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Abstract: The wave–current–seabed interaction problem is studied by using a coupled-mode sys-
tem developed for modeling wave scattering by non-homogeneous, sheared currents in variable
bathymetry regions. The model is based on a modal series expansion of wave velocity based on
vertical eigenfunctions, dependent on local depth and flow parameters, including propagating and
evanescent modes. The latter representation is able to accurately satisfy the wave flow continuity con-
dition and the no-entrance boundary condition on the sloping parts of the seabed. A new derivation
of a simplified nonlinear system is introduced using decomposition to a mean flow and a perturbative
wave field. To force the system to consider incoming waves at the inlet, boundary knowledge of
periodic, travelling nonlinear water waves over a flat bottom is required. For this purpose, specific
solutions are derived using the semi-analytical method based on the stream function formulation,
for cases of water waves propagating above linearly and exponentially sheared currents. Results
obtained by the application of the CMS concerning the propagation of waves and currents—in partic-
ular, examples characterized by depth inhomogeneities—are presented and discussed, illustrating
the applicability and performance of the method.

Keywords: wave–current interaction; sheared current; variable bathymetry; coupled modes

1. Introduction

The problem of water propagating on top of vortical flows has attracted the attention
of many scientists within the water wave community. Indeed, it has recently been shown
that waves interacting with an opposing shear current over variable bathymetry can have a
significant effect on the focusing of the wave field; see Rey et al. [1]. Such situations can be
observed in natural conditions, when strong currents interact with the bathymetry [2,3],
or in cases of strong wind forcing on the ocean–atmosphere interface; see, e.g., [4], and
the recent review by Zhan et al. [5]. The propagation of periodic waves in the presence of
a uniform shear background current has been studied by using complete description of
the flow in the framework of Euler equations by Nwogu [6] and by Zhang et al. [7] using
RANS equations.

For both coastal safety and engineering purposes, including the estimation of loads on
structures in nearshore and coastal regions, the development and application of efficient
models for predicting the nonlinear, phase-resolved behavior of water waves and currents
in such areas are important. Results in this direction, for several case studies, have been
presented by various authors; see, e.g., Refs. [8–11]. In particular, wave- and current-
dominated orthogonal flows over fixed rough beds have recently been considered by Faraci
et al. [12], where a review of coastal research also focused on wave–current flows, either
collinear or at an angle can be found.
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It is remarked that in many cases of wave–current–seabed interaction, computational
difficulties are encountered in the analysis, since large areas often need to be considered,
and the evolution of water waves propagating in such inhomogeneous media involves
multiple-scale phenomena. In such cases, simplified models can be derived, allowing to
separate the scales, solving the background flow on the one hand and the perturbative flow
corresponding to water waves on the other hand. The latter can be solved by expanding its
vertical structure on a selected basis consisting of modes and applying a Galerkin projection
method to derive coupled equations with respect to the horizontal mode amplitudes.
Indeed, by applying such a technique, a significant reduction in unknowns can be obtained,
depending on the truncation made for the expansion. This approach has been widely
studied in the absence of currents [13–17] or in the presence of vertically uniform currents, as
in, e.g., [17–19]. When it comes to flows interacting with vorticity, Yang and Liu [20] recently
introduced a Boussinesq-type formulation, projecting the velocity field on a polynomial
basis. Also, an analysis of solitary wave and linear shear current interaction by using
Green–Naghdi (GN) equations was described by Duan et al. [21].

Moreover, coupled-mode systems have been derived, involving propagating and
evanescent modes, which are suitable to describe wave dispersion in intermediate water
depth. Such models are applied to the scattering of water waves by horizontally shearing
currents in variable bathymetry. In the case of wave propagation in the presence of vertically
sheared currents, a generalized mild-slope equation was derived by Touboul et al. [22] by
retaining only the propagation mode in the expansion, with a restriction to vertically linear
currents. Extensions of the above approach to multi-mode systems for waves propagating
over arbitrarily sheared currents were presented in [23], but they were essentially restricted
to the framework of linear theory. The incorporation of non-linear effects in the above
systems to describe the evolution of the flow in the framework of Euler equations was
introduced in [24].

