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Abstract: The ability to detect underwater objects accurately is important in marine environmental
engineering. Although many kinds of underwater object detection algorithms with relatively high
accuracy have been proposed, they involve a large number of parameters and floating point operations
(FLOPs), and often fail to yield satisfactory results in complex underwater environments. In light of the
demand for an algorithm with the capability to extract high-quality features in complex underwater
environments, we proposed a one-stage object detection algorithm called the enhanced feature-based
underwater object detection algorithm (EF-UODA), which was based on the architecture of Next-ViT, the
loss function of YOLOv8, and Ultralytics. First, we developed a highly efficient module for convolutions,
called efficient multi-scale pointwise convolution (EMPC). Second, we proposed a feature pyramid
architecture called the multipath fast fusion-feature pyramid network (M2F-FPN) based on different
modes of feature fusion. Finally, we integrated the Next-ViT and the minimum point distance intersection
over union loss functions in our proposed algorithm. Specifically, on the URPC2020 dataset, EF-UODA
surpasses the state-of-the-art (SOTA) convolution-based object detection algorithm YOLOv8X by 2.9%
mean average precision (mAP), and surpasses the SOTA ViT-based object detection algorithm real-time
detection transformer (RT-DETR) by 2.1%. Meanwhile, it achieves the lowest FLOPs and parameters.
The results of extensive experiments showed that EF-UODA had excellent feature extraction capability,
and was adequately balanced in terms of the number of FLOPs and parameters.

Keywords: underwater object detection; feature extraction; feature fusion; YOLOv8

1. Introduction

Water bodies cover almost two-thirds of the Earth’s surface, and produce almost half
of the planet’s oxygen while absorbing carbon dioxide from the environment [1]. We need
to monitor critical underwater habitats in order to preserve underwater ecosystems. The
abundance of natural resources in oceans [2] has also led to an increase in marine explo-
ration activities. Noise is inevitably generated during the acquisition of visual information
due to the complexity of the underwater environment and the difficulty of data acquisition,
and poses a significant challenge to highly accurate underwater object detection.

Currently, one-stage object detection algorithms based on deep convolutional neural
networks (DCNNs) have been shown to be effective in terms of object detection in recent
years [3,4], including in underwater environments. Regression-based object detection
algorithms, also known as one-stage object detection algorithms, have been proposed
to solve the problem that object detection algorithms cannot realize real-time detection.
Most state-of-the-art (SOTA) object detection algorithms are based on the single-shot
multi-box detector (SSD) [5], the you only look once (YOLO) algorithm [6–11] and the
fully convolutional one-stage object detection (FCOS) algorithm [12,13]. Yang et al. [14]
proposed QueryDet based on RetinaNet [15] and FCOS, and designed a cascade sparse
query mechanism. QueryDet reduces the computational cost of all feature-pyramid-based
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object detectors and improves the detection of small objects by efficiently using high-
resolution features of images while maintaining a high speed of inference. Hou et al. [16]
proposed the idea that a deep neural network can learn the relationships between the given
samples by itself, and used it to propose BatchFormer, which achieved satisfactory results
in different experiments involving a small amount of available data.

Although the above algorithms have achieved suitably accurate results of detection
in commonly encountered scenarios, some problems arise when directly applying deep-
learning-based algorithms to detect objects underwater. First, acquiring underwater images
is difficult because the scale of the captured image varies significantly with the distance
between the camera and the object. Second, underwater images have poor quality, meaning
the detection algorithm needs to have excellent feature extraction and generalization capa-
bilities. Finally, although SOTA object detection algorithms are highly accurate, they require
a large number of floating point operations (FLOPs) and parameters, which can make them
difficult to train. Therefore, it is important to develop an underwater object detection
algorithm with a robust feature extraction capability to meet the requirements of real-time
detection and high accuracy while reducing the number of FLOPs and parameters used.

Following the design of one-stage detectors, here we proposed a one-stage object de-
tection algorithm called the enhanced feature-based underwater object detection algorithm
(EF-UODA). which could strike a suitable balance between detection accuracy and the
number of FLOPs used, in order to satisfy the requirements of highly accurate real-time
detection in complex underwater environments. The algorithm used an efficient feature
extraction module and a sound approach to multi-scale feature fusion to highlight the
feature-related information of underwater objects and strengthen its feature extraction
capability. Moreover, it integrated advanced techniques, including the Next-ViT [17] and
minimum point distance intersection over union (MPDIoU [18]) loss functions, to predict
the classes and locations of objects of different sizes on four scales using multi-scale detec-
tion methods. Our main goal was to improve the accuracy of underwater object detection in
real time by balancing the computational cost of the algorithm with its speed and accuracy
of detection.

The contributions of this study can be summarized as follows:

(1) We developed a convolution module called efficient multi-scale pointwise convolution
(EMPC) for underwater object detection that outperformed traditional convolution
modules while using fewer computations. We used it to design the C3-EMPC module,
which had a better feature extraction capability than the original module.

(2) We proposed a feature pyramid architecture called the multipath fast fusion-feature
pyramid network (M2F-FPN). We implemented the multi-scale feature fusion aspect
of the algorithm using two different connectivity modules and a new feature pyramid
architecture. These methods effectively improved the feature extraction capability of
the algorithm.

