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Abstract: We describe the numerical implementation of a phase-resolving, nonlinear 

spectral model for shoaling directional waves over a mild sloping beach with straight parallel 

isobaths. The model accounts for non-linear, quadratic (triad) wave interactions as well as 

shoaling and refraction. The model integrates the coupled, nonlinear hyperbolic evolution 

equations that describe the transformation of the complex Fourier amplitudes of the 

deep-water directional wave field. Because typical directional wave spectra (observed or 

produced by deep-water forecasting models such as WAVEWATCH III™) do not contain 

phase information, individual realizations are generated by associating a random phase to 

each Fourier mode. The approach provides a natural extension to the deep-water spectral 

wave models, and has the advantage of fully describing the shoaling wave stochastic 

process, i.e., the evolution of both the variance and higher order statistics (phase 

correlations), the latter related to the evolution of the wave shape. The numerical 

implementation (a Fortran 95/2003 code) includes unidirectional (shore-perpendicular) 

propagation as a special case. Interoperability, both with post-processing programs  

(e.g., MATLAB/Tecplot 360) and future model coupling (e.g., offshore wave conditions 

from WAVEWATCH III™), is promoted by using NetCDF-4/HD5 formatted output files. 

The capabilities of the model are demonstrated using a JONSWAP spectrum with a cos
2s

 

directional distribution, for shore-perpendicular and oblique propagation. The simulated 
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wave transformation under combined shoaling, refraction and nonlinear interactions shows 

the expected generation of directional harmonics of the spectral peak and of infragravity 

(frequency <0.05 Hz) waves. Current development efforts focus on analytic testing, 

development of additional physics modules essential for applications and validation with 

laboratory and field observations. 

Keywords: triad; nonlinear; mild slope; shoaling; directional; wave model; energy flux 

 

1. Introduction  

As waves propagate into shallow water, they change from almost sinusoidal in deep water to a 

sawtooth like shape in the surf zone. Troughs become wide and shallow; crests peak and lean forward, 

eventually overturning and breaking. In the spectral domain, this evolution is expressed in energy 

transfers from the spectral peak to peak harmonics and low frequency (between 0.001 Hz and 0.02 Hz) 

waves, as well as the development of phase correlations across the spectrum. Wave-shape evolution and 

the generation of zero-frequency motions (mean flow, wave setup) have significant effects on nearshore 

sediment transport and inundation. 

Modeling nonlinear shoaling is challenging. Off-the-shelf finite-depth spectral models  

(e.g., SWAN [1]) are typically based on variance balance equations originally developed for deep-water 

waves [2], and therefore cannot account for phase correlation effects. Describing directional nonlinear 

wave interactions is problematic in intermediate depth. Shallow water spectra are typically wide 

(containing harmonics and low frequency waves) precluding the use of simpler weak dispersion 

approximations (cubic Schrodinger equation e.g., [3–6] or Boussinesq approximations, e.g., [7–10]). 

The fundamental challenge of modeling nonlinear shoaling in the spectral domain resides in the 

character of wave interactions. The basis of the spectral representation is the decomposition of the wave 

field into statistically independent (in the leading order) Fourier modes. For a flat bottom (water depth  

h = constant), this representation is formally 

           
                  

   

 

  
                

(1) 

where   is the free surface displacement, a is the complex modal amplitude,   is the radian frequency, 

and ―c.c.‖ stands for ―complex conjugate‖. The sum (used here to denote symbolically any type of 

superposition, either discrete or continuous) is carried out over frequencies (indexed by n). Different 

directions of propagation are represented here by the wave number vector Kn,m which depends on both 

the frequency index and an additional index m, specifying, say, the propagation angle. For a given    

and a given depth h, Equation (1) constrains the modulus of the wave number vector of modulus Kn. The 

efficiency of wave nonlinearities [3,11] depends on the system of equations describing the resonance 

state of N interacting modes. 
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Note that Equation (3) is a system of two equations for the components of the horizontal wave 

number vector. With the additional constraint (Equation (2)), only two of the three scalar equations 

(Equations (2) and (3)) can be independent. A set of N modes that satisfy Equations (2) and (3) is said to 

interact resonantly; those that do not are called non-resonant. In the wave evolution equation, the 

efficiency of resonant N-wave interactions scales like O(ε
N−1

), where ε is the characteristic wave slope. 

