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Abstract: The eastern North American sea level pressure dipole (ENA) pattern is a recently identified
teleconnection pattern that has been shown to influence mid-Atlantic United States (U.S.) streamflow
variability. Because the pattern was only recently identified, its impacts on U.S. precipitation
and estuaries on daily to seasonal timescales is unknown. Thus, this paper presents the first
seasonal investigation of ENA relationships with global atmospheric fields, U.S. precipitation, and
mid-Atlantic estuarine salinity. We show that the ENA pattern explains up to 25–36% of precipitation
variability across Texas and the western U.S. We also show that, for the Northeast U.S., the ENA
pattern explains up to 65% of precipitation variability, contrasting with previous work showing
how well-known climate indices can only explain a modest amount of precipitation variability.
The strongest ENA-precipitation relationships are in the spring and fall. The relationships between
the ENA pattern and precipitation across remote regions reflect the upper-atmospheric Rossby wave
pattern associated with the ENA pattern that varies seasonally. The El-Nino/Southern Oscillation
(ENSO) is related to the spring ENA pattern, indicating that extended outlooks of the ENA pattern
may be possible. We also show that the ENA index is strongly correlated with salinity and vertical
haline stratification across coastal portions of the mid-Atlantic Bight so that hypoxia forecasts based
on the ENA index may be possible. Statistical connections between vertical salinity gradient and
ENSO were identified at lags of up two years, further highlighting the potential for extended hypoxia
outlooks. The strong connection between anomalies for precipitation and mid-Atlantic Bight salinity
suggests that the ENA pattern may be useful at an interdisciplinary level for better understanding
historical regional climate variability and future impacts of climate change on regional precipitation
and the health of estuaries.
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1. Introduction

It is well-documented that there exists large-scale extra-tropical flow regimes that tend to recur
and have preferred geographic locations. Such flow regimes are referred to as teleconnection patterns
and include the well-known North Atlantic Oscillation (NAO) [1,2], Pacific-North American Pattern
(PNA) [1], and the Arctic Oscillation (AO) [3]. These patterns explain a substantial fraction of
geopotential height and sea-level pressure variability across the Northern Hemisphere and are therefore
useful in understanding the historical variability of precipitation and temperature across many regions
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of the Northern Hemisphere [4,5]. Important recurring oceanic patterns such as the El-Nino/Southern
Oscillation (ENSO) have also been shown to influence extra-tropical atmospheric circulation patterns
and storm tracks [6–8].

The impact of the NAO, PNA, AO, and ENSO on U.S. precipitation and temperature
patterns has been studied extensively. Changes in storm tracks associated with the PNA, NAO,
and ENSO impact precipitation patterns across various regions of the U.S. [7–11]. However, for
the Northeast U.S., relationships between these well-known climate patterns and precipitation are
relatively modest [10–13], even if one correlates the corresponding climate indices with principal
component time series associated with orthogonal spatial patterns only representing a fraction of
the total precipitation field variance [14]. One reason for the relatively weak relationships with the
climate patterns across the Northeast U.S. is that major climate modes such as the PNA originate in
the Pacific and the NAO is located downstream of the Northeast U.S. region. Another reason for the
weak relationships between climate modes and precipitation is that atmospheric moisture across this
region is derived from multiple sources [15]. An index that combines sea surface temperatures (SSTs)
west of Mexico, across the Bering Sea, and off the coast of Africa was shown to be a good predictor of
autumn Delaware River streamflow (and presumably precipitation) when used together [15]. However,
it is unclear how such a framework would work for other seasons, given that the assumption of the
statistical model is that tropical Atlantic SSTs are important because of tropical systems developing
over the tropical Atlantic region during the hurricane season.

Understanding the atmospheric or oceanic patterns influencing Northeast U.S. precipitation
has important implications for water management and estuaries that supply large metropolitan
areas with water for multiple uses [16]. The 1960s drought exemplifies the need to understand
the mechanisms driving Northeast U.S. precipitation variability because the drought resulted in
anomalously high salinity in the Delaware River and subsequently created conflicts between New
York City and Philadelphia water management agencies. The potential impact of salinity intrusions on
the Philadelphia area water supply initiated the monitoring of the salt front position in the Delaware
River [16]. Furthermore, the Delaware River watershed, which is located in northeast Pennsylvania,
contains three water reservoirs that supply approximately 50% of the drinking water to New York
City [15]. A better understanding of the climate mechanisms related to precipitation variability also
has important implications for making climate-informed decisions regarding, for example, reservoir
releases during times of drought. Statistical relationships between climate modes and precipitation
are also important because they can be used as an alternative approach to dynamical forecasting that
requires Global Circulation Models that are not particularly skillful in the Northeast U.S. region as a
result of low signal-to-noise ratios [17,18].

Another important reason for understanding precipitation variability across the Northeast U.S.
region is that streamflow, which is related to precipitation, can impact estuaries across the region that
are vital for bolstering local economies through industrial and recreational uses. For the Hudson River,
freshwater discharge can influence eutrophication, which can have detrimental impacts [19]. In the
Delaware Bay estuary, the Eastern oyster (Crassostrea Virginica) population can be stressed by changes
in salinity [20], which are directly related to changes in freshwater discharge into the estuary and
indirectly related to precipitation. If salinity is too high, then survival rates are negatively impacted
as a result of parasite proliferation and increased predation [21]. In the Chesapeake Bay, salinity
can influence the prevalence of Vibrio Cholerae, a bacterium that can pose human health risks [22].
Precipitation can also indirectly impact the vertical stratification of estuaries through streamflow,
where strong vertical salinity gradients can lead to hypoxic water by preventing vertical mixing of
oxygen rich waters with oxygen-deprived bottom waters [23]. Hypoxia can have detrimental effects
on the aquatic life of estuaries, including American Lobster [24], and thus it has been a focus of
environmental agencies and scientific investigators concerned with the Chesapeake Bay [25], Delaware
Bay [26], and Long Island Sound (LIS) estuaries [27]. Despite the importance of vertical salinity
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stratification on estuarine processes, the climate indicators related to it in mid-Atlantic estuaries have
received little attention.