(3) We presented EF-UODA, which was proved through extensive experiments to be a
more accurate underwater object detection algorithm. The proposed method achieved
real-time object detection, and it had high accuracy, and strong robustness.

2. Related Works
2.1. One-Stage Underwater Object Detection Algorithms

With advances in object detection technology and the exploitation of marine resources,
underwater object detection has emerged as a popular direction of research in recent years.
Several studies [19–22] have used vision-based object detection algorithms to explore
underwater resources and marine badlands. Guo et al. [23] proposed an underwater
object detection algorithm based on the improved multi-scale Retinex algorithm with
color protection and YOLOv3 that solves the problems of blurring and low contrast of
underwater images. Zeng et al. [24] introduced an adversarial occlusion network to Faster
R-CNN so that the two networks compete with each other for learning. This prevents the
detection network from overfitting to generate fixed features, and ensures high robustness
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in the detection of underwater sources of food. Cai et al. [25] proposed collaborative
weakly supervised detection by simultaneously using two detectors to learn clean samples
from each other to improve the performance of the model. Chen et al. [26] proposed the
sample-weighted hyper network (SWIPENET) and curriculum multi-class Adaboost to
overcome ambiguity in underwater object detection in the presence of a large number of
small objects by generating multiple high-resolution and semantically rich feature maps
from the backbone network of SWIPENET. Wang et al. [27] proposed a paradigm for
reinforcement learning to configure visual enhancement for object detection in underwater
scenes, and experimentally verified its effectiveness. Zhang et al. [28] defined a new
intersection over union loss based on YOLOv4 and achieved an accuracy improvement
on the URPC dataset, but the GigaFLOPs (GFLOPs) were quite large and speed was not
satisfactory. Chen et al. [29] proposed an underwater-YCC optimization algorithm based
on YOLOv7 on the URPC dataset, which effectively improves the detection accuracy of
small objects, but there was a lack of research on the drastic change of features in the URPC
dataset. Guo et al. [30] proposed a lightweight underwater object detection algorithm based
on YOLOv8s and achieved improvement on the URPC dataset, but there is a considerable
discrepancy in accuracy compared to the SOTA algorithm.

Although the above methods are relatively accurate, they cannot satisfy the accuracy-
related requirements of underwater object detection owing to subpar feature extraction
capabilities and the fact that many algorithms use a large number of FLOPs and parameters.
Designing a highly accurate detection method that has a robust feature extraction capability
and uses a small number of FLOPs and parameters thus remains a major goal of research
in this area. We develop such a method in this study.

2.2. Feature Extraction Module

The feature extraction module is an important part of a CNN, and is used to increase
the depth and sensory field of the network to improve its feature extraction capability.
Howard et al. [31] claimed that when a deep convolution was used to perform feature extrac-
tion operations on channels in each layer, the features obtained were aggregated on a single
channel. This caused information on the features of individual channels to become inde-
pendent, and enabled their point-by-point convolution. Singh et al. [32] designed heteroge-
neous convolutional filters where 3 × 3 convolution kernels and 1 × 1 convolution kernels
were included in a single filter to extract features, and named it HetConv. Chen et al. [33]
proposed octave convolution, which divided the convolution filter into a high-frequency
component and a low-frequency component, processing the latter at low resolution to
alleviate spatial redundancy, thus reducing the amount of computation while keeping the
number of parameters the same. Zhang et al. [34] proposed SPConv, which divided the
input channels into two groups for different types of processing. Han et al. [35] noted
that the feature maps obtained with mainstream neural networks, used to enable a com-
prehensive understanding of the input data, inevitably contained redundant information.
Qiu et al. [36] proposed SilmConv to reduce feature redundancy in the convolution process
by reducing the number of feature channels and flipping weights.

However, traditional feature extraction modules have no adequate means of balancing
the accuracy and computational cost of the algorithm. In this paper, we aim to reduce the
number of parameters and the amount of required computations compared with traditional
feature extraction modules while improving the accuracy of the algorithm.

2.3. Feature Pyramid Network

Effectively handling the multi-scale features extracted with neural networks is one of
the main difficulties in object detection. The object detectors proposed in early research,
such as SSD, are based on a pyramid feature hierarchy extracted using the backbone
network for direct prediction. Lin et al. [37] pioneered FPN, which is a top-down multi-
scale approach to feature fusion from deep to shallow features by fusing feature maps of
neighboring layers to reduce the semantic gap between them. Inspired by FPN, PANet [38]
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includes an additional path aggregation network from deep to shallow features. M2Det [39]
contains a U-shaped module for multi-scale feature fusion, while NAS-FPN [40] uses a
neural-network-based approach to searches in order to design the topology of the feature
network automatically. Bidirectional FPN (BiFPN; [41]) uses weights for simple and fast
feature fusion. Yang et al. [42] proposed AFPN, a progressive FPN that supports direct
interaction in nonadjacent levels in order to avoid large semantic gaps between them by
fusing neighboring low-level features and progressively fusing them at higher levels.

Although BiFPN and AFPN have achieved promising results, both feature pyramid
architectures impose stringent requirements on the GPU, and cannot be adequately trained
by using a single GPU. BiFPN is stacked three times in the neck architecture of EfficientDet
to improve its accuracy, and while AFPN employs multiple feature fusion operations, it
only uses normal convolutional components. In this paper, we aim to optimize multi-scale
feature fusion in a more efficient way.