Non-resonant effects are weaker and dynamically less relevant (produce higher order bound waves). 

Due to the form of the dispersion relation (Equation (1)), the smallest number of modes that can be 

resonant is N = 4 (quadruplet, or four-wave interaction); triad interactions (N = 3) are non-resonant in 

any water depth [12]; however, they approach resonance in shallow water. 

The statistics of wave evolution can be described in terms of competing effects of dispersion and 

nonlinearity [13,14]: nonlinearity builds phase correlations and skews the statistical distribution of the 

wave-field; dispersion breaks them and restores the symmetry of the distribution. 

In deep water, the dispersive terms of the evolution equation are of order ε, while the competing 

leading-order nonlinearity (resonant four-wave interactions) is of order ε
3
. Consequently, the wave field 

is Gaussian in the leading order, with its statistics completely determined by second order moments 

(variance, power spectrum; [2,15]), hence the suitability of models based on energy-balance equations. 

As water becomes shallow, dispersion weakens to order ε
2
 while nonlinearity strengthens. 

Near-resonant triad interaction (order ε
2
) becomes the leading order nonlinear mechanism (e.g., [16–20] 

and many others). The evolution is characterized by the broadening of the spectrum, and the generation 

of significant phase correlations across the spectrum (wave crests peak, wave fronts steepen). The waves 

are no longer Gaussian: wave statistics are no longer completely determined by second order moments 

(power spectrum) alone, and higher order moments and spectra (e.g., bispectra) become important. 

Evolution depends on both local sea state and wave history (history of phase correlations).  

The dynamics of triad interaction in shallow water are poorly (or not at all) implemented in existing 

numerical models. For example, SWAN [1] arguably the most advanced coastal spectral model, is 

essentially built on a WAM [15] energy balance structure [2]. It implements a crude and unrealistic triad 

interaction parameterization [21], limited to approximating collinear second harmonic generation 

exclusively, with depth dependent interaction coefficients alone (i.e., accounting only for local effects, 

and not for wave history). Important processes such as infragravity (IG) wave generation, recurrence 

effects, and spectrum widening are also ignored. 

A deterministic, unidirectional but complete triad interaction formulation was first introduced by [16] 

based on the Boussinesq approximation. Agnon et al. [20] proposed a generalization for arbitrary depth 

based on the Nonlinear Mild Slope Equation (NMSE, [22,23]). Limited directionality can be introduced 

using the parabolic approximation (e.g., [24–26]). Hyperbolic forms for nearly planar beaches were 

developed by [20,27,28]. 
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This paper describes the modeling techniques used to implement the hyperbolic form of the NMSE 

developed by [20,29] for directional three-wave interaction. Development of the model is presented first 

followed by a demonstration of the model’s capabilities for shore-perpendicular and oblique wave 

propagation. Finally, a summary of the work is presented along with a discussion of future enhancements 

to the model. 

2. Model Development 

2.1. Nearshore Directional Waves  

In Equation (1), the directionality of mode n is expressed by the direction of the wave number K. The 

wave number vector is an invariant of propagation in deep water, and can be used to label directional 

modes. The wave number is considered an independent variable, with ω given by Equation (1), and 

modes are identified by the wave number components or, in polar coordinates, by the pair (K,θ), where θ 

is the angle of propagation. Thus, directional modes are represented by a two-dimensional parameter 

space (e.g., indices n and m in Equation (1)). 

In the nearshore, K is no longer invariant, but the wave frequency typically is. If the beach has straight 

and parallel isobaths, the alongshore wave number provides a second invariant that can be used to 

complete the two degrees of freedom necessary for describing directional waves. Therefore, in the 

nearshore, the Fourier representation of Equation (1) can be replaced by 

                      
 

              

   

 (4) 

  
      

    
  (5) 

where x and y are the cross- and alongshore coordinates. The independent parameters are, in the 

approach, the frequency fn (or ωn = 2πfn), and the alongshore wave number κm. The wave number 

modulus K depends on the frequency through Equation (1), and the cross-shore wave number k is a 

function of both f and κ through Equation (5). A mode is therefore defined as the pair (fn,κm)—indexing 

modes rather than the independent parameters—and mode J is defined as the pair 

J = (fj,κj) (6) 

From Equation (6), for a given frequency f, and at a given cross-shore location x, progressive modes 

satisfy the condition 

           (7) 

where K(f,κ) is the local wavenumber modulus, given by the linear dispersion relation, Equation (1). 