A recent study identified a new teleconnection pattern, which was termed the Eastern North
American (ENA) mean sea-level pressure (MSLP) dipole pattern [28]. The strength and evolution
of this pattern can be monitored using a simple index based on MSLP anomalies. In contrast to the
NAO and PNA indices, which are only weakly related to Northeast U.S. streamflow and mid-Atlantic
estuarine salinity [13,28], the ENA pattern was shown to be a better predictor of streamflow for the
Delaware, Hudson, and Susquehanna Rivers. Given that the ENA pattern was only recently identified
and the analysis by Schulte et al. [28] was restricted to the Northeast U.S., its broad impacts on U.S.
precipitation is currently unknown. In addition, Schulte et al. [28] did not show how ENA impacts
may change seasonally, where seasonal changes in ENA-precipitation relationships have important
implications for seasonal prediction. Thus, the first objective of this study is to first document that the
ENA index can explain a significant fraction of precipitation variability across not only the Northeast
U.S. but also across other regions of the U.S., highlighting the usefulness of the ENA index in both the
understanding of historical regional climate variability and the prediction of precipitation at daily and
seasonal timescales. We also show that the ENA-precipitation relationships change with season so that
the predictability of precipitation using the ENA index may be confined seasonally for certain regions.
We also examine the seasonal relationship between ENSO and the ENA pattern to demonstrate that
seasonal outlooks of the ENA pattern may be possible. While Schulte et al. [28] did investigate salinity
variability of mid-Atlantic estuaries, the LIS was not included in the analysis. The second objective of
the study is therefore to first document the seasonal impacts of the ENA pattern on the LIS estuary and
surrounding coastal waters using the New York Harbor Observation Prediction System (NYHOPS)
model generated monthly salinity data [29]. Using the model data, the detailed spatial structure of the
ENA-salinity relationships will be identified. A first quantification of ENA-impacts on the vertical
salinity stratification across the LIS and surrounding regions will also be conducted to show that
the ENA index may also be a predictor of estuarine hypoxia at advanced lead times in addition to a
predictor of precipitation across remote U.S. regions.

2. Materials and Methods

2.1. Salinity

The salinity data were obtained from a 34-year hindcast from 1979 to 2013 generated from the New
York Harbor Observing and Prediction System (NYHOPS) model [29]. These model generated data
were found to match well with observed salinity across portions of the mid-Atlantic Bight region [29].
The study region is shown in Figure 1a, and the NYHOPS region is shown in Figure 1b. The model
resolution depends on the region in the NYHOPS domain; the maximum resolution of 25 m is found in
New York Harbor and its tributaries. Within LIS, the average horizontal resolution is 1.5 km. The model
consists of 11 vertical levels based on a sigma coordinate system. In this study, the salinity data at
vertical level 1 will be a proxy for surface salinity, and the data at vertical level 11 will be referred to as
bottom salinity. The 11th vertical coordinate ranges from 2 m to 55 m in depth and the first coordinate
ranges from 1 m to 3 m. Time series for LIS bottom and surface salinity were computed by averaging
bottom and surface salinity in the gray region shown in Figure 1b. A time series for LIS vertical salinity
stratification was defined as the LIS average bottom salinity minus the LIS surface salinity. Salinity
data for the years 1979 and 1980 were excluded from the analysis because of potential issues related to
the model spin up and autocorrelation of salinity anomalies that allows erroneous salinity anomaly
values to persist outside the model spin-up period [29]. Seasonal cycles were removed from all data
sets by subtracting the 1981 to 2013 mean for each month from the monthly values at each grid point.
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Figure 1. (a) U.S. climate divisions and the NYHOPS region (gray box); (b) A close up of the NYHOPS
region, where the thick black contour encloses the NYHOPS model domain. Gray shading represents
the Long Island Sound.

2.2. Meteorological and Oceanic Data

Daily and monthly National Center for Environmental Prediction (NCEP) [30] data for 300-hPa
streamfunction and MSLP from 1981 to 2013 were used to relate the ENA pattern to atmospheric fields.
The European Centre for Medium Range Forecast (ERA) [31] interim reanalysis monthly SST data from
1981 to 2013 were used to analyze the SST fields. We also used ERA daily and monthly convective
precipitation data to diagnose possible tropical connections to the ENA pattern. Seasonal cycles were
removed from all data sets by subtracting the 1981 to 2013 mean for each month from the monthly
values at each grid point. Daily anomalies were calculated by subtracting the 1981–2013 mean daily
value from the daily value for a given day.

United States climate divisional precipitation data [32] from 1981 to 2013 were used in this study
to understand ENA-precipitation relationships. The time period was chosen to overlap with that of the
LIS salinity data. The 344 U.S. climate divisions (Figure 1a) partition the U.S. into homogenous climate
regions, and the data extend back to the late 1800s. A benefit of using the U.S. climate divisional data
set is that it represents spatial averages of observed precipitation so that local climatological effects can
be minimized.

2.3. Climate Indices

Climate index data from 1981 to 2013 were obtained from the Climate Prediction Center [33].
The Niño 1+2 index represents average SSTs in the region bounded by 0–10◦ S and 90–80◦ W. Similarly,
the Niño 3.4 and Niño 4 indices measure, respectively, mean SSTs in the regions bounded by 5◦ N–5◦ S
and 150–90◦ W and 5◦ N–5◦ S and 160◦ E–150◦ W. The Trans-Niño index (TNI) describing the evolution
of ENSO was also used [34]. The TNI is defined as the normalized difference between the Niño
1+2 and the Niño 4 indices so that it measures the SST gradient across the equatorial Pacific. NAO
index was calculated from a rotated Principal Component Analysis of 500-hPa geopotential height
anomalies poleward of 20◦ N. The seasonal cycles were removed from the raw Niño 1+2, Niño 4, and
Niño 3.4 indices by subtracting the 1981–2013 mean for each month from the monthly values for the
same month.