The present work is in continuation with the above developments. It aims to provide
a weakly nonlinear, simplified system, in the framework of water waves propagating
in the presence of currents, the latter being supposed to be known a priori. There are
various motivations for proceeding so. The first to be cited is numerical efficiency. Indeed,
describing a complex flow, constituted by both the current and the wave-induced flow,
might require more modes to reach enough accuracy. Additionally, in order to tackle
the multiscale aspects involved in coastal regions, there is a growing interest in coupling
numerical models, relying on separate tools to resolve the dynamics of the slow scales (the
currents) and the faster ones (the water waves), which the present work focuses on. A
physical argument should also be cited. Disentangling the influence of water waves on the
mean flow and the modifications enforced to the perturbative field by the mean flow is a
necessary step to better understand wave–current interactions.

The structure of the paper is as follows: The derivation of the nonlinear CMS, sepa-
rating the mean flow from the perturbative field, is presented in Section 2. The reduction
of this model to a single mode allows us to obtain a simplified, two-equation system,
aiming to model the dynamics of weakly nonlinear water waves propagating over varying
bathymetry, on top of arbitrarily sheared currents.

The forcing of this model, at the wavemaking boundary, requires the knowledge of
periodic, traveling nonlinear water waves in the presence of vertically sheared currents over
a flat bottom. For this specific purpose, appropriate solutions are derived here by means of
the stream function formulation, following the semi-analytical method initially introduced
by Rienecker and Fenton [25] and extended to the specific case of water waves propagating
above linearly sheared currents by Francius and Kharif [26]. A further extension of this
approach, to more general cases of currents, is described in Section 3.

Finally, the numerical results illustrating the performance of the nonlinear CMS inte-
grated in the time domain are presented in Section 4, and finally, conclusions and directions
for future research are discussed in Section 5.
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2. The Weakly Nonlinear Coupled-Mode System

The present work is based on the derivation initially presented in Ref. [24]. In the
following subsections, a description of the problem under consideration is presented, briefly
reminding readers of the basic theory and explaining its extension.

2.1. Decomposition of the Perturbative Field in a Local-Mode Series

As illustrated in Figure 1, we consider for simplicity the two-dimensional problem of
weakly nonlinear water waves propagating over currents which vary with depth according
to a general vertical profile. Both the bathymetry characterized by the depth function h(x)
and the vertical structure of the steady current U0(x, z) are considered to be known, where
bold notation is used to indicate vector quantites. The flow domain D(t) is bounded below
by an impermeable boundary defined the depth function z = −h(x), and it is bounded
above by the free surface, which is modeled by the function z = η(x, t), denoting the free
surface elevation. It is assumed that η(x, t) + h(x) > 0. The velocity field is considered to
result from the contribution of steady rotational currents and a perturbative flow describing
water waves:

U(x, z, t) = U0(x, z) + u(x, z, t). (1)
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Figure 1. Waves propagating in variable bathymetry in the presence of sheared currents.

The problem to be solved only considers the perturbative field, u(x, z, t). Following
this purpose, this field can be described by a spectral-type representation defined as a series
expansion, with the general expression given by the summation of local modes (indexed
by an integer n) as follows:

u(x, z, t) =
+∞

∑
n=0

un(x, t)Zn(z; h(x), η(x, t)),

where Zn(z; h(x), η(x, t)) denote vertical functions which will be separately defined below
for the horizontal and the vertical flow components. The latter vertical modes are different
for each component of the wave velocity and are parametrically dependent on the local
depth function and the free surface elevation, having the property of accurately treating
the continuity equation and the no-entrance bottom boundary condition. In addition, the
system of local vertical modes is complete in the interval z ∈ [−h(x), η(x, t)] for each
horizontal x position.
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More specifically, if the perturbative velocity field is noted u(x, z, t) = (u(x, z, t),
w(x, z, t)), the horizontal wave component is given by

u(x, z, t) =
+∞

∑
n=0

un(x, t)Z(1)
n (z; h(x), η(x, t)) (2)

where Z(1)
n (z; h(x), η(x, t)) are defined by

Z(1)
n (z; h, η) =

cos[kn(z + h)]
cos[kn(η + h)]

, n = 0, 1, 2, 3, . . . (3)

and the quantities kn = kn(h(x), η(x, t)), n = 0, 1, 2 . . . , are obtained as the roots of the
following (dispersion-like) equation:

µ0 + kntan[kn(h + η)] = 0 (4)

The first root is imaginary (k0 = i|k0|), while the positive index roots kn, n = 1, 2 . . . , are
real, with kn ≈ nπ

(h + η)
, n → ∞ . Function (3), together with the dispersion Equation (4), are

obtained from regular eigenvalue problems in the local vertical interval z ∈ [−h(x), η(x, t)],
controlled by the frequency-type parameter µ0; see [16]. This directly ensures the complete-
ness property of the vertical basis; see, e.g., [27,28].