Modes that do not satisfy this relation in some nearshore domain are called trapped modes.  

The location x0 at which k = K(f,x0) is called the ―turning point‖. For simple (e.g., monotonic)  

beach profiles, shoreward of the turning point, trapped modes can acquire oscillatory behavior since 

K→∞ as h→0. 
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2.2. A Hyperbolic Nonlinear Mild Slope Equation (NMSE) 

The numerical model described here implements the formulation proposed by [27] (see also [20]) for 

the nonlinear evolution of directional waves over a mildly sloping beach. The stationary nonlinear 

mild-slope equation can be written as 

   

  
                                            

   

 (8) 

                
 
     

 

 
  

 
 (9) 

where J, P, and Q are directional Fourier modes in the sense of Equation (6), and cj is the cross-shore 

component of the model group velocity C. The parameter dj represents dissipation and/or growth 

processes, such as breaking, wind input, bottom friction, and others. In Equation (8),   is the Kronecker 

symbol, for example, 

        
      
      

  with ±P = (±fp,κp) (10) 

where the equality J = P has the regular meaning for ordered pairs, i.e., fJ = fP and κJ = κP. Only modes 

that satisfy the selection criteria given by Equation (10) are allowed to contribute to the nonlinear terms.  

Triads satisfying J = P + Q (―sum‖ interaction) are responsible for transferring energy toward high 

frequencies; difference interactions J = −P + Q transfer energy toward low frequencies. An example of a 

sum-interaction triad is shown in Figure 1. With the notation       , the interaction coefficient is 

        
 

 

    

    
        

    
           

 
  

  
   

 
  

  
   

   
    

       (11) 

Figure 1. An example of a sum-interaction triad J(j,s) = Q(q,v) + P(p,u), j = q + p and  

s = v + u with j = 3, q = 1, p = 2 and s = 4, v = 3, u = 1. 

 

Equation (8) represents the Nonlinear Mild Slope Equation (NMSE) model. The NMSE is hyperbolic 

and describes wave shoaling, refraction, and three-wave nonlinear interactions. The unknown function 

BJ is related to the energy flux in the cross-shore direction,     
 
     

 
  . The linear part of the 

equation describes the conservation of the cross-shore component of the modal energy flux (the 
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alongshore component is conserved trivially). The quadratic term represents the contribution of 

three-wave interaction to mode evolution and redistributes energy flux between modes. 

The numerical implementation of Equation (8) is restricted only to triads that are close enough to 

resonance, as measured by the ―detuning‖ parameter 

  
          

    
 

         

    
 (12) 

The parameter μ compares the wavelength of the nonlinear term with the wavelength of mode J (on the 

left-hand side of the equation). If μ >> 1, the oscillations of the nonlinear term are fast and result in a 

small (second-order) ―bound wave‖ correction to mode J that can be calculated approximately as 

  
                       

       

        
     

   
        

 
(13) 

This approximation becomes singular as μ→0. This occurs as h→0, i.e., triads approach resonance as 

the water becomes shallow. In this case, the oscillation of the nonlinear term is slow and the equation has 

to be integrated numerically. In principle, the numerical solver should be able to handle triads with 

arbitrary values of μ. In practice, however, numerical calculations for μ = O(1) are slow because the 

model has to resolve fast oscillations that yield small contributions to the derivative. Controlling the 

errors becomes increasingly difficult for larger values of μ and the benefit of the effort becomes 

negligible. Because of that, an efficient numerical implementation of Equation (8) would limit the 

integration to triads characterized by μ < μc, for some critical value of μc, with bound waves computed 

using Equation (13). The numerical simulations shown here use μc = 0.5, while the bound waves are 

ignored (will be included in future modifications of the code). 

Equation (8) is valid strictly for progressive waves. Trapped modes are not allowed to interact in the 

spatial domain where their cross-shore structure is exponential, but are allowed in the domain where 

they have oscillatory behavior. The NMSE model is phase resolving, in that it requires initial values for 

both modal amplitudes and modal phases. 

