluated for this paper, as the driving factors, such as tip vortex
cavitation, are not captured or modeled in the present propeller analysis method.
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Figure 6. Pressure pulse amplitudes.

5. Results for Alternative Propeller Design

For the purpose of the analyses described in this paper, two simple conventional propellers have
been designed for the bulk carrier case mentioned in Section 3. Resistance and thrust deduction values
from model tests (which were carried out for the hull used in the present computations, but with
minor aftbody modifications) establish the thrust requirement for the propeller design. For the design
point, the predicted full scale effective wake fraction (based on self-propulsion model tests with a stock
propeller) of w = 0.25 is used.

For the propeller design, a lifting line-based propeller design tool is employed that finds the
optimum radial circulation (load) distribution for a circumferentially averaged wake field and required
thrust. Radial pitch and camber distributions can then be found from the circulation distribution,
assuming a standard NACA66 profile. Based on the designer’s experience, the propeller was chosen
to be 3-bladed with moderate skew and no rake. The expanded blade area ratio was selected as
AE/A0 = 0.3.

The nominal wake field obtained from SHIPFLOW-XCHAP (see Figure 1a) is circumferentially
averaged and scaled to the target effective wake fraction. This circumferentially averaged and scaled
nominal wake field at model scale (which still varies radially, see Figure 7) is then used as input for the
design tool. The optimum radial distribution of circulation found from lifting line theory for this case
is shown in Figure 8. The corresponding propeller—which is the basis for all cavitation analysis results
discussed so far—is referred to as Propeller “M” (as it is based on the model scale nominal wake).

Using this propeller, numerical self-propulsion simulations have been carried out to find the
effective wake fields at model and full scale shown in Figure 1b,d, using the method described in
Section 2.2.
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Figure 7. Circumferentially averaged axial velocities used for propeller design.
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Figure 8. Radial circulation distributions.

In order to study the effect of nominal vs. effective wake on propeller design and resulting
differences in propeller cavitation performance, the same design process is repeated with the full
scale effective wake distribution as input, yielding Propeller “F”. Other input parameters, such as
design wake fraction, advance ratio, number of blades, and blade area ratio, remain unchanged.
The circumferentially averaged axial inflow for this case and the resulting radial circulation distribution
are shown as dashed lines in Figures 7 and 8. An inward shift of the loading compared to
Propeller “M”—corresponding to the difference in inflow—can be seen from the latter.

The differences in effective wake distribution due to differences in geometry and radial load
distribution between Propellers “M” and “F” are assumed to be negligible.

It can be seen from Figure 3b as well as Figure 4b that the characteristics of sheet cavitation
extent and behavior of Propeller “F” are generally similar to Propeller “M”. The magnitudes of all
values, however, are significantly lower. The cavitation volume in the full scale effective distribution
is reduced by more than 30%, compared to Propeller “M”. Similar trends can be seen for the second
cavity volume derivatives in Figure 5. Corresponding reductions in pressure pulses appear from
Figure 6.

6. Conclusions

For the examined case of a modern and representative full-form ship, using the model scale
nominal wake distribution for propeller design and cavitation analysis leads to a significant
underprediction of cavitation extent, volume, and pressure pulses, compared to the behavior of
the same propeller in the full scale effective wake field. Therefore, a conservative design is required if
the propeller designer only has access to the measured nominal wake field. Otherwise, the expected
extent of cavitation and acceptable levels of pressure pulses might be exceeded in full scale.
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Compared to the propeller designed on the basis of the nominal wake in the model scale,
the propeller designed for the effective full scale wake distribution performs better in all cavitation
criteria considered. This highlights the importance of accurate wake data and the benefits of those—or
hull geometry information—being available to the propeller designer. Knowing the effective wake
distribution at full scale allows for a more realistic cavitation prediction in the propeller design process,
enabling more efficient propeller designs.

Acknowledgments: The study was primarily funded by the Department of Mechanical Engineering at the
Technical University of Denmark. The early development and implementation of the methods described in
this paper were partly funded by Innovation Fund Denmark through the “Major Retrofitting Technologies for
Containerships” project. Yasaman Mirsadraee’s PhD project is supported by Innovation Fund Denmark under the
Industrial PhD programme.