The vertical component w(x, z, t) of the wave field is modeled by a corresponding
modal expansion based on another set of z-functions Z(2)

n (z; h(x), η(x, t)), as follows:

w(x, z, t) = −
+∞

∑
n=0

(
∂un

∂x
(x; t)Z(2)

n (z; h; η) + un(x; t)
∂Z(2)

n
∂x

(z; h; η)

)
(5)

The functions Z(2)
n (z; h, η) are defined as follows:

Z(2)
n (z; h, η) =

1
kn

sin[kn(z + h)]
cos[kn(η + h)]

, n = 0, 1, 2, 3, . . . (6)

At the seabed, they fulfill Z(2)
n (z = −h; h, η) = 0, as well as the condition that

∂Z(2)
n /∂z (z) = Z(1)

n (z) over the whole water column (see also Appendix A of Ref. [24]). Us-
ing the latter relations, in conjunction with the definition of u(x, z, t), given by Equations (2)
and (3), and w(x, z, t), given by Equations (5) and (6), in the continuity equation ux + wz =
0 and in the bottom boundary condition w(x, z = −h, t) + ∂h/∂x u(x, z = −h, t) = 0, it is
easily seen that both these equations are automatically satisfied by the present modal-type
expansion of the wave velocity components. This property greatly facilitates the treat-
ment of the considered problem, since only the momentum and the free surface boundary
conditions are left to be satisfied. Furthermore, the substitution of the above local-mode
expansions in the momentum equations will lead to a nonlinear coupled-mode system of
equations on the horizontal plane with respect to the unknown velocity amplitudes un(x, t)
and the wave elevation η(x, t). Based on the fast convergence properties of the local mode
series, the above coupled-mode system facilitates the numerical solution of the problem
and will be discussed in the sequel.

2.2. Momentum Equations

As discussed in the previous subsection, the kinematics of the problem are analytically
satisfied by means of the specific modal expansions of the wave velocity. We might now
address the dynamics of the problem, by introducing this representation in the momentum
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equations. We shall start with the Euler equations describing the total flow U = (U, W), so
that (see, e.g., [29])

∂U
∂t + 1

2
∂|U|2

∂x − E = − 1
ρ

∂p
∂x ,

∂W
∂t + 1

2
∂|U|2

∂z − e = − 1
ρ

∂(p+ρgz)
∂z ,

(7)

where |U|2 = U2 +W2 and e = U × Ω = (E, e) is a helicity-type field, with Ω denoting the
vorticity Ω = ∇× U = Ω ĵ, which, in accordance with Equation (1), is split into two terms:
Ω = Ω0 + ω. In the present two-dimensional case, the vorticity is fixed in the transverse
direction (with ĵ denoting the corresponding unit vector), and thus,

E = −WΩ, e = UΩ (8)

Subsequently, at each horizontal x position, we may consider the vertical momentum
Equation (7) and perform its integration in the vertical direction from a depth level z up to
the free surface elevation η(x, t). In conjunction with the dynamic free surface boundary
condition, p(x, z = η(x, t), t) = 0, an expression of the local pressure in the column is
obtained and reads as follows:

p(x, z, t)
ρ

= g(η(x, t)− z)−
∫ η(x,t)

z
e(z)dz +

∫ η(x,t)

z

∂W
∂t

+
1
2

∂
[
U2 + W2]z=η(x,t)

∂z

dz. (9)

This expression of the local pressure might now be differentiated with respect to the
horizontal coordinate, and it comes out to

−1
ρ

∂p
∂x

(x, z, t) = −g
∂η

∂x
(x, t) +

∂

∂x

(∫ η(x,t)

z
e(z)dz

)
− ∂

∂x

(∫ η(x,t)

z

∂W
∂t

dz
)
− 1

2
∂

∂x

∂
[
|U|2

]z=η(x,t)

∂z


which, substituted back into Equation (7), finally results in

∂U
∂t

− E = −g
∂η

∂x
(x, t) +

∂F
∂x

− ∂

∂x

(∫ η(x,t)

z

∂W
∂t

dz
)
−
[

U
∂U
∂x

+ W
∂W
∂x

]z=η(x,t)
, (10)

for all x and h(x) < z < η(x, t), and where F(x, z, t) =
∫ η(x,t)

z e(z)dz. At this point, we
might introduce the flow decomposition (1) in Equation (10), to obtain the horizontal
momentum equation satisfied by the only perturbative field. It follows that