Equation (8) reduces to the unidirectional equation for a mild sloping beach [16,20,25] if all the 

modes propagate perpendicular to the shoreline, i.e., for all κJ = 0. Numerical simulations using the 

unidirectional hyperbolic NMSE [27,29] have been extensively verified against both single-triad 

analytic solutions as well as laboratory and field observations. 

In the current implementation of the model, the only dissipation mechanism used is depth-limited 

wave breaking, based on the frequency dependent parameterization developed by [29,30], with 

dissipation uniformly distributed over all directions. 

2.3. Model Discretization and Computational Grid 

In Fourier series representation, the frequency-alongshore wave number is discretized as 

            

             
 (14) 

and a directional mode index J is a pair of indices J = (j,s). For a triad of interacting modes J, P, and Q, 

the selection criterion given in Equation (10) can be written as indicial equations 
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where 

         
         
       

 (16) 

for a given f, the effective κ-range of the allowable modes is limited by Equation (7), and can vary with 

depth. As the maximum extents of f and κ are known, a list of all possible triads can be created before 

shoreward marching of the solver begins. The matrix of triads involving a given mode J (in the 

left-hand side of Equation (8)) and all the allowable modes P and Q (right-hand side of Equation (8)) is 

   
       

        
         

        

       
        

         
        

  (17) 

Because the selection criteria (Equation (10)) are invariants of propagation, the interacting triads can be 

pre-computed for a given (f,κ) matrix. 

2.4. Solution Algorithm 

The NMSE represents a coupled system of          complex ODEs, a hyperbolic initial value 

problem. These equations are solved using the Vode ODE Solver [31] using a non-stiff Adams method. 

Although the NMSE is written in complex form, for purposes of solving, the equation is split into real 

and imaginary components (doubling the number of equations to solve simultaneously) thus enabling 

the double precision (8 byte) real version of Vode to be used. An overview of the solution algorithm is 

shown in Figure 2. 

Figure 2. Solution algorithm. 

 

As waves propagate into shallower water, trapped modes (modes for which k = K at some depth) 

become active and participate in the interaction. A trapped mode is considered inactive (i.e., not allowed 

to interact with other modes) in the domain where k > K, but becomes active if k < K (i.e., shoreward of 

the turning point for monotonic beach profiles). Triads containing inactive modes are disabled; 
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therefore, the maximum effective alongshore wave number (        ) depends on the local 

(cross-shore position) depth and frequency. The conditions that determine M are 

                      
    

  
  (18) 

where K is determined by the dispersion relation (Equation (1)) and    refers to the integer value. 

The maximum effective wave number increases with frequency and decreasing depth. The variation 

of M with depth and frequency can be handled using two different strategies: (1) Using the minimum 

depth and highest frequency, the maximum M for the entire domain can be determined; (2) Increase M as 

the solution marches toward the shore. The current implementation of the model uses Approach 1. This 

approach will result in sparse matrices (wasting some computer memory) but the triad interaction 

patterns can be defined once for all runs and there is no need to dynamically modify M as the solution 

marches toward the shore. For each evaluation of the derivatives, it is only necessary to determine 

whether all modes of the triad are active. Approach 2 is expected to result in dense matrices but also to 

significantly complicate coding as array sizes would vary as a function of cross-shore position. As with 

Approach 1, it is still necessary to determine whether all modes of the triad are active. A pseudocode 

representation of how the model calculates the right hand side of the NMSE (Equation (8)) is shown in  

the Appendix. 

2.5. Model Input/Output 

An overview of how data is imported into and exported out of the model is shown in Figure 3. The 

code solves the NMSE as a Monte-Carlo simulation. Typically, available offshore wave information 

consists of directional spectral density of free-surface variance. Offshore modal amplitudes are provided 

in a simple text file which either contains the complex amplitudes (includes a phase for each mode) for 

each ―realization‖ to be simulated, or a spectrum can be provided and the model will use a Random 

Phase Approximation (RPA) to generate phases for a user-defined number of realizations. Model output 

is provided in a NetCDF-4/HDF5 output format using NetCDF [32]. Metadata provided in the output file 

is compliant to CF-1.6 [33]. The variable defining the number of realizations being simulated has the 

NetCDF length ―UNLIMITED‖. Thus, for a given set of simulation parameters and offshore wave 

conditions, realizations can be performed independently and their output files easily combined, e.g., with 

―ncrcat‖ [34]. It is also noted that while the input file is currently a simple text file, the model could 

easily be setup to read a NetCDF file using the same metadata convention as the output file. 