The daily ENA index (Figure 2a) from 1981 to 2013 was calculated here using NCEP MSLP
reanalysis data. The ENA index was constructed by averaging daily MSLP anomalies in Boxes 1 and 2
shown in Figure 2b, resulting in two time series of MSLP anomalies corresponding to each box [28].
The reason for averaging MSLP anomalies in Boxes 1 and 2 is that the MSLP anomalies in those boxes
are mostly closely linked to streamflow in the mid-Atlantic region of the U.S. [28]. The anomalies were
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calculated with respect to the 1981–2013 daily mean for each day. Box 1 encloses the region bounded
latitudinally by 30◦ N and 40◦ N and longitudinally by 80◦ W and 90◦ W and Box 2 is the region
bounded latitudinally by 40◦ N and 50◦ N and longitudinally by 50◦ W and 65◦ W [28]. The two time
series were normalized by dividing them by their respective 1981–2013 standard deviations. The ENA
index was finally calculated using the following formula:

ENA Index = (MSLP)box2 − (MSLP)box1 (1)

where (MSLP)box1 is the normalized MSLP anomaly corresponding to Box 1, and the same for
Box 2. The ENA index is negatively correlated with MSLP anomalies across the Southeast U.S.
and positively correlated with MSLP anomalies across the Northeast U.S., thus a strong positive ENA
phase is associated with an anomalously strong pressure gradient across the eastern U.S. (Figure 2b).
The monthly ENA index was calculated by averaging the daily ENA indices for each month. A physical
interpretation of the ENA pattern is provided in Section 4.1.1.
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3. Methods

The relationship between two time series was quantified using the Pearson correlation coefficient,
the statistical significance of which was computed using a Student’s t-distribution for a transformation
of the correlation. For the correlation analyses, we used seasonal means because monthly data can be
noisy and because seasonal means more clearly revealed seasonal cycles. In addition to the canonical
December–February (DJF), March–May (MAM), June–August (JJA), and September–November (SON)
seasons, other intermediate seasons were used to better reveal seasonal cycles. The intermediate
seasons were defined as a period of three consecutive months and two seasons were said to be
different if the seasons differed by at least one month. For example, the January–March (JFM) and
February–April (FMA) seasons were considered different. A cross-correlation analysis was used
to identify potential lag relationships between climate indices and salinity. Seasonal means were
also applied to the cross-correlation analysis to be consistent with the standard correlation analysis.
The lag correlation analysis was important to conduct because changes in riverine streamflow may lag
changes in the ENA pattern [28]. The statistical significance of the cross-correlation coefficients was
assessed in the same way as the standard correlation coefficients, thus we account for the decrease in
degrees of freedom at large lags resulting from fewer data points being used in the computation of the
correlation coefficients.

A composite analysis of NCEP and ERA-interim reanalysis atmospheric fields was also used
to identify global circulation, precipitation, and SST patterns associated with the ENA pattern.
The statistical significance of the composite means was assessed by using the one-sample Student’s
t-test, the null hypothesis being that the composite mean is equal to zero. For the seasonal composite
analyses, we did not compute the composite means based on seasonally averaged atmospheric and
oceanic fields; rather; for each grid point and season, we extracted all the daily values of the field in
question for which the corresponding daily ENA index was greater than 2. Then we computed the
average of all such daily field values. Repeating the step for each grid point resulted in the composite
mean of the field in question for large positive ENA indices within the indicated season. The advantage
of this approach was that it increased the sample size used to compute the composite means and thus
enhanced the statistical significance of the results.

4. Results

4.1. ENA Index Relationships with Atmospheric Fields

4.1.1. MSLP Patterns

As shown in previous work [28], the pressure difference between Boxes 1 and 2 is strongly
related to the streamflow of rivers across the mid-Atlantic region of the U.S. However, [28] did not
offer a physical explanation why the ENA index is correlated with mid-Atlantic streamflow. One
interpretation is that the ENA index is partially a metric describing the strength of extra-tropical
cyclones passing through or near Box 1 because extra-tropical cyclones are associated with daily
negative MSLP anomalies and the ENA index is correlated with daily MSLP anomalies (Figure 2b).
With this interpretation in mind, it is not surprising that the ENA index is related to streamflow as
shown previously [28] because extra-tropical cyclones are major contributors of precipitation across
the Northeast U.S. To see how the ENA pattern is related to extra-tropical cyclones, we conducted a
daily lag composite analysis of MSLP anomalies for positive and negative ENA events. We restricted
the analysis to strong ENA events, which were defined as those with indices greater than 2 for positive
ENA events and less than −2 for negative events.

As shown in Figure 3, 2 to 3 days before positive ENA events (lag = −2 and −3 days), a broad
area of negative MSLP anomalies are located across the western U.S. At lag = −1 days, the negative
anomalies appear to intensify across a region just poleward of the Gulf of Mexico, likely reflecting
cyclogenesis that typically occurs east of the Rocky Mountains or near the Gulf of Mexico [35]. A region
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of positive MSLP anomalies over the Northeast U.S. also appears to strengthen at lag = −1 days. At lag
= 0, the regions of negative and positive MSLP anomalies further intensify, but the negative anomaly
region is shifted poleward and eastward of the negative anomaly region at lag = −1 days. At lag
= +1 day, the region of negative MSLP anomalies weakens and is shifted poleward and eastward
with respect to the anomaly region at lag = 0 days. At lag = +2 days, the negative MSLP anomaly
again has shifted poleward and eastward and the negative MSLP anomalies are considerably less
pronounced than those at previous lags. The diminishing of the negative MSLP anomalies is consistent
with cyclolysis or the weakening of extra-tropical cyclones that reflect increases in MSLP anomalies on
daily time scales. Figure 3 suggests that daily positive ENA events are associated with cyclogenesis
near the Gulf of Mexico and eastward and poleward storm tracks that are typical in January and
April [36].
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Figure 3. Lag composite of MSLP anomalies for strong positive ENA events (a) three days; (b) two
days; and (c) one day prior to the ENA event at lag = 0 days shown in (d). Panels (e) and (f) show
composite mean MSLP anomalies 1 and 2 days after the ENA event, respectively. Strong ENA events
were defined as ENA indices greater than 2. Contours enclose regions of 5% statistical significance.