∂u
∂t − E1 − E2 − E3

= −g ∂η
∂x + ∂F1

∂x + ∂F2
∂x + ∂F3

∂x − ∂
∂x

(∫ η(x,t)
z

∂w
∂t dz

)
−
[
U0

∂u
∂x + W0

∂w
∂x

]η(x,t)
−
[
u ∂U0

∂x + w ∂W0
∂x

]η(x,t)

−
[
u ∂u

∂x + w ∂w
∂x

]η(x,t)

(11)

where the quantities E1, E2, E3, F1, F2, F3 are associated with the expansion of the helicity
field, and are defined as follows:

E1 = −W0ω,

E2 = −wΩ0,

E3 = −wω,

F1 =
∫ η(x,t)

z
e1(z)dz =

∫ η(x,t)

z
U0ωdz,

F2 =
∫ η(x,t)

z
e2(z)dz =

∫ η(x,t)

z
uΩ0dz,

F3 =
∫ η(x,t)

z
e3(z)dz =

∫ η(x,t)

z
uωdz

(12)
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In Equation (11), the terms involving only the current have been dropped, since it is
understood that the current flow is a solution of this equation by itself.

Finally, Equation (11), in conjunction with the kinematic free surface boundary
condition,

∂η

∂t
+ U0

∂η

∂x
+ u

∂η

∂x
− w = 0, on z = η(x, t), (13)

constitutes the remaining system to be solved.

2.3. A Weakly Nonlinear Coupled-Mode System

In this section, the remaining horizontal momentum Equation (11) of an inviscid liquid
with a free surface and the kinematic free surface boundary condition, Equation (13), are re-
formulated as a non-linear coupled-mode system with respect to the unknown amplitudes
of the velocity field (un(x, t))n=0,1,2,... and the free surface elevation η(x, t). Using the com-

pleteness properties of the local vertical functions
{

Z(1)
m (z; h(x), η(x, t)), m = 0, 1, 2, . . .

}
,

both sides of Equation (11) are projected into this basis, for each horizontal x position, and
we obtain〈

∂u
∂t

, Z(1)
m

〉
+

〈
∂

∂x

(∫ η

z

∂w
∂t

dξ

)
, Z(1)

m

〉
+
〈

1, Z(1)
m

〉[ ∂

∂x
[U0(η) · u(η) + W0(η)w(η)] +

1
2

∂

∂x

[
u(η)2 + w(η)2

]
+g

∂η

∂x

]
−
〈

E1, Z(1)
m

〉
−
〈

E2, Z(1)
m

〉
−
〈

E3, Z(1)
m

〉
−
〈

∂F1

∂x
, Z(1)

m

〉
−
〈

∂F2

∂x
, Z(1)

m

〉
−
〈

∂F3

∂x
, Z(1)

m

〉
= 0, for m = 0, 1, 2, · · · , M,

(14)

where ⟨ f1(z), f2(z)⟩ =
∫ z=η

z=−h f1(z) f2(z)dz. As already mentioned, this equation is to be
supplemented with the kinematic free surface boundary condition, which, in terms of the
wave velocity modal amplitudes, reads as follows:

∂η
∂t + U0

∂η
∂x +

M
∑

n=0

{(
Z(1)

n (z = η; h,η) ∂η
∂x + ∂Z(2)

n
∂x (z = η; h,η)

)
un

+Z(2)
n (z = η; h,η) ∂un

∂x

}
= 0, on z = η.

(15)

The final form of the above coupled-mode system, Equations (14) and (15), is derived
by using the particular forms of the vertical functions defined by Equations (3) and (6),
as provided with more details in Appendix A, and the involved coefficients are given in
Appendix B. Moreover, a weakly nonlinear system is obtained, as presented with more details
in Appendix B, by treating the nonlinear terms as second-order terms of the unknows
η and (un(x, t))n=0,1,2,..., which is studied in present work for the propagation of waves
interacting with sheared currents over general bathymetry.