The NMSE describes the shoaling transformation of a stationary directional wave field from deep 

into shallow water. The details of the discretization of the frequency and alongshore wave number 

spaces are user defined. In the current implementation, the model resolves the shortest wave with  

10 points (spectral cutoff frequency is 1/5 the Nyquist frequency) and the alongshore wave field at a 

resolution of 5 m. The solver (Vode) used to integrate Equation (8) uses an adaptive algorithm that 

implicitly discretizes internally the cross-shore domain according to the accuracy requested for the 

solution. The user only controls the locations for the solution output. In the simulations presented, for the 

purpose of describing the details of each realizations (see Section 3), values of the solution are generated 

every 5 m in the cross-shore.  
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Figure 3. Model input and output. 

 

Table 1. Synthetic scenario parameters. 

  Shore Perpendicular Oblique 

Domain Offshore Depth (m)/Position (m) 15/0 

Onshore Depth (m)/Position (m) 3/400 

Slope 0.03 

JONSWAP 

Spectrum 

Hs (m) (sig. wave height) 2 

Tp (s) (peak period) 15 

2s (spreading parameter) 50 

θp (deg) (peak angle) 90 60 

Number of realizations simulated 100 

Discretization 

Frequency (f) 

Δf (hz) 0.002 

fmax (hz) 0.2 

N 100 

Tmin/Tmax (s) (period) 5/500 

Alongshore (κ) Δκ (1/m) 0.001 

κmax (1/m) 0.03 

M/Total(2M + 1) 30/61 

Lmin/Lmax (m) (wave length) 33/1000 

Cross-shore (x) Δx (m) 3.33 

Δh (m) 0.1 

Number of marching steps 121 

Temporal (t) Δt (s) 0.1 

Number of points per Tmin 50 

3. Nonlinear Shoaling of Two JONSWAP Spectra: Shore-Perpendicular and  

Oblique Propagation 

We demonstrate the capabilities of the model with two shoaling tests over a plane beach of 0.03 slope. 

The offshore spectra are standard directional JONSWAP spectra propagating shore-perpendicular in the 

first test, and obliquely in the second. The parameters used here (Table 1) are typical for long Eastern 

Pacific swells; however, the directional spread is probably exaggerated in the simulations. The 

JONSWAP spectral shape (maybe not entirely realistic for representing the incoming waves at the deep 
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end of the simulation domain) is used here solely to illustrate the capabilities of the current model and 

the use of the RPA for simulating the shoaling transformation of a deep-water variance density 

distribution. Because the JONSWAP spectrum does not contain any variance in the infragravity band, 

the second-order bound spectrum associated with the deep water swell was computed using  

Equation (13). A summary of the simulation parameters for both scenarios is shown in Table 1. 

Figure 4. Directional characteristics of the frequency-alongshore wave number (f,κ) 

representation in comparison with the standard (deep-water) frequency-angle (f,θ) 

representation, in 15 m water depth (upper panels) and in 3 m water depth (lower panels). 

(a,c) The (f,κ) representation; contours show the corresponding angles of propagation with 

respect to shore-parallel. The shaded area in (a) marks trapped-wave modes (i.e., modes that 

have the turning point between 15 m and 3 m water depth). The nodes of the (f,κ) grid are 

marked by blue points. 

 

For input-output purposes, the numerical model requires mapping the directional wave information 

between the model (f,κ) grid and the standard frequency-angle representation (f,θ) (e.g., as used in 

WAVEWATCH III™ [35]). The existence of turning points makes the implementation of the mapping 

procedure sensitive to the bathymetric profile. For a given frequency, turning points (Section 2.1) are 

cross-shore locations where additional modes are introduced into the system (become active). Their 

effect on the geometry of the computational grid is illustrated in Figure 4. The active computational grid 

is limited to the band defined by |κ| < K(f,h), where K(f,h) is given by Equation (1). In deep water, this is 

a narrow band (widening toward higher frequencies, Figure 4a). As the water depth decreases, the band 

widens (additional modes become active), and becomes triangular in shape (Figure 4c) and extends into 

higher alongshore wave numbers as the shallow water boundary approaches |κ| < Kshallow = ω(gh)
−1/2

.  