3. Methods
3.1. Architecture of EF-UODA

The architecture of the YOLOv8 is illustrated in Figure 1, and the architecture of the
proposed EF-UODA is illustrated in Figure 2. The YOLOv8 architecture is composed of
three key components: CSPDarknet (backbone network), PAN-FPN (neck network), and
decoupled-head (detection head), and based on the idea of anchor-free.
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Figure 1. The architecture of YOLOv8. Figure 1. The architecture of YOLOv8.
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We integrated Next-ViT to minimization of GFLOPs, which used a hierarchical pyra-
mid architecture, into the backbone of EF-UODA using a patch embedding module, a next
convolution block (NCB) module, and a next transformer block (NTB) module in one layer
of the algorithm; collectively, these form the NexT layer in the proposed algorithm. When
an image with a size of 640 × 640 × 3 was imputed into it, it was reduced to 320 × 320 × 16
after the first Conv (combined by Convolution, BatchNorm, and Sigmoid Linear Unit) layer.
Following this, the scale of the feature image was reduced by half and the number of chan-
nels was doubled after each layer of NexT. To avoid the problem of image distortion caused
by the scaling operation applied to the image as well as repeated feature extraction by the
network. Our proposed M2F-FPN was used as a feature network in the neck to extract
features at levels P2, P3, P4, and P5 of the backbone for one top-down and two bottom-up
applications of multi-scale bidirectional feature fusion. These fused features were fed to
the head of the network, which generated the predicted object class and the bounding box
through one Conv layer and one convolutional layer. The head of EF-UODA was designed
with a four-head architecture that could output scale-related information at four levels,
P2–P5, to deal better with the effects of drastic changes in the scale of underwater objects.

3.2. Architecture of NexT

In the backbone of EF-UODA, we combine patch embedding, and Next-ViT’s proposed
NCB, NTB into one layer in the algorithm and named it the NexT layer, as described in
Section 3.1. NCB and NTB were superimposed using the next hybrid strategy. Their archi-
tectures, presented in Figure 3, showed that multi-head convolutional attention (MHCA)
was an important part of these two modules. MHCA was implemented by a multi-head
convolution (group convolution) and a point-by-point convolution, as shown in Figure 3.
MHCA took information regarding the input feature z over n channels and flattened it
into h parallel subspaces in the channel dimension. Based on the design of the multi-head
paradigm, feature extraction was then carried out by using single-head CA, which are
summarized by Equations (1) and (2):

MHCA(z) = Concat(CA1(z1), CA2(z2), . . . , CAn(zn))WP (1)

CA(z) = O(W, (Tm, Tn)), where T{m,n} ∈ z (2)

where WP is a projection layer that facilitates the interaction of information between
multiple heads. CA learns the affinities between markers in the local receptive field
by optimizing the trainable parameters through iterations. Tm and Tn are neighboring
features in the input feature z, W is a trainable parameter, and O is the inner product of the
abovementioned parameters.

As shown in Figure 3, NCB followed the generalized architecture of MetaFormer [43],
which consisted of MHCA and a fully connected layer (i.e., a multilayer perceptron (MLP))
based on residual concatenation. When feature vector zin was input into NCB the output of
the MHCA layer was defined as ztd; ztd and the output feature vector zout are expressed in
Equations (3) and (4), respectively, as follows:

ztd = MHCA
(

zin
)
+ zin (3)

zout = MLP
(

ztd
)
+ ztd (4)

NTB had an excellent capability to acquire global information. Figure 3 shows that it
used the efficient multi-head self-attention (E-MHSA) module to capture low-frequency
signals in conjunction with the ability of the MHCA module to capture high-frequency
signals. The feature-related information of the input NTB was output in the form of mixed
high and low-frequency information through collaboration between the E-MHSA module
and the MHCA module. Finally, basic and unique feature-related information was extracted
through the MLP layer.
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The E-MHSA module is defined as shown in Equations (5) and (6):

E-MHSA(z) = Concat(SA1(z1), SA2(z2), . . . , SAn(zn))WP (5)

SA(z) = Attention
(

XWP, Ps

(
XWK

)
, Ps

(
XWV

))
(6)

where SA is a self-attention operator for spatial reduction; WP, WK, and WV are linear layers
used for context encoding; and PS is the average pooling operation with step size S.

The output zout of the feature vector zin input to NTB can be expressed as follows:

zpw1 = PointWise
(

zin
)

(7)

zsa = E-MHSA
(

zpw1
)
+ zpw1 (8)

zpw2 = PointWise(zsa) (9)

zca = MHCA
(

zpw2
)
+ zpw2 (10)

zcn = Concat(zsa, zca) (11)

zout = MLP(zcn) + zcn (12)

where PointWise represents the point-by-point convolutional layer. The NCB and NTB
modules based on the multi-head attention mechanism inherited the outstanding per-
formance of the transformer module. Using them together not only enabled the current
node with the ability to pay attention to the current pixel, but also to obtain the contextual
semantics and, thus, local and global information. For complex underwater environments,
the backbone combined with NexT and SPPF better coped with the problem of drastic
changes in underwater object scale.