Furthermore, the convergence of the vertical expansion discussed in [24] reveals that,
in most cases, the contribution of the first mode n = 0 is dominant. Thus, it is tempting to
produce a two-equation system obtained by considering only this term. By approximating
the vertical structure of the wave field, keeping only the mode n = 0 in the wave velocity
expansion Equation (2), and assuming relatively slow currents and dropping approximately
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higher-order terms, a simplified version of the above system of Equations (13) and (14)
reduces to the following:

A100
∂u0
∂t + B100

∂2u0
∂t∂x + C100

∂3u0
∂t∂x2 + D100u0 + E100

∂u0
∂x + F100

∂2u0
∂x2

+G100
∂3u0
∂x3 + H10

∂η
∂x = NL(1)

0 , and
∂ η
∂ t + A20

∂ η
∂ x +

M
∑

n=0

{
B20 u0 + C20

∂ u0
∂ x

}
= NL(2)

(16)

where NL(1)
0 =

〈
E3, Z(1)

0

〉
+
〈

∂F3
∂x , Z(1)

0

〉
−
〈

1, Z(1)
0

〉
1
2

∂
∂x

[
u0 (0)

2
]
, NL(2) = −u0 (0)

∂η
∂x , and

the coefficients are defined in Appendix B. Here, the brackets denote ⟨ f1, f2⟩ =
∫ z=0

z=−h f1 f2dz.
The above simplified version of the weakly nonlinear CMS could be useful to obtain
approximate numerical results at relatively low-cost supporting engineering applications
concerning waves propagating in the presence of shear currents over inhomogeneous
domains.

3. Nonlinear Solutions of Steady Traveling Waves and Sheared Currents in Constant
Depth

Following the purpose of initializing our numerical solver of the coupled-mode system
(either by means of the boundary condition or the initial condition in the restrictive case of
an undisturbed boundary), we need to have access to the modal amplitude corresponding
to a traveling wave over unperturbed bathymetry. This purpose can be achieved by solving
the fully nonlinear problem and then computing its projection on the CMS modal base. The
purpose of this section is to present the method used here.

Restricting ourselves to the case of periodic, two-dimensional, steady-traveling waves
at a constant depth h, in the presence of a shear current U0(z), we consider a coordinate
system (ξ, z) moving with the wave speed c so that ξ = x − ct, with the origin at some
point on the undisturbed free surface. Following [26,30], a specific solution is constructed
in this section, obtained as solution of the modified Helmholtz equation for the stream
function Ψ(ξ, z):

∇2Ψ − aΨ = b (17)

with a, b constants subjected to Dirichlet boundary conditions at the bottom and at the free
surface:

Ψ(ξ, z = −h) = 0, Ψ(ξ, z = η(ξ)) = −Q (18)

where η(ξ) denotes the free surface elevation and Q is a constant controlling the flowrate.
The solution is constructed to also satisfy the dynamic free surface boundary condition as
it will be described below, in conjunction with horizontal periodicity for a cell of length λ.
Also, the above solution corresponds to a field where the vorticity is proportional to the
stream function:

Ω = aΨ + b (19)

In the sequel, we will consider examples in the case where a > 0; however, extension
to a < 0 is also possible. We consider the following partial solution of Equation (18):

Ψ0(z) =
B0

a1/2 sinh
(

a1/2(z + h)
)
+

b
a

(
cosh

(
a1/2(z + h)

)
− 1
)

, (20)

where B0 is an unknown coefficient that will be connected with the phase speed of the
waves c = −B0. It is easily verified that the function provided by Equation (21) satisfies the
partial differential Equation (18) and the bottom boundary condition. By differentiating
with respect to z we obtain that it corresponds to a horizontal flow with exponential
structure in the vertical direction:

U0(z) =
∂Ψ0

∂z
= B0cosh

(
a1/2(z + h)

)
+

b
a1/2 sinh

(
a1/2(z + h)

)
, (21)
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with vorticity described as follows:

Ω0(z) =
∂U0

∂z
= B0a

1
2 sinh

(
a

1
2 (z + h)

)
+ bcosh

(
a

1
2 (z + h)

)
. (22)

It can be further seen that in the case of small a, Equations (21)–(23) above reduce to
the following approximate vertical profile:

Ψ0(z) ≈ B0(z + h) +
b(z + h)2

2
+ O(a) (23)

U0(z) =
∂Ψ0

∂z
≈ B0 + b(z + h) + O(a) (24)

Ω0(z) =
∂U0

∂z
≈ b + O(a). (25)

Comparing the above with the result of Ref. [26] we obtain a result that is similar to
the corresponding case of waves propagating in the presence of a linearly sheared current
with constant vorticity Ω0 ≈ b. On the other hand, for b = 0, the vertical current profile
is described by the hyperbolic cosine function, and in cases of relatively large a values, it
takes the form of an exponential distribution.