A notable example of a storm event resembling a positive ENA phase is the March Superstorm of
1993, which resulted in unprecedented snow accumulations across the eastern U.S. from March 12 to
March 14 [37]. This particular event was associated with a low-pressure system that traversed Box 1 in
Figure 2b and a region of high pressure across northern portions of the Northeast U.S. [37].

To further demonstrate how the ENA index is related to extra-tropical cyclones on daily time
scales, we depict the March 1993 event in Figure 4, where on March 12 negative MSLP anomalies are
located across the Gulf of Mexico and positive MSLP anomalies are located over the Northeast U.S. On
March 13, the storm center is located on the southeast side of Box 1, resulting in a positive ENA index,
consistent with Figure 2b. On March 14, the storm is shown to be located over the Northeast U.S. and
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an area of positive MSLP anomalies is located over the Southeast U.S., contributing to a negative ENA
index on that day.J. Mar. Sci. Eng. 2017, 5, 26 8 of 27 
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Figure 4. MSLP anomalies corresponding to the 1993 Superstorm on (a) March 12; (b) March 13; and
(c) March 14.
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In contrast to positive ENA events, negative ENA events appear to be associated with cyclogenesis
off the East Coast U.S. (Figure 5), which is a common region for cyclogenesis [35]. As shown in Figure 5,
negative ENA events are associated with a broad region of negative MSLP anomalies across the eastern
U.S. at lag = −3 days and lag = −2 days. Figure 5c,d shows that negative anomalies become more
pronounced at lag = −1 days and lag = 0 days. These intensifying composite mean MSLP anomalies
likely reflect cyclogenesis off the East Coast U.S. At lag = +1 days the negative MSLP region remains
pronounced but is shifted poleward and eastward of its location at lag = 0 days, consistent with a
common trajectory for storms developing off the East Coast U.S. [36]. Figure 5f suggests further
eastward movement of the anomaly center and also suggests that extra-tropical cyclones associated
with negative ENA events generally begin to weaken 2 days after the events.
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Figures 3–5 suggest that daily ENA indices are metrics for storm tracks and intensities. While
positive ENA events can be identified with extra-tropical cyclones traversing the Southeast U.S.
and originating near the Gulf of Mexico, negative events can be identified with cyclogenesis off
the East Coast U.S. Thus, this simple index can capture key synoptic features related to eastern
U.S. hydroclimate variability without invoking statistical procedures such as regression, cluster, and
principal component analyses as done in previous work [14,15,38].

4.1.2. Streamfunction Patterns

To better understand the ENA pattern, daily 300-hPa streamfunction anomalies corresponding to
each season were individually composited for days for which the daily ENA index was greater than 2
in the same season. The SON (September–November) composite, for example, therefore represents the
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300-hPa streamfunction anomaly pattern associated with strongly positive daily ENA phases in the
SON season.

As shown in Figures 6 and 7, the upper-atmospheric representation of the ENA pattern varies with
season. For all seasons except the JJA (June–August), JAS (July–September), and ASO (August–October)
seasons, a Rossby wave train appears to emanate from the eastern equatorial Pacific, arc over North
America, and turn equatorward over the Atlantic Ocean. This wave train is similar to that found in
prior work [28]. A region of negative 300-hPa streamfunction anomalies is also located over Greenland
for the JFM, FMA, MAM seasons, which suggests that positive ENA phases are generally associated
with a lack of blocking over Greenland and thus positive phases of the NAO [39]. The relationship
between the NAO and ENA indices was confirmed by correlating the seasonally averaged indices.
As shown in Figure 8, the NAO index is indeed positively correlated with the ENA index but only
weakly during the (November–January) NDJ, DJF, and JFM seasons. The positive correlation between
the ENA and NAO indices suggests that positive ENA phases in the winter are associated with less
snowfall across the Northeast U.S. because positive NAO phases are associated with less snowfall
as shown by [8]. This result is important because precipitation type is related to streamflow that
subsequently influences estuarine processes [38]. The reduction of storminess across the Northeast U.S.
during negative NAO phases [8] is also consistent with how the NAO and ENA indices are negatively
correlated and with how negative ENA events can be identified with fewer storms traversing the
Northeast U.S. region as discussed in Section 4.1.1.
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Figure 6. Daily 300-hPa streamfunction anomaly composites of strong (>2) positive daily ENA phases
for the (a) SON; (b) OND; (c) NDJ; (d) DJF; (e) JFM; and (f) FMA seasons. Contours enclose regions of
5% statistical significance.

The positive phase of the ENA pattern does not appear to be associated with a Rossby wave train
for the JJA and JAS seasons as shown in Figure 7d,e. These results suggest that the ENA pattern’s impact
on precipitation may be more localized than in other seasons because it is upper-atmospheric Rossby
wave trains that are typically responsible for relationships between climate indices and precipitation
across remote regions. The fact that the ENA wave pattern changes with season suggests that the
ENA pattern is influenced by different processes during different seasons. For example, as shown
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in Figure 8, the ENA pattern is related to the NAO during the winter but not during the spring
(MAM). An inspection of Figure 2a shows that the ENA index is nonlinear in sense that positive
ENA indices are stronger than negative ones. Given the potential nonlinearity, we performed the
300-hPa streamfunction composite analysis using strong negative ENA indices (not shown), defined
as indices less than −2. In general, the results are similar to the positive ENA phase composites.
However, notable differences were found in the SON, OND, and NDJ seasons, where the Rossby wave
trains appear to emanate from the western equatorial Pacific instead of the eastern equatorial Pacific
as shown for the ENA positive phase. This result suggests that different process may contribute to
negative and positive ENA phases during the fall season.
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Figure 8. Correlation between seasonally averaged ENA and Niño 1+2 indices (black curve) and the
correlation between the seasonally averaged NAO and ENA indices (green curve). The seasonally
averaged raw Niño 1.2 index is also shown (orange curve). Statistically significant correlation
coefficients are indicated with markers.
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4.1.3. Precipitation

The MSLP composites shown in Figures 3–5 suggest that positive ENA phases are associated
with above-normal Northeast U.S. precipitation because negative daily MSLP anomalies can generally
be identified with low-pressure systems that are major contributors to precipitation across the U.S.
Furthermore, the continental to hemispheric scale of the upper-atmospheric wave pattern associated
with the ENA pattern (Figures 6 and 7) suggests that the ENA pattern may be linked to precipitation
across remote regions.