3.3. Efficient Multi-Scale Pointwise Convolution

The architecture of EMPC is shown in Figure 4. It was based on the ideas of the
grouping operation and point-by-point convolution. Tensor L with input (w, h, c) was sliced
into four groups by the rearrange function. The values of w and h of each new tensor were
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unchanged, while the number of channels was changed to one-fourth of that of the original
one. The convolution operation was performed on the four groups by using 1 × 1, 3 × 3,
5 × 5, and 7 × 7 convolution kernels, respectively, and the BatchNorm and Sigmoid Linear
Unit activation functions were used to prevent overfitting. The feature-related information
was merged into the channel dimension by the rearrange function to obtain a tensor

.
L with

dimensions (w, h, c). Finally, information between different channels was exchanged by
using a point-by-point convolution with one convolution kernel to realize the interaction
between independent items of feature-related information in different channels and output
the feature tensor L̃ with dimensions (w, h, c). The ratio, rp, of the parameters required for
one simultaneous feature extraction by the EMPC module and the convolution of a 3 × 3
convolution kernel was as follows:

rp =
3 × 3 × c × c

1 × 1 × c
4 × c

4 + 3 × 3 × c
4 × c

4 + 5 × 5 × c
4 × c

4 + 7 × 7 × c
4 × c

4 + 1 × 1 × c × c
=

36
25

(13)
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Figure 4. The combined architecture of C3-EMPC and EMPC.

The EMPC module had fewer parameters than the normal convolutional module, and
reduced the amount of redundant feature-related information during feature extraction.
The architecture of the C3-EMPC module is shown in Figure 4, in which the EMPC module
was used to replace the 3 × 3 Conv layer in the bottleneck module [44] to upgrade dimen-
sionality. This captured finer-grained feature information for situations where there was a
significant disparity in the scale and features of the same underwater object, which in turn
improved the accuracy of the algorithm.

3.4. Architecture of M2F-FPN

Different FPNs with input features at levels P2–5 are shown in Figure 5. The traditional
top-down path-aggregated FPN is shown in Figure 5a, from which it was clear that the
unidirectional flow of information in it limited the accuracy of its feature fusion. PANet
added an additional bottom-up path-aggregated network to enhance the accuracy of feature
fusion, and its architecture is shown in Figure 5b. Both FPN and PANet treated all the input
features equally, without considering that different features had different resolutions and
made unequal contributions to the output features. To solve this problem, BiFPN added an
extra weight to each input feature to allow the network to learn different features differently.
Its architecture is shown in Figure 5c. BiFPN was stacked three times in the EfficientDet
network to improve the network’s accuracy, where this increased the depth of the network
and was not conducive to training with a CPU or a GPU with modest capabilities.
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Figure 5. FPNs. (a) FPN introduces a top-down pathway to fuse multi-scale features from levels
2 to 4. (b) PANet adds an additional bottom-up pathway on top of FPN. (c) No duplicate BiFPN.
(d) M2F-FPN, which has better accuracy/calculation trade-off.

PANet was more accurate than FPN and certain other FPNs, such as NAS-FPN, but
requires more parameters and computation. We considered the architectures of PANet and
BiFPN, and decided to remove nodes with only one input edge because they make only
a small contribution to the feature fusion network. This simplified the architecture of the
resultant network. When the original input and output nodes were in the same layer, an
additional feature fusion channel was added to fuse more features without significantly
increasing the computational cost. The architecture of M2F-FPN is shown in Figure 5d. We
integrated the concat fusion module and the fast normalized fusion module into M2F-FPN.
The results of our ablation experiments (Section 4) showed that this method of feature
fusion delivered accurate results for datasets of underwater objects for detection. Concat
fusion and fast normalized fusion are defined as follows:

Fusionc f = ΣiFi (14)

Fusion f n f = Σi
wi

∈ +Σiwi
Fi (15)

where wi is an obtainable weight that is constrained to take a range of values by normaliza-
tion, Fi is the input to the fusion layer, and ε = 0.0001 is used to ensure numerical stability.

For example, when the resolution of the input image was 640 × 640, the feature level
P3 represented a feature map with a resolution of 80 × 80, and the output obtained by
using the traditional FPN was represented as follows:

Pout
3 = Conv

(
Pin

3 + Resize
(

Pout
4
))

(16)

where Conv represented the convolution operation for feature processing and Resize repre-
sented the up-sampling or down-sampling operation to match the resolutions of features.

The output of M2F-FPN at feature level P3, with the concat fusion and fast normalized
fusion modules integrated into it, fused more feature-related information at different levels:

Pout
3−1 = Conv

(
Pin

3 + Resize
(

Pout
4−1
))

(17)

Pout
3−2 = Conv

(
w1Pout

3−1 + Resize
(
w2Pout

2−1
)

w1 + w2+ ∈

)
(18)

Pout
3 = Conv

(
w′

1Pout
3−1 + w′

2Pout
3−2 + Resize

(
w′

3Pout
4
)

w′
1 + w′

2 + w′
3+ ∈

)
(19)

where Pout
3−1 and Pout

3 represented the outputs of the first and second feature fusion layers at
feature level P3, respectively.
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3.5. Head of the Object Detection Algorithm

The output of the resolution of the feature map of the head of our proposed EF-UODA
at each scale (four scales in total) was represented by S × S × C. Here, S × S denotes the
resolution of the output feature map and C is its number of channels. Both concat fusion
and fast normalization-based fusion were used in the neck of the algorithm. We fixed
the number of channels, C, to 128 as this made it convenient to use the levy operation of
each fusion module and helped implement the algorithm. Ge et al. [45] have noted that
coupling the header impairs the performance and speed of convergence of an end-to-end
algorithm. We thus used a decoupled header in the algorithm and followed the anchor-free
design scheme.