3.1. Solution Based on Fourier Modal Expansion Method

We proceed now to the formulation of the Fourier series method for the solution of
the above problem, based on the following representation:

Ψ(ξ, z) =
B0

a1/2 sinh
(

a1/2(z + h)
)
+

b
a

(
cosh

(
a1/2(z + h)

)
− 1
)
+

∞

∑
n=1

BnΨn(ξ, z), (26)

where Ψn(ξ, z) are eigen solutions of the homogeneous modified Helmholtz equation,
Equation (18) with b = 0, in the domain fulfilling the bottom boundary condition):

Ψn(ξ, z) =
sinh(kn(z + h))

cosh(knh)
cos(nkξ), with k2

n = a + (nk)2, (27)

where k = 2π/λ is the horizontal periodicity parameter. In the present case, where the
vorticity is assumed to be proportional to the stream function (20), the Euler equations are
integrated after being expressed in the moving frame of reference using

∼
u = u − c and ξ =

x − ct, providing Bernoulli’s equation as follows:

p
ρ
− R − a

2
Ψ2 − bΨ + gz +

1
2

(
u2 + w2

)
= 0, (28)

where R denotes the Bernoulli constant; see, e.g., [25,29]. In Equation (29), the horizontal
and vertical flow velocity components are obtained from the corresponding derivatives of
the stream function representation as follows:

∼
u(ξ, z) =

∂Ψ(ξ, z)
∂z

, w(ξ, z) = −∂Ψ(ξ, z)
∂ξ

. (29)

Obviously, the case a = b = 0 results to the method of Rienecker and Fenton [25]
corresponding to periodic waves without current. Using the above equations, the following
system of nonlinear equations is defined:

B0
a−1/2 sinh

(
a1/2(η(ξ) + h)

)
+ b

a

(
cosh

(
a1/2(η(ξ) + h)

)
− 1
)

+ ∑
n=1

BnΨn(ξ, z = η(ξ)) + Q = 0, (30)
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gη(ξ) +
1
2

(
u2(ξ, z = η(ξ)) + w2(ξ, z = η(ξ))

)
− R –

a
2

Q2 = 0, (31)

From which the unknown coefficients {Bn, n = 0, 1, 2, . . . ..}, the free surface elevation
η(ξ), and the unknown constants Q and R are calculated for given values of the parameters
a and b. For the numerical solution of the above system, the representation of the stream
function is truncated, keeping the first N terms {Bn, n = 1, 2, . . . .N}. The free surface
elevation is discretized to N equidistant points ηi = η(ξi) with constant step ∆ξ = ξi+1 − ξi,
and the discrete version of the system (31) and (32) with 2N + 2 unknowns (including
R and Q) is numerically solved by the Newton–Raphson method, similarly as presented
by [25]. The additional two equations are provided by using the data for the wave height H:

max(ηi)− min(ηi) = H, (32)

and the requirement that the mean water level is at z = 0:

Mean(ηi) = 0. (33)

3.2. Examples of Fields and Dispersion Relation Characteristics

In this subsection, indicative numerical solutions are presented as obtained by using
the stream function method described above, for periodic waves characterized by the
nonlinear parameter ε = 0.5Hk = 0.15, where H denotes the waveheight, and the dispersive
parameter is chosen to be kh = 2π/10. The cases of linearly and exponentialy sheared
currents are considered here. The selection of the linear case is motivated by the literature
review, and the willingness to provide a comparison with already existing results. Water
waves propagating in the presence of a vertically linear distribution of the current has been
widely studied in previous years for mathematical reasons (see, e.g., Touboul et al. [22]).
However, this configuration finds applications in geophysical flows, for instance, when
considering rip currents, as demonstrated by Haas and Svendsen [2]. The selection of the
exponential case is now allowed by the abilities newly obtained with this approach. It
corresponds to the current distribution obtained under the action of wind. By comparing
these two solutions, the strong influence of the current distribution is clearly illustrated.
Here, the analysis is restricted to opposing currents; however, it could be extended to
following currents and will be examined in future work. For normalizing the results, a
water depth measured from the mean level of the free surface elevation equal to h = 1 m is
used in the computations.