To show the influence of the ENA on U.S. precipitation, seasonally averaged ENA indices were
correlated with seasonally averaged U.S. climate divisional precipitation. As shown in Figures 9 and 10,
the ENA index is strongly correlated with precipitation for most seasons across the Northeast U.S.
The strongest relationships are generally confined to the East Coast U.S., which is consistent with
how the U.S. East Coast region is located east of the ENA pattern’s southern anomaly center (Box 1 in
Figure 2b), where moist air would be supplied from the Gulf of Mexico and the Atlantic Ocean. The
relationships found across the East Coast are generally considerably stronger and of more consistent
sign than those obtained by correlating more well-known climate indices with precipitation across
the Northeast U.S. [13,14,28]. The weakest relationships are in the JJA season, which is not surprising
because the ENA pattern is less active in the summer [28] and summertime precipitation across the
Northeast U.S. is more convective and less organized than precipitation in other seasons [10,12,40].
We also note that the ENA-precipitation relationships are localized to the Northeast U.S. in the JJA
season, which is consistent with how the ENA pattern during that season is not related to a well-defined
large-scale upper-atmospheric wave pattern (Figure 7d). The strongest relationships between the ENA
index and precipitation for the Northeast U.S. are in the ASO, SON, MAM, and FMA seasons, with
numerous correlation coefficients exceeding 0.7, many approaching 0.8, and some exceeding 0.8.
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Figure 9. Correlation between the ENA index and U.S. climate divisional precipitation for (a) SON;
(b) OND; (c) NDJ; (d) DJF; (e) JFM; and (f) FMA from 1981 to 2013. Shaded U.S. climate divisions
indicate those U.S. climate divisions for which the correlation coefficients are statistically significant at
the 5% level.
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Figure 10. Same as Figure 9 but for (a) MAM; (b) AMJ; (c) MJJ; (d) JJA; (e) JAS; and (f) ASO.

For many seasons, the ENA index is moderately correlated with precipitation across remote
regions of the U.S. One such region is the northwestern U.S., where relationships are particularly
strong (r > 0.6) in the JFM, FMA, and MAM seasons and reflect the large-scale wave pattern associated
with the ENA pattern during those seasons as shown in Figures 6 and 7. Negative relationships
between precipitation and the ENA index are also seen across Texas in the JFM, FMA, MAM, AMJ,
and MJJ seasons and such relationships are strongest in the MAM and AMJ seasons. It thus appears
that the ENA pattern can not only explain a substantial amount of precipitation variability across
the Northeast U.S. but also across western and southern portions of the U.S. Importantly, the results
shown in Figures 9 and 10 also suggest that a substantial amount (25–65%) of precipitation variability
for many climate divisions can be explained by a single climate index without invoking statistical
methodologies such as principal component, regression, and cluster analyses to determine key
precipitation (or streamflow) climate indicators as done in previous work [12,38].

4.1.4. ENSO Influences on the ENA Pattern

Previous work by [41] showed that ENSO evolution regimes are related to springtime precipitation
patterns across the U.S., particularly across Texas. Given the correlation between Texas precipitation
and the ENA index during the MAM, AMJ, and MJJ seasons as shown in Figure 10, it is reasonable
to hypothesize that the ENA index could also be related to ENSO evolutions. To test the hypothesis,
we cross-correlated seasonally averaged ENA indices with the seasonally averaged TNI for all seasons.
The TNI was chosen because it is a metric for describing ENSO evolution, though it cannot discriminate
between all kinds of ENSO evolutions [42]. We also cross-correlated the ENA index with the Nino 3.4,
Nino 1+2, and Nino 4 indices to possibly capture ENA relationships with different ENSO diversities,
which have been identified in previous work [43–46]. We only show the results for the Nino 1+2 and
TNI because they produced the most robust simultaneous results. For reference, the arrow in Figure 11
points to the red-shaded rectangle representing the correlation between the DJF Nino 1+2 index and
the subsequent MAM ENA index at lag = 3 seasons.
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Figure 11. Seasonal cycle of cross-correlation between the seasonally averaged ENA index and time
series for the seasonally averaged (a) Niño 1+2 index and (b) the TNI. Only correlation coefficients
statistically significant at the 5% level are shown.

As shown in Figure 11, the Niño 1+2 index and the TNI have moderately strong contemporaneous
(lag = 0 seasons) relationships with the ENA index but the relationships are confined to the winter
and spring months. The contemporaneous relationships with the TNI suggests that positive phases
of the ENA pattern may be associated with transitioning or resurging La Niñas during the spring
because they are both associated with positive Trans-Niño Phases [43]. The fact that the ENA pattern
is related to SSTs in the Niño 1+2 region has important implications for seasonal prediction of the
ENA pattern because SSTs in the Niño 1+2 region vary considerably from one ENSO event to another
in the spring because ENSO undergoes rapid changes during that season. Thus, it may be difficult
to make assessments about the springtime ENA pattern on the basis of a mature wintertime ENSO
event. Figure 8 shows that the strength of the simultaneous Niño 1+2 index relationships with the ENA
index are strongest in the February–April (FMA) and March–May (MAM) seasons, with these peaks in
relationship strengths coinciding with the climatological maximum of the raw seasonally averaged
Niño 1+2 index. The relationships are of opposite sign when the raw Niño 1+2 index typically reaches
its climatological minimum. No robust simultaneous relationships with the Nino 3.4 index were
identified, suggesting that the ENA pattern is not related to canonical ENSO.