We used the head of YOLOv8 to train the proposed algorithm. The bounding box
complete intersection over union (CIoU) loss function used by YOLOv8 could not be
optimized when the predicted box had the same aspect ratio as the actual labeled box
but with completely different values for the width and height, and hence it did not cope
well with the problem of drastically varying scales in underwater imagery. The MPDIoU
function incorporated an existing loss function that considered all relevant factors. The
idea of this bounding box similarity comparison metric based on MPD simplified the
similarity comparability between two bounding boxes, which effectively coped with the
problem of drastically different underwater image scales. Thus, we replaced the Bbox loss
function with MPDIoU. Binary cross-entropy (BCE) loss was used as the loss function for
classification, and the loss function of regression integrated the distribution focal loss (DFL)
with MPDIoU loss, as shown in Figure 6.
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The loss function of EF-UODA consisted of weighted forms of the above three loss
functions. BCE, DFL, and MPDIoU are defined, respectively, as follows:

BCE(ci, ĉi) = −ci log(ĉi) + (1 − ci) log(1 − ĉi) (20)

DFL(ŝi−1, ŝi+1) = −((ĉi+1 − ci) log(ŝi−1) + (ci − ĉi−1) log(ŝi+1)) (21)

MPDIoU = IoU −
d2

1
h2 + w2 −

d2
2

h2 + w2 (22)

where ci and ĉi denote the true and the predicted values of the model in the i-th cell,
respectively, ĉi−1 and ĉi+1 are predicted values that are closest to the true value of ci, and
their probabilities are ŝi−1 and ŝi+1, respectively, where ŝi−1 =

ĉi+1−ci
ĉi+1−ĉi−1

and ŝi+1 =
ci−ĉi−1

ĉi+1−ĉi−1
.

h and w are the height and width of the input image, respectively. IoU = A∩Â
A∪A , where

A is the ground-truth box and Â is the predicted box. d2
1 = (x̂1 − x1) + (ŷ1 − y1) and

d2
2 = (x̂2 − x2) + (ŷ2 − y2), where (x1, y1), and (x2, y2) are the upper-left and lower-right

corner points of the ground-truth box, while (x̂1, ŷ1) and (x̂2, ŷ2) are the upper-left and
lower-right corner points of the predicted box, respectively.
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4. Experiments and Results
4.1. Dataset

We reorganized the open-source URPC dataset created for the China Underwater
Robotics Competition, and divided it at a ratio of 8:1:1 to generate the training set, validation
set, and test set, respectively; thus, a total of 4434 images were obtained for training,
554 images for validation, and 555 images for testing. The URPC dataset was formulated
by taking photographs of four categories of objects in an underwater environment, sea
cucumbers, sea urchins, scallops, and starfish, as shown in Figure 7. The resolution of the
images and the imbalance in the number of samples in each category constituted the major
challenges posed by this dataset.
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4.2. Experimental Equipment and Indicator of Evaluation

We used the Windows 11 operating system in our experiments. The CPU used was an
i9-13900K, the GPU was an Nvidia GeForce RTX 4090 24G, and PyTorch2.0.0, CUDA12.1,
and CUDNN8.9.0 were the deep learning frameworks. To ensure fairness in the experi-
ments, the hyperparameters of each group were set to be the same in the training phase.
Their settings are shown in Table 1.

Table 1. Hyperparameter settings.

Training Epochs Batch Size Workers Momentum Weight Decay Image Size

100 4 8 0.937 0.0005 640 × 640

The loss function curves of the proposed method are demonstrated in Figure 8, which
contain three parts: localization loss, distribution focal loss, and classification loss. As
shown by panels (a) and (b) in Figure 8, the three loss functions for EF-UODA and YOLOv8X
reached convergence within 100 training epochs. Therefore, the model converged in fewer
than 100 epochs.

As the proposed deep neural algorithm was end to end, we compared it with a
prevalent end-to-end deep neural algorithm in our experiments. As mentioned previously,
we used the URPC dataset to evaluate our model, and reported its values of AP50 (i.e., the
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mean average precision (mAP) at an IoU threshold of 0.5) under the COCO metric as the
main indicator of evaluation.
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The mAP calculated for objects in n categories was performed as follows:

mAP =
1
n

n

∑
i=1

∫ 1

0
P(R)dR (23)

P =
TP

TP + FP
(24)

R =
TP

TP + FN
(25)

where TP refers to the number of positive samples that are correctly detected (i.e., true
positives), FP refers to the number of positive samples that are not correctly detected
(i.e., false positives), and FN refers to the number of negative samples that are not correctly
detected (i.e., false negatives).

4.3. Ablation and Comparison Experiments

For the exploration of underwater object detection algorithms, the main goal of this
paper is to explore object detection algorithms with higher accuracy while maintaining
real-time detection. The minimization of the algorithm GFLOPs and parameters will
be explored when the above conditions are achieved. Therefore, under the premise of
satisfying real-time detection, the accuracy of the algorithm is the most prioritized index to
judge the performance of the algorithm.