As the limiting alongshore wave number increases, the frequency-angle representation degrades slightly 

(in Figure 4d, the mapped grid does not cover the entire available (f,θ) domain). 
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Designing the computational grid for applications poses thus the additional challenge of balancing the 

conflicting needs for resolving wide propagation angles (large limiting κ) at high resolution (small κ 

increments), and for keeping the number of triads described reasonably small for numerical integrations. 

The need for wide angles is non-trivial: for example, it is straightforward to check that directional 

difference triads containing two nearly collinear, shore-normal swell modes can excite a low-frequency 

wave that propagates nearly parallel to the shoreline. Note also that a significant fraction of the 

computational grid is never used. 

Mapping the directional spectral distribution between (f,κ) and (f,θ) spaces, shown in Figure 5, 

consists of two steps in each direction: a direct mapping of the modal amplitudes from the uniform grid 

(or angle, Figure 5a or alongshore wave number, Figure 5c) onto a non-uniform one in the 

complementary space (Figure 5b or 5d), and a re-sampling (interpolation) of the non-uniformly spaced 

values into the uniform grid. All transformations are designed to preserve the frequency spectrum  

(i.e., the directional spectrum integrated over either angles or wave number). 

Figure 5. Illustration of the mapping of the directional JONSWAP spectrum from the (f,θ) 

space onto the (f,κ) space, and back for the shore-perpendicular spectrum. Upper panels: 

directional spectra in different representations; lower panels: corresponding frequency 

spectrum. The transformation preserves the frequency spectrum. (a) Standard (f,θ) 

representation of the JONSWAP directional spectrum at 15 m isobaths; (b) Direct map from 

(f,θ) to (f,κ). The resulting grid in κ is not uniform; (c) Spectrum re-sampled in the uniform κ 

grid used for computation; (d) Spectrum directly mapped back to (f,θ) space. The angle grid 

is not uniform. Units of the variance density contour plots are arbitrary. 
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The evolution of a total of                      possible (however, some 

high-frequency trapped modes never become active) directional modes are simulated (Figure 4). For 

each scenario, simulations are performed with both the full, and the linearized version of Equation (8). 

Note that the present implementation of the model only includes the linear and triad nonlinear evolution 

―engine‖ and wave breaking, with no additional physics (e.g., wave setup), that would be essential for 

realistic modeling of wave propagation in the nearshore. 

The simulations shown here test the representation capability of the (f,κ) grid as well as illustrate the 

directional effects of nonlinear shoaling. The initial spectra at the deep-water end of the domain (15 m 

water depth) are shown in Figures 6a and 7a. Linear runs (Figures 6b and 7b) show the expected 

refraction effect of decreasing directional spread, with modes slowly turning around toward 

shore-perpendicular propagation. The main nonlinear effects (clearly visible in Figures 6c and 7c) are 

energy transfers from the peak to (a) peak harmonics, and (b) low-frequency infragravity modes. For 

oblique propagation, artifacts of the resolution of the k-grid are visible in the deep-water spectrum 

(Figure 7a), but become less severe as the waves refract and the grid coverage in the frequency-angle 

space increases with decreasing water depth. Note that infragravity waves (frequency < 0.05 Hz) are 

significantly more directionally spread (approximately 60 degrees) than the rest of the spectrum 

(approximately 30 degrees for swell and 15 degrees for the shortest waves represented). 

Figure 6. Evolution of the directional shore-perpendicular JONSWAP spectrum (see  

Table 1). (a) Initial spectrum in 15 m water depth; (b) Linear evolution (3 m water depth);  

(c) Nonlinear evolution (3 m water depth). Simulations are averages over N = 100 random 

phase realizations.  
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Figure 6. Cont.  