To better illustrate the TNI-ENA relationship, the seasonally averaged ENA index was correlated
with seasonally averaged SST anomalies. Figure 12a shows the result of the analysis for the FMA
season, the season for which the ENA-SST relationships are the strongest. Figure 12a shows how
the FMA ENA index is positively correlated with SST anomalies across the eastern equatorial Pacific
and negatively correlated with SSTs across the western tropical Pacific. This result is consistent with
how the Niño 1+2 index is correlated with the ENA index for the FMA season as shown in Figure 8.
An additional region of statistically significant positive correlation coefficients is located along the
west coast of the U.S.

Notable lagged relationships were identified. For example, the DJF TNI was found to be correlated
with the ENA index up to 5 seasons later. Summer ENSO metrics are also correlated with the ENA
index; the JJA Niño 1+2 index is correlated with the ENA index in the subsequent DJF (lag = 6 seasons).
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4.1.5. Tropical Convection

Figure 12b shows that the FMA ENA index is positively correlated with FMA convective
precipitation across the eastern and central equatorial Pacific and negatively correlated with convective
precipitation across a region extending from the equatorial western Pacific to the subtropical Pacific.
Consistent with the seasonal precipitation correlation patterns presented in Figures 9 and 10, the ENA
index is positively correlated with precipitation across the eastern and northwestern U.S. and negatively
correlated with precipitation across the south-central U.S. Similar correlation patterns were identified
for the December–February (DJF) through MAM seasons.

To better diagnose the influence of tropical convection on the ENA pattern, a daily lag composite
analysis was conducted. We chose to perform a lag composite analysis because of the time lag between
the tropics and the extra-tropics [47]. For the composite analysis, only days in February through April
were used because the Nino 1+2 index is most strongly correlated with the ENA index during those
months (Figure 8).

The lag composites shown in Figure 13 indicate that 10 to 4 days before a positive ENA index,
a convective precipitation anomaly pattern is located across the equatorial Pacific. The pattern
comprises a region of negative precipitation anomalies located over the western Pacific and a region of
positive precipitation anomalies extending from the central to eastern equatorial Pacific. Also seen is a
large region of positive convective precipitation anomalies spanning the eastern U.S. at lag = 0 days,
while a large region of negative convective precipitation anomalies extends from central North America
to the subtropical eastern Pacific. This pattern is generally consistent with the correlation pattern
shown in Figure 12b. The positive and negative convective precipitation anomaly regions across the
equatorial Pacific are the largest at lag = −10 days and diminish in spatial extent and intensity as
the ENA event at lag = 0 approaches. The lag tropical precipitation-ENA relationship found here is
consistent with how there is a time lag between the extra-tropics and tropics [47]. Similar time lags
have been identified for other atmospheric patterns [48].
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Figure 13. Lag composites of daily convective precipitation anomalies for the strong positive ENA
phase for (a) lag = −10 days; (b) lag = −8 days; (c) lag = −6 days; (d) lag = −4 days; (e) lag = −2 days;
and (f) lag = 0 days, where the negative lag indicates that convective precipitation leads the ENA index.
Contours enclose regions of 5% statistical significance.

The results from this composite analysis suggest that the wave patterns shown in Figures 6
and 7 for the months of February through April are associated with tropical convection preceding
strong positive ENA events. The pattern of tropical convection found in the daily composite analysis
corresponds well with the correlation pattern shown in Figure 12b. The similarity between the patterns
can be interpreted as a result of tropical SSTs varying on seasonal timescales that modulate tropical
convection on daily timescales.

4.2. ENA Influences on Salinity

4.2.1. Anomalous Salinity Time Series

Shown in Figure 14 are time series for standardized anomalies of salinity and vertical salinity
gradient. Some notable features are the anomalously strong salinity gradient in 2012 and the
corresponding anomalously low LIS salinity conditions, the 2012 negative salinity anomaly being the
strongest in the study period. The strongest salinity gradient event with a standardized anomaly equal
to 6.0 occurred in 1987. The period from 1981 to 1983 is a prolonged period of anomalously high salinity
conditions. An inspection of Figure 14 reveals that surface and bottom salinity generally fluctuate
coherently and in phase; the vertical salinity gradient anomalies fluctuate coherently with salinity
anomalies but the fluctuations are generally out of phase with the salinity anomaly fluctuations.
A comparison of Figures 2a and 14 shows that the anomalously high salinity conditions from
1981 to 1983 are accompanied by a period of generally negative ENA phases. Similarly, the low
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salinity conditions around 2012 are accompanied by a period of generally positive ENA phases.
The comparison suggests that the ENA pattern may be related to variations in both salinity and vertical
salinity gradient anomalies.
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4.2.2. ENA Index and Salinity

To test the hypothesis that the ENA pattern is related to LIS salinity, we computed the
cross-correlation between the monthly ENA index and salinity anomalies across the NYHOPS domain.
As shown in Figure 15, strong negative relationships are seen at lag = 0 months, especially in regions
near the mouth of the Hudson River. The strongest associations appear to occur when the ENA index
leads by one month, the correlation coefficients approaching −0.5 in the Delaware Bay, LIS, and near
the mouth of Hudson River. The strongest relationships are seen across the Delaware Bay and the
coastal plumes of the Delaware, Hudson, and Connecticut rivers. The ENA index is also related to
salinity anomalies when it leads by 2 months, the relationships at such lags likely the result of the slow
response of the oceanic system to the hydro-meteorological forcing associated with the ENA pattern.
The generally weaker relationships across the open ocean compared to coastal portions suggest that
direct precipitation influences are smaller than the indirect precipitation influences resulting from
freshwater discharge.