To comprehensively assess the effectiveness of each scheme for EF-UODA, we con-
ducted ablation experiments on the URPC dataset; the results are shown in Table 2. Re-
placing CSPDarknet with ViT-based backbone NexT effectively reduced the computational
effort of the algorithm and made the algorithm more focused on contextual information,
enhanced the generalization ability, and effectively ensured detection accuracy. Although
the extra prediction head P2 and M2F-FPN increased the GFLOPs of the algorithm, the
improvement in the accuracy of the algorithm is so significant (1.5% and 1.4% improve-
ment in accuracy, respectively) that we believe it is worthwhile. From Table 2, it could
be clearly seen that MPDIoU well addressed the problem of the vastly different scales of
underwater images, which was very conducive to the URPC dataset, where the image
scales change drastically.

We conducted ablation and comparison experiments to demonstrate the efficiency of
the proposed feature extraction module C3-EMPC; the results are shown in Table 3. Addi-
tionally, the results of the experiments are depicted in Figure 9, facilitating the observation
of data variations. Once the convolutional module of C3 was replaced with the EMPC
module, the number of GigaFLOPs (GFLOPs) of the algorithm decreased from 142.3 to
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140.0, the number of parameters used decreased from 34.81 M to 34.69 M, its frame per
second (FPS) improved from 78.74 to 80.65, and its value of AP50 increased from 86.2%
to 86.9%.

Table 2. Ablation experiment results.

NexT P2 M2F-FPN C3-EMPC MPDIoU GFLOPs AP50 (%)
√

112.3 82.7 (+0.2)√ √
137.6 84.2 (+1.5)√ √ √
150.6 85.6 (+1.4)√ √ √ √
140.0 86.1 (+0.5)√ √ √ √ √
140.0 86.9 (+0.7)

Table 3. Ablation experiment and comparison experiment results of the feature extraction module.

Feature Extraction Module GFLOPs Parameters (M) FPS AP50 (%)

C3 142.3 34.81 78.74 86.2
C3_CloAtt 145.8 35.02 43.10 85.9
C3_ScConv 136.4 34.51 52.08 86.0
C3_SCConv 150.2 35.55 71.94 86.2

C2f 150.6 35.22 81.30 86.3
C2f_Faster 139.5 34.67 84.75 86.2
C2f_DBB 150.6 35.22 76.92 86.5

C2f_ODConv 135.7 35.28 57.80 86.0
C3_EMPC 140.0 34.69 80.65 86.9
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We integrated a few high-performing methods into the C3 and C2f modules for the
comparison experiments: C3-CloAtt [46], C3-ScConv [47], C3-SCConv [48], C2f-Faster [49],
C2f-DBB [50], and C2f-ODConv [51]. C3-EMPC was slightly slower than C2f and C2f-Faster
but its accuracy was almost 1% higher. The number of GFLOPs of C3-EMPC was slightly
larger than those of C3-ScConv, C2f-Faster, and C2f-ODConv, but its speed of detection
was also 1.55 and 1.40 times higher than those of C3-ScConv and C2f-ODConv, respectively,
while its accuracy in terms of AP50 was 0.9% higher. The results of the ablation and
comparison experiments in Table 3 demonstrate the efficiency of the C3-EMPC module.
It provided the greatest improvement in the accuracy of the underwater object detection
algorithms while better balancing the numbers of FLOPs and parameters as well as the FPS
of the algorithm than the other modules.



J. Mar. Sci. Eng. 2024, 12, 729 13 of 20

To demonstrate the effectiveness of M2F-FPN, we compared it with the PANet and
BiFPN architectures in experiments that used the same dataset and hyperparameters; the
results are shown in Table 4. The AP50 value of the algorithm using M2F-FPN was higher
by 0.3% and 1.2% than achieved with the PANet and BiFPN architectures, respectively.
Although there was a slight increase in the number of FLOPs and parameters of the
algorithm and a slight decrease in its speed of detection (FPS), we believed that this tradeoff
was worthwhile in light of its higher accuracy. Our proposed M2F-FPN, which used both
fast fusion and concat feature fusion, strengthened the multi-scale feature fusion of the
overall algorithm and improved its accuracy.

Table 4. Comparison experiment results of feature pyramid network.

FPN GFLOPs Parameters (M) FPS AP50 (%)

PANet 130.9 34.34 82.64 86.6
BiFPN 132.4 34.49 81.33 85.7

M2F-FPN 140.0 34.69 80.65 86.9

We also conducted an ablation experiment to evaluate the contribution of the number
of channels of the algorithm to its overall detection-related performance; the results are
shown in Table 5. The EMPC module required dividing the number of input channels into
four groups. We set the minimum number of input channels of the module to 64 to ensure
the effectiveness of feature extraction. Given that a module was available to vary the scale
of channels in the algorithm, the minimum number of channels was set to 128 to ensure
the appropriate operation of the proposed deep neural algorithm. It was clear from the
results in Table 5 that increasing the number of channels did not improve the accuracy of
the algorithm. Its number of GFLOPs was 232.9 with 256 channels, and further increasing
the number of channels was impractical when using a single GPU to train it. The algorithm
had the smallest number of FLOPs and parameters with 128 channels, while the model
recorded the highest accuracy of detection (AP50) of 86.9% on the test set while delivering
the best generalization-related performance.