  

(c)  

Figure 7. Evolution of the directional oblique JONSWAP spectrum (see Table 1). (a) Initial 

spectrum in 15 m water depth; (b) Linear evolution (3 m water depth); (c) Nonlinear 

evolution (3 m water depth). Simulations are averages over N = 100 random phase realizations. 
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Figures 8 and 9 show the free surface elevation corresponding to one of the realizations used to 

estimate the spectra in Figures 6 and 7. The figures illustrate the change in the wave shape caused by the 

excitation of the phase-correlated harmonics of the spectral peak. A comparison of the linear (Figure 8a) 

and nonlinear (Figure 8b) oblique wave field clearly shows the steepening of the wave front. Both the 

shore-perpendicular and the oblique propagation realizations generate a significant infragravity field, 

with heights between 0.2 and 0.4 m. This effect is mainly a nonlinear shoaling effect (the linear shoaling 

of the initial bound infragravity band accounts for about 5 cm of the heights). 

Figure 8. Contours of the simulated free surface elevation field for shore-perpendicular 

propagation, corresponding to the spectrum shown in Figure 6 at a fixed (arbitrary) time. 

The parameters of the offshore spectrum are given in Table 1. (a) Linear model;  

(b) Nonlinear model; (c) Infragravity waves (f < 0.05 Hz) generated during nonlinear shoaling. 
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Figure 9. Contours of the simulated free surface elevation field for oblique propagation, 

corresponding to the spectrum shown in Figure 7 at a fixed (arbitrary) time. The parameters 

of the offshore spectrum are given in Table 1. (a) Linear model; (b) Nonlinear model;  

(c) Infragravity waves (f < 0.05 Hz) generated during nonlinear shoaling. 

 

4. Summary and Conclusions 

Based on the equations derived in [27], a Fortran 95/2003 code was written to solve the NMSE. The 
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high-frequencies modes. The runs demonstrate the essential role directionality plays in nonlinear 

shoaling, especially in the generation of directionally spread infragravity waves. 

With the ―engine‖ of a wave model developed, future research goals include: (1) Reformulating the 

governing equation from its current mathematically relevant form to one which is more numerically 

adept. By solving an equation better suited to floating point arithmetic (e.g., a form which minimizes 

rounding error), we should be able to improve the model’s stability, accuracy and energy flux 

conservation; (2) Adding modules for relevant physics such as setup (feedback to the total depth) and 

wind effects; (3) Performing additional numerical tests. Comparing the model to known analytic 

solutions (e.g., individual triad interactions) as well as observational directional wave data will provide 

for better model verification and validation. Additional IG scenarios will let us better understand  

how they are generated. Finally, future applications of the model will include making it publicly 

available to the community as well as incorporating it into phase-averaged deep-water models such as 

WAVEWATCH III™ using the RPA mechanism described here. 
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Appendix: Pseudocode for Nonlinear Derivatives 

######################################################################### 

# Performed once 

# Determine the list of all possible triads 

loop: |s| <= M 

   loop: |u| <= M 

      loop: |v| <= M 

         if (s = u + v) then 

            Set max to the maximum value of s, u, and v. 

            Add s, u, and v to list of triads for Mmax 

         end 

      end 

   end 

end 

 

######################################################################### 

# Performed once for each evaluation of the right hand side of the NMSE 

# Determine if mode J(fj κs) exists where fj = jΔf and κs = s Δ κ, 

loop: 1 <= j <= N 

   Calculate Mlocal 

   loop: |s| <= Mlocal 

      Determine if mode J(j,s) exists 

   end 
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end 

 

# Add linear component 

loop: 1 <= j <= N 

   Calculate Mlocal 

   loop: |s| <= Mlocal 

      if (mode J(j,s) exists) then 

         Add linear contribution (including wave dissipation) 

      end 

   end 

end 

 

# Add nonlinear component (triad interactions) 

loop: 1 <= j <= N 

   Calculate Mlocal 

 

   # Triad: j=q+p 

   loop: 1 <= p <= j-1 

      q=j-p 

      loop: 0 <= List of triads <= |Mlocal| 

         if (modes J(j,s), P(p,u), and Q(q,v) exist) then 

            Compute μ 

            if (μ < μc) then 

               Add nonlinear contribution of triad: J, P, Q 

            end 

         end 

      end 

   end 

 

   # Triad: j=q-p 

   loop: 1 <= p <= j-1 

      q=j+p 

      0 <= List of triads <= |Mlocal| 

         if (modes J(j,s), P(p,u), and Q(q,v) exist) then 

            Compute μ 

            if (μ < μc) then 

               Add nonlinear contribution of triad: J, P, Q 

            end 

         end 

      end 

   end 

 

end  
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