A similar analysis was conducted for vertical salinity gradient anomalies (Figure 16). At lag
= 0 months, statistically significant positive correlation coefficients are confined to the western
boundary of the NYHOPS domain and to the LIS. Physically, the stronger relationships along the coast
compared to the open ocean is consistent with how freshwater discharge can generate vertical haline
stratification [49,50]. Negative correlation coefficients are seen across the open ocean, possibly related
to wind-induced vertical mixing during ENA events that is not the focus of this paper. The strongest
relationships between the ENA index and vertical salinity gradient anomalies appear to occur when
the ENA index leads by 1 month, the correlation coefficients approaching 0.5 across the Delaware Bay,
the Hudson River plume’s buoyant bulge region [51] near the apex of the New York Bight, and the
eastern LIS. The ENA-salinity relationships are located where the Connecticut River freshwater plume
exits the LIS and flows along the southern shore of the LIS. The ENA index is positively correlated
with vertical salinity gradient anomalies even when it leads by 2 months (Figure 16c).
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ENA index leads by (a) 0 months; (b) 1 months; and (c) 2 months. Black contours enclose regions of 5%
statistical significance.
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4.2.3. Lag Correlation Analysis

The results shown in Figures 15 and 16 do not consider seasonal variations in the strength of
ENA-salinity and ENA-salinity gradient relationships. As shown in Section 4.1.3, the influence of the
ENA on NE U.S. precipitation is generally greatest during the cool season. Therefore, it is useful to look
at lag relationships on a seasonal basis. Like for the ENSO-ENA correlation analysis, the ENA index
was seasonally averaged before computing the correlation coefficients. For consistency, the salinity
time series were identically averaged.

Figure 17 shows the seasonally decomposed cross-correlation structure between the ENA index
and anomalies for LIS salinity and vertical salinity gradient. The analysis reveals numerous statistically
significant ENA-salinity relationships, the simultaneous relationships generally strongest in the spring
(MAM). The strong relationships between MAM vertical stratification and the MAM ENA index
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could be because streamflow is less influenced by evapotranspiration and storage in the spring than
during other seasons [52] and thus ENA-related fluctuations in precipitation would manifest as
ENA-related changes in streamflow and hence LIS vertical stratification. The lag correlation between
the spring ENA index and summer salinity anomalies is of similar strength to the simultaneous spring
relationships, suggesting that the ENA index can be used to predict LIS summertime salinity and
vertical haline stratification The weakest cotemporaneous relationships between the ENA index and
vertical stratification are in the winter and fall, possibly because wind induced mixing becomes an
important mechanism for de-stratifying the LIS water column during those seasons. Another reason
is that indirect ENA influences on both salinity and vertical stratification through precipitation in
the winter will depend on temperature because the mean temperature on precipitation days largely
determines the precipitation type across the Northeast U.S. [53] and snowfall would contribute to
watershed storage as oppose to a streamflow response that would subsequently influence the LIS.
In fact, monthly streamflow for rivers across the mid-Atlantic U.S. depends on temperature during
the winter, summer, and even the fall for the nearby Hudson River [13]. Moreover, the NAO plays an
important role in determining the precipitation type for winter precipitation events [8] and thus the
ENA indirect influence on the LIS would also depend on the phase of the NAO. Also note that the ENA
index at lag = 0 months is correlated with salinity anomalies up to lags of 8 seasons. The persistence
of the negative correlation coefficients can be interpreted as the result of the autocorrelation structure of
salinity anomalies (Section 4.2.4), which is presumably, to some extent, related to the LIS residence time.
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Another interesting feature is the positive correlation between the ENA index and salinity
anomalies when the ENA index leads salinity by 24 to 36 overlapping seasons. One explanation
for those relationships is that the TNI, for example, is related to both the ENA index (Figure 11) and
salinity anomalies at similar lags (Section 4.2.5).

4.2.4. Persistence of Salinity Anomalies

To better explain the correlation patterns shown in Figure 17, the seasonal cycle of the
autocorrelation of seasonally averaged salinity and vertical salinity gradient anomalies was computed.
Figure 18 shows that salinity anomalies are positively autocorrelated up to lags of 10 overlapping
seasons. For instance, FMA bottom and surface salinity anomalies are significantly correlated with
salinity anomalies 10 seasons later. Salinity anomalies for NDJ, DJF, FMA and MAM are only strongly
correlated with subsequent salinity anomalies up to lag = 4 seasons and a significant decline in the
autocorrelation strength is seen after 4 seasons. One possible reason for the weak autocorrelation
coefficients is that LIS salinity during the winter is responding to freshwater discharge that is largely
driven by large month-to-month precipitation and temperature fluctuations. In contrast to the winter
months, salinity anomalies for MJJ, JJA, and JAS are strongly correlated with salinity anomalies up
to 7 seasons later. This result is consistent with how summer streamflow is less strongly linked to
high-frequency precipitation changes as a result of increased evapotranspiration and storage during
the summer and fall [52]. Thus, even if salinity anomalies are strongly correlated with streamflow
anomalies during the summer and fall, the salinity anomalies may not respond to the high-frequency
fluctuations in precipitation during those months. Evidence for the decoupling of precipitation and
salinity can be seen through inspection of Figures 9 and 17, which show how the ENA index is
strongly correlated with precipitation in ASO (August–October) but not strongly related with LIS
salinity anomalies in subsequent seasons. The decoupling of precipitation and salinity anomalies in the
summer suggests that the salinity anomalies in the summer may be more related to oceanic processes
or inputs from groundwater associated with the Connecticut River.

Other notable features are the negative statistically significant autocorrelation coefficients at
lags of 20 to 32 seasons for surface and bottom salinity anomalies and salinity gradient anomalies.
A comparison of Figures 17 and 18 shows that the negative autocorrelation coefficients generally appear
at the same lags and seasons at which the ENA index is cross-correlated with salinity. Additionally,
the autocorrelation coefficients at lags 16 to 32 months are of opposite sign to those at lags from 0 to 12
months, which is consistent with how the cross-correlation between the ENA index and salinity at
those lags are also of opposite sign. Thus, the negative autocorrelation coefficients may be related to
the ENA-salinity lagged relationships.