Author Contributions: P.B.R. and Y.M. developed and implemented the sheet cavitation model in the panel
code, continuing earlier work by P.A. and others. P.B.R. developed and implemented the RANS-BEM coupling.
Y.M. designed the propellers used for this study. P.B.R. ran the RANS-BEM simulations and the subsequent
BEM simulations. The results were further analyzed and discussed by all authors. P.B.R. wrote the paper with
continuous input and comments from Y.M. and P.A. P.A. initiated and supervised the project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jessup, S.; Mewis, F.; Bose, N.; Dugue, C.; Esposito, P.G.; Holtrop, J.; Lee, J.T.; Poustoshny, A.; Salvatore, F.;
Shirose, Y. Final Report of the Propulsion Committee. In Proceedings of the 23rd International Towing Tank
Conference, Venice, Italy, 8–14 September 2002; Volume I, pp. 89–151.

2. Fu, T.C.; Takinaci, A.C.; Bobo, M.J.; Gorski, W.; Johannsen, C.; Heinke, H.J.; Kawakita, C.; Wang, J.B. Final
Report of The Specialist Committee on Scaling of Wake Field. In Proceedings of the 26th International
Towing Tank Conference, Rio de Janeiro, Brazil, 28 August–3 September 2011; Volume II, pp. 379–417.

3. Sasajima, H.; Tanaka, I. Report of the Performance Committee, Appendix X: On the Estimation of Wake of
Ships. In Proceedings of the 11th International Towing Tank Conference, Tokyo, Japan, 11–20 October 1966;
pp. 140–144.

4. Van Terwisga, T.; van Wijngaarden, E.; Bosschers, J.; Kuiper, G. Achievements and Challenges in Cavitation
Research on Ship Propellers. Int. Shipbuild. Prog. 2007, 54, 165–187.

5. Bosschers, J.; Vaz, G.; Starke, B.; van Wijngaarden, E. Computational analysis of propeller sheet cavitation
and propeller-ship interaction. In Proceedings of the RINA Conference “MARINE CFD2008”, Southampton,
UK, 26–27 March 2008.

6. Gaggero, S.; Villa, D.; Viviani, M.; Rizzuto, E. Ship wake scaling and effect on propeller performances.
In Developments in Maritime Transportation and Exploitation of Sea Resources; CRC Press: London, UK, 2014;
pp. 13–21.

7. Kinnas, S.A.; Fine, N.E. A Numerical Nonlinear Analysis of the Flow Around Two- and Three-dimensional
Partially Cavitating Hydrofoils. J. Fluid Mech. 1993, 254, 151–181.

8. Fine, N.E. Nonlinear Analysis of Cavitating Propellers in Nonuniform Flow. Ph.D. Thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1992.

9. Vaz, G.; Bosschers, J. Modelling Three Dimensional Sheet Cavitation on Marine Propellers Using a Boundary
Element Method. In Proceedings of the 6th International Symposium on Cavitation (CAV2006), Wageningen,
The Netherlands, 11–15 September 2006.

10. Vaz, G.; Hally, D.; Huuva, T.; Bulten, N.; Muller, P.; Becchi, P.; Herrer, J.L.R.; Whitworth, S.; Mace, R.;
Korsström, A. Cavitating Flow Calculations for the E779A Propeller in Open Water and Behind Conditions:
Code Comparison and Solution Validation. In Proceedings of the 4th International Symposium on Marine
Propulsors (smp’15), Austin, TX, USA, 31 May–4 June 2015; pp. 330–345.

11. Hally, D. Propeller Analysis Using RANS/BEM Coupling Accounting for Blade Blockage. In Proceedings of
the 4th International Symposium on Marine Propulsors (smp’15), Austin, TX, USA, 31 May–4 June 2015;
pp. 297–304.



J. Mar. Sci. Eng. 2018, 6, 34 14 of 14

12. Rijpkema, D.; Starke, B.; Bosschers, J. Numerical simulation of propeller–hull interaction and determination
of the effective wake field using a hybrid RANS-BEM approach. In Proceedings of the 3rd International
Symposium on Marine Propulsors (smp’13), Tasmania, Australia, 5–7 May 2013; pp. 421–429.

13. Regener, P.B.; Mirsadraee, Y.; Andersen, P. Nominal vs. Effective Wake Fields and their Influence on Propeller
Cavitation Performance. In Proceedings of the 5th International Symposium on Marine Propulsors (smp’17),
Helsinki, Finland, 12–15 June 2017; pp. 331–337.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation
	Background

	Methods
	Boundary Element Method for Propeller Analysis
	RANS-BEM Coupling

	Case Study
	Results and Discussion
	Wake Fields
	Sheet Cavitation

	Results for Alternative Propeller Design
	Conclusions
	References