Table 5. Comparative experimental results using different amounts of channels.

Channel GFLOPs Parameters (M) AP50 (%) Weight (MB)

128 140.0 34.69 86.9 68.54
160 157.9 35.89 86.4 70.89
192 179.4 37.33 86.4 73.70
224 204.4 39.00 85.3 76.98
256 232.9 40.91 86.2 80.71

The loss function is an important component of deep neural algorithms that assess the
predictions of the model. A well-defined loss function for the bounding box can significantly
improve model performance. To determine the effectiveness of integrating MPDIoU as the
loss function of the bounding box into the proposed EF-UODA, we compared its effect on
the performance of our method with seven state-of-the-art loss functions on the same test
set: CIoU, DIoU [52], GIoU [53], EIoU [54], SIoU [55], AlphaIoU [56], and Wise-IoU [57].
The experimental results are shown in Table 6 and Figure 10, from which it is clear that
the algorithm delivered the best performance in terms of both accuracy and FPS when
MPDIoU was used as the loss function of the bounding box. It recorded an AP50 of 86.9%,
which was higher than that of GIoU (the second-best method) by 0.4%. Its FPS was 80.65,
which was 1.15 times higher than that of DIoU (the second-best method). MPDIoU thus
improved the FPS and accuracy of EF-UODA.
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Table 6. Ablation experiment and comparison experiment results for the different bounding box
loss functions.

Bounding Box Loss Function FPS AP50 (%)

CIoU 54.65 86.2
DIoU 69.93 86.0
GIoU 54.64 86.5
EIoU 68.49 86.3
SIoU 67.57 86.1

AlphaIoU 65.36 86.3
Wise IoU 61.35 86.1
MPDIoU 80.65 86.9
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4.4. Comparison with Other Algorithms

We compared EF-UODA with SSD and Faster R-CNN on the same test set to verify its
detection accuracy. SSD and Faster R-CNN use VGG16 and ResNet50 as their backbone,
respectively, and the experimental results are shown in Table 7. Further, the trend of the
speed indicator FPS is given in Table 7. Additionally, the results of the experiments are
depicted in Figure 11, facilitating the observation of data variations.The mAP represents
the average of all 10 IoU thresholds in the range [0.5:0.95]. EF-UODA recorded an accuracy
that was 25.8% and 11.1% higher than those of the SSD and Faster R-CNN at an IoU of
0.5, respectively. Its accuracy in terms of the mAP metric was 20.4% and 8.0% higher than
those of SSD and Faster R-CNN, respectively. This demonstrated that our algorithm was
significantly more accurate than the classical single-stage object detection algorithm SSD
and the two-stage Faster R-CNN.

Table 7. Comparison experiment results on the URPC dataset.

Algorithm GFLOPs Parameters (M) FPS AP50 (%) mAP (%)

SSD 353.7 26.2 23.62 61.1 32.4
Faster R-CNN 213.3 45.1 17.13 75.8 44.8

RT-DETR 247.1 74.67 104.17 (−9.29, +11.31) 86.0 50.7
YOLOv5X 203.8 86.19 106.38 (−9.11, +10.99) 83.0 48.8
YOLOv7X 188.0 70.80 57.47 (−2.69, +2.95) 81.7 45.9
YOLOv8X 257.4 68.13 71.94 (−3.64, +4.04) 82.5 49.9
Proposed 140.0 34.69 80.65 (−4.66, +5.26) 86.9 52.8

We compared with the state-of-the-art ViT-based object detection RT-DETR [58] under
the same conditions to illustrate the effectiveness of our proposed ViT-based EF-UODA;
the results are shown in Table 7. RT-DETR used resnet-101 as its backbone. The accuracy of
EF-UODA compared to RT-DETR in terms of AP50 and mAP was higher by 0.9% and 2.1%,
respectively. EF-UODA’s GFLOPs and parameters only accounted for 56.66% and 46.46%,
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respectively, of those used by RT-DETR. Although the FPS of EF-UODA was 23.52 lower
than that of RT-DETR, the FPS of EF-UODA achieved 80.69, which was sufficient for
real-time detection. Considering that designing an underwater object detection algorithm
with higher accuracy is the core purpose of this paper, and synthesizing the GFLOPs and
parameters, EF-UODA is a better underwater object detection algorithm.
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To demonstrate that our algorithm could accurately detect underwater objects, we
compared it with SOTA one-stage object detection algorithms YOLOv5X, YOLOv7X, and
YOLOv8X for the same test set. All four algorithms were based on the PyTorch framework,
and the results are shown in Table 7. EF-UODA used 74.47% and 49% fewer GFLOPs and
parameters than YOLOv7X, respectively, with an FPS that was 23.18 higher. Its accuracy
in terms of AP50 and mAP was also higher by 5.2% and 6.9%, respectively. Moreover,
EF-UODA used 68.69% and 40.25% fewer GFLOPs and parameters than YOLOv5X, and its
accuracy in terms of AP50 and mAP was higher by 3.9% and 4.0%, respectively. We think
that this increase in accuracy was worthwhile, despite the reduction of 25.73 in its FPS.
Its FPS improved by 8.71 compared with the SOTA one-stage object detection algorithm
YOLOv8X, while its accuracy in terms of AP50 and mAP was higher by 4.4% and 2.9%,
respectively. It also used 54.39% and 50.92% fewer GFLOPs and parameters, respectively,
than YOLOv8X.