(i) Linearly sheared current: In this example, the current vorticity coefficients in Equa-
tion (21) are chosen, such as a ≃ 0 m−2 and b = −1 s−1. The current profile and the
resulting free surface elevation are presented in Figure 2. It is observed that the wavelength-
to-depth ratio is λ/h = 10 and the wave nonlinearity parameter is H/h = 0.46, and thus,
the Ursell number takes moderate values Ur = (H/h)(λ/h)2 = 46, corresponding to
nonlinear Stokes (short) waves.

The free surface presents a strong vertical asymmetry, as it is classically observed in
nonlinear periodic wave solutions. The results are obtained by using a number of grid
points (N = 40) corresponding to a total of 80 grid points per wavelength, which are found
to be enough for numerical convergence. In Figure 3, color plots of the calculated stream
function and the vorticity corresponding to the total field are presented. In addition, the
streamlines are indicated in the subplots using thin black lines. It is observed that the total
flow vorticity, in the major part of the domain, presents a value close to Ω = −1 s−1, which
is due to the constant value of the background current characterized by the linear vertical
profile of Figure 2a. Deviations from the latter value are observed close to the free surface
and especially near the wave crests as a result of the interaction of the current with the
wave flow, which becomes rotational. Along with the solution concerning the free surface
elevation and the stream function, the wave celerity is also calculated (c = −B0). Systematic
results concerning the dispersion characteristics of the above non-linear solutions will be
presented in Section 3.3.
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Figure 3. (a) Spatial distribution of the total flow stream function, corresponding to the mean flow
and the perturbative wave field. The current parameters chosen are a ≃ 0 and b = −1 s−1, while the
wave parameters are ε = 0.5Hk = 0.15 and kh = 2π/10. (b) Spatial distribution of the total vorticity
field in the same conditions. In both subfigures, thin black lines correspond to the streamlines.
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(ii) Exponentially sheared current: In this case, we consider an exponentially sheared
current field. A particular example is calculated by using the parameters a = 0.7 m−2 and
b = 0 s−1. The corresponding profile is presented in Figure 4. The free surface obtained
numerically by applying the present stream function method is also plotted in this figure.
The wave parameters are as before, with ε = 0.5Hk = 0.15 concerning the nonlinear
parameter and kh = 2π/10 for the dispersive parameter, while the numerical configuration
is kept identical to the previous case. The free surface elevation obtained with these
parameters is found to be close to the one obtained in the presence of a linearly sheared
current; this is as expected since the two vertical profiles of Figures 2a and 4a differ mostly
at a submergence close to half of the depth, where the wave is relatively attenuated.
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0.15 and a dispersive parameter kh = 2π/10. The dotted line indicates the corresponding mean
water level.

In this case, also, the vertical asymmetry of the wave profile is important, presenting
very close values of the wave crests and through as before in Figure 2. This is further
verified by the values of the constant controlling the flowrate, which is calculated to be
Q = 2.991 m2/s, which is very close to the value in the linearly sheared current case
( Q = 2.998 m2/s

)
.

In Figure 5, color plots of the computed stream function and derived vorticity are
presented. As before, the streamlines are indicated in both subplots using thin black lines.
As far as it concerns the calculated stream function Ψ (Figure 5a), a strong similarity with
the linear sheared current is observed, although some fine differences might be noticed. Yet,
when comparing the total vorticity field Ω between the linear sheared current (Figure 3b)
and the exponential sheared current (Figure 5b), specific differences are observed. Indeed,
it appears clearly in the example of the exponentially sheared current that the vorticity is
much smaller (almost zero) in the vicinity of the bottom, which is a direct consequence of
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the vertical distribution of the shear current U0(z) and its derivatives in the neighborhood
of z = −h, which, for the relatively large a value of this example, is approximated by an
exponential distribution, resulting in ω0(z) = ∂U0/∂z ≃ 0 in the vicinity of the bottom.
Here, again, the total vorticity including the waves is observed to present a deviation from
the corresponding field associated with the current Ω0(z) in the vicinity of the free surface
and finds its maximum (in magnitude) at the surface.
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3.3. Projection of the Fully Nonlinear Solution on a CMS Basis