The autocorrelation structure of salinity partially explains why the ENA index is significantly
correlated with salinity anomalies at numerous adjacent lags. An anomalous positive ENA event, as
an example, at lag = 0 is a relatively high-frequency event, and the salinity responds comparatively
slowly to the event so that the impact of the ENA pattern spans numerous subsequent seasons.
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Figure 18. Seasonal cycle of autocorrelation of seasonally averaged (a) surface salinity; (b) bottom
salinity; and (c) vertical salinity gradient anomalies from 1981 to 2013. For details of figure features see
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4.2.5. Salinity and ENSO

Because the ENA index is related to the Nino 1+2 index and TNI, it reasonable to suspect that
the Nino 1+2 index and the TNI are also related to salinity anomalies given the strong ENA-salinity
relationships. Shown in Figure 19 is the cross-correlation between two ENSO metrics and LIS bottom
salinity anomalies, where the results for the TNI and Niño 1+2 metrics are shown because they are
generally more strongly correlated with LIS salinity anomalies than the other ENSO metrics. Both the
Nino 1+2 index and the TNI are simultaneously correlated with surface salinity anomalies from MAM
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through JJA. However, it is unlikely that the JJA TNI is directly related to JJA LIS salinity anomalies
because ENSO influences on the extra-tropics is strongest during the winter. In fact, correlating the JJA
TNI with JJA 300-hPa streamfunction revealed no atmospheric pattern that could relate the index to LIS
salinity. The more likely case is that the DJF TNI is a precursor for the MAM TNI, which is related to
LIS salinity anomalies through the spring TNI-ENA connection. The summer-LIS salinity relationships
are likely the result of the influence of the spring ENA pattern on summertime LIS salinity anomalies
(Figure 9). Together the results shown in Figure 11, Figure 13, and Figure 19 support the idea that
ENSO is related to LIS salinity anomalies because the ENA index is correlated with ENSO metrics
during the same months and also because the ENA pattern is associated with Rossby waves emanating
from the tropics. For the TNI, strongest associations with salinity anomalies are found when the index
leads by 24 to 32 months. For example, the DJF TNI is correlated with DJF salinity anomalies two years
later (r > 0.5). The physical mechanisms behind the ENSO metrics and the ENA at larger lags is unclear
but could be related to the evolution of ENSO and how ENSO varies strongly at periods of 2 to 7 years.
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5. Conclusions and Discussion

The ENA index was found to explain a significant (25–65%) fraction of precipitation variability
across the Northeast U.S., contrasting with other well-known climate indices that are only modestly
correlated to Northeast U.S. precipitation, as documented in previous work [10,13]. We thus conclude
that, for many seasons, the ENA pattern is the most dominant pattern influencing Northeast U.S.
precipitation. We further conclude that the reason why the ENA pattern is closely linked to
Northeast U.S. precipitation is that it is associated with eastern U.S. storm tracks. In particular, positive
ENA events are related to extra-tropical cyclones developing near and over the Gulf of Mexico that
subsequently traverse the Southeast and Northeast U.S. Consistent with prior work showing how the
NAO and ENSO influence east coast storm tracks and frequency [6–8], the ENA pattern is related to
both the NAO and ENSO.

The results from this study suggest that the ENA pattern may provide a new framework for
understanding historical precipitation variability across not only the Northeast U.S. but also across
southern and northwestern portions of the U.S. Future work could include understanding the role
of the ENA pattern on the 1960s drought, which had severe impacts on the Northeast U.S. and that
created conflicts between New York City and Philadelphia water management agencies. The cause of
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the 1960s drought is a subject of debate [12,13,54] and future research is needed to better understand it
so that future droughts can be better anticipated.

The use of the ENA pattern need not only be limited to improving our current understanding
of historical climate variability. The strong relationship between the ENA index and Northeast U.S.
precipitation also suggests that the ENA pattern could be used to better understand how precipitation
and extreme rainfall events could change in the future. One approach could be making climate
projections of the ENA pattern and using the climate projections to infer how precipitation could
change as a result of a warming planet. Such an analysis could provide new insights into precipitation
trends across the Northeast U.S. and help improve our current understanding of how such trends
could impact estuaries that will likely be strained by climate-change [55].

A key strength of the ENA index is that it is simple to calculate, rendering it useful in an
operational setting, whether for short-range, medium-range, or seasonal forecasting. The relationship
between ENSO and the ENA pattern found in this study suggests that statistically based extended ENA
outlooks may be possible and such outlooks could be used by stakeholders to make climate-informed
decisions. Currently available at the Climate Prediction Center are daily forecasts for the AO, NAO,
and PNA indices, which are used as guidance for making inferences about regional weather 14 days
out. The strong link between the ENA index and precipitation suggests that real-time forecasts of the
ENA index could prove useful in making daily flood forecasts. A future direction of research could be
assessing how skillfully weather and seasonal forecasting models predict the ENA pattern at various
lead times.

Another conclusion of this paper is that the ENA index may provide a promising new approach
for forecasting hypoxia in mid-Atlantic estuaries. The correlation pattern shown in Figure 9 suggests
the ENA index may be useful for forecasting hypoxia in the Chesapeake Bay because above-average
precipitation associated with the ENA pattern during the winter and spring seasons would enhance
Susquehanna spring discharge, which would then lead to Chesapeake Bay hypoxia [38]. The ENA
index approach to forecasting hypoxia would be much simpler than having to consider multiple
synoptic regimes derived from a heavily statistically based procedure as done in [38]. As the
Chesapeake Bay was not the focus of this study, future work is needed to understand how the
ENA pattern influences the Chesapeake Bay. The results from this study also suggest that the ENA
index may be used to predict hypoxia in other estuaries such as the Delaware Bay and LIS. The fact
that the ENA pattern is related to ENSO further implies that advanced outlooks for hypoxia may
be possible.

Although the impacts of the ENA pattern on precipitation and salinity was the focus of this study,
the ENA pattern could be related to other weather and climate indicators such as tornado outbreaks,
flash flooding, storm surge, wind, and major snowstorms. Thus, the ENA index could provide an
integrated approach to forecasting, linking various weather extremes to a single index. Future work is
needed to understand how the ENA pattern is linked to the frequency of extreme events across the U.S.
Such work could provide better forecasts of extreme events, reducing property damage and loss of life.
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