We concluded that our proposed EF-UODA more accurately detected underwater
objects than other SOTA object detection algorithms while reducing the number of FLOPs
and parameters and ensuring a high speed of detection.

4.5. Comparison of the Detection Results

We randomly selected several images from the test set for experiments on underwater
object detection by using YOLOv5X, YOLOv7X, YOLOv8X, and our proposed EF-UODA
algorithm. The results are shown in Figure 12.

It is clear from Figure 12 that the dataset selected for the experiments consisted of fuzzy
images, which made it difficult to detect objects in them because they were extracted from
a real video captured underwater. This dataset, which contained complex backgrounds,
thus imposed stringent requirements on the detection and feature extraction capabilities of
the algorithm. YOLOv5X, YOLOv7X, and YOLOv8X omitted more information and made
more incorrect predictions than the proposed method. In contrast, the EF-UODA algorithm
exhibited better feature extraction capability through the C3-EMPC module, which was
based on the idea of the grouping operation and the use of a multi-path fast fusion-based
FPN for multi-scale feature fusion. It was thus able to detect underwater objects more
accurately than the prevalent one-stage object detection algorithms YOLOv5X, YOLOv7X,
and YOLOv8X.
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To prove the real effectiveness of the algorithm, we intercepted two images from the
underwater video and reasoned through the proposed algorithm, and the results are shown
in Figure 13. Figure 13a has five sea urchins and three sea stars, and Figure 13b has four sea
urchins. It could be clearly seen that EF-UODA successfully reasoned out all the objects to
be tested in the figure and gave a high confidence level, proving the effectiveness of the
algorithm in the real world.
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5. Discussion

The combination of low-quality underwater images, drastic changes in scale, and
high requirements for the generalization of algorithms has always been the difficulty of
underwater object detection. The key to achieving excellent performance in EF-UODA is
the efficient feature extraction and feature fusion capabilities, as well as the architecture
that combines convolution with transformer. The ViT-based structure allows the algorithm
to focus more on contextual information and effectively integrate high and low-frequency
information. Moreover, the traditional loss function does not cope well with the problem of
drastically varying scales in underwater imagery. MPDIoU based on the minimum point
distance simplifies the similarity comparability between two bounding boxes, which can
effectively cope with the problem of drastically different underwater image scales.

Compared to the improved YOLOv4 [28] proposed for the URPC dataset, the GFLOPs
of EF-UODA are smaller and faster. In comparison to underwater-YCC [29] and lightweight
YOLOv8s [30], our proposed algorithm focuses more on considering the high demand for
underwater objects’ drastic feature changes on the algorithm’s generalization performance.
Although the addition of the extra prediction head P2 and M2F-FPN made significant
improvements in the accuracy of the algorithms, the increase in GFLOPs and parameters
that they entailed made the deployment of the algorithms more demanding on the hardware
of the embedded devices. In future work, more efficient methods can be explored to achieve
further reduction in computation and storage costs while introducing extra prediction heads
and M2F-FPN. In addition, we evaluated the algorithm only on the URPC dataset and
continue to validate the performance of the algorithm on other underwater datasets in
the future. Finally, we explore the introduction of the proposed improvements of EF-
UODA into other advanced object detection algorithms in the future to further improve the
performance of underwater object detection algorithms.

6. Conclusions

We proposed EF-UODA to solve the problems encountered in underwater object
detection in complex underwater environments. It had strong feature extraction capability
and high detection accuracy, and it could strike an appropriate balance between the amount
of requisite computation and accuracy. The main contributions of this algorithm are sum-
marized as follows. We developed convolutional modules with better feature extraction
capability and proposed a feature pyramid structure with better feature fusion capabil-
ity. Moreover, we integrated advanced technologies such as Next-ViT and MPDIoU into
our proposed algorithm to form our state-of-the-art (SOTA) underwater object detection
algorithm. Further, the effectiveness of the proposed method is proved by ablation and
comparison experiments.

The results of our experiments showed that the proposed method recorded an accuracy
in terms of AP50 that were higher by 3.9%, 5.2%, and 4.4%, respectively, than those of the
SOTA one-stage object detection algorithms YOLOv5X, YOLOv7X, and YOLOv8X, and
it had an mAP that was higher by 4.0%, 6.9%, and 2.9%, respectively, for the reorganized
URPC2020 dataset. Meanwhile, EF-UODA surpassed SOTA ViT-based object algorithm by
0.9% AP50 and 2.1% mAP. Furthermore, it recorded a speed of detection of 80.65 FPS with
140.0 GFLOPs. In future work, we intend to deploy the EF-UODA in a remotely operated
vehicle (ROV) to meet the high precision requirements of underwater grabbing, and we
will further reduce the size of the model to enable embedded devices while maintaining
its excellent accuracy and pursuing higher speeds. Moreover, we will conduct research on
underwater image preprocessing to further improve the accuracy of the algorithm.
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