Having obtained the numerical solution for the fully nonlinear stream function, the
components of the wave field are obtained by spatial differentiation of the field using
Equation (30). The latter components, in conjunction with the transformation from moving
to the laboratory-fixed coordinate system, can be projected accordingly on the vertical basis
of Equation (3). Indeed, considering the nonlinear solution of the horizontal component of
the velocity, u, obtained by the method described in Section 3.1, and selecting a number of
modes M for truncation of Equation (2), a classical Galerkin approach can be used. This is
easily obtained by considering that

M

∑
n=1

un(x, t)
∫ η(x,t)

−h
Z(1)

m Z
(1)
n dz =

∫ η (x,t)

−h
u(x, z, t)Z(1)

m (x, z; h, η)dz, 1 ≤ m ≤ M, (34)
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which, in matrix form, reads as u = M−1U, with the following elements:

Mmn =
∫ η(x,t)

−h
Z(1)

m Z
(1)
n dz, Um =

∫ η(x,t)

{−h}
u(x, z, t)Z(1)

m (x, z; h, η(x, t))dz. (35)

Here, the functions Z(1)
n (z; h, η) and Z(1)

m (z; h, η) are provided by Equation (3). The
modal amplitudes (un)1≤n≤M are immediately obtained by inverting the linear system of
Equation (34). These modal amplitudes un(x, t) together with the free surface elevation
η(x, t) constitute incident wave data for the CMS Equations (14) and (15) or the simplified
system Equation (16). Yet, it is emphasized that these integrals differ from the scalar product
defined earlier, since the limit of integration is now between z = −h and z = η(x, t). The
system in (34) is inverted to obtain the expected distribution of un(x, t = 0). Whenever
needed, boundary data un(x = 0, t) at the entrance (x = 0) of the CMS domain are obtained
by multiplying the above modal amplitude functions by the nonlinear phase velocity.
Examples of applications of the latter for various cases will be presented in Section 4.

Yet, it is interesting to consider the converging behavior of the solution represented by
the modal expansion of the CMS with the fully nonlinear solution of Section 3.2. In Figure 6,
the vertical distribution of the horizontal component of the velocity, obtained in our first
example of linearly sheared current (a ≃ 0, b = −1s−1, ε = 0.15, and kh = 2π/10), is
presented. The blue crosses correspond to the fully nonlinear solution, obtained at various
phase values. The green curves correspond to the solution obtained for the only mode
n = 0, at the same phase values. The orange curves present the solution involving the two
first modes, n = 0 and n = 1, while the red curves are the solution obtained with 100 modes.
These results are presented in order to provide an idea of the rate of convergence of the
solution presented on the basis of the CMS. If only the mode n0 shows some limitations
(yet, the reader is reminded that the vorticity and the nonlinearity considered here are really
significant), taking into account two modes already provides a very satisfying solution. A
few differences can still be observed, located near the free surface. The example involving
M = 100 modes shows absolutely no difference with the fully nonlinear solution. Another
possibility is to consider the modal amplitude and its evolution with the number of modes
considered. This is presented in Figure 7. From this figure, it is clear that the modal
amplitude provides a rate of convergence which is larger than an order of two.
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3.4. Phase Velocity of the Nonlinear Waves

The method presented in this section also allows us to compute the nonlinear phase
velocity, since it is related to the constant B0 = −c. Furthermore, the linear phase velocity
can be obtained in the case of arbitrary current flow by solving the Rayleigh equation
(see [31] for more details).

Thus, it is interesting to compute the phase velocity obtained here for the specific
current profiles, Equation (21), with the phase velocity of linearized waves computed by
solving the Rayleigh equation. Results are presented in Figure 7, from systematic solutions
as the ones examined before in the water strip with depth h = 1 m.

In particular, three current configurations are examined and results are presented:
(i) water waves propagating in the absence of current (a, b) = (0, 0), (ii) the current
configuration presenting a linear variation in depth (a, b) ≃

(
0,−1 s−1), and (iii) the

current varying exponentially with depth (a, b) =
(
0.7 m−2, 0

)
. For each of these current

configurations, three values of the dispersive parameter are considered: kh = π, kh =
2π/5, and kh = π/5, corresponding to water waves propagating in relatively deep water,
intermediate water depth, and water waves propagating in relatively shallow water. These
configurations constitute the nine curves presented in Figure 8, where the calculated
normalized phase speed c/(gh)1/2 is plotted. Each curve is obtained by varying the
nonlinear parameter ε in the vertical axis in the range 0.001 ≤ ε ≤ 0.2.

The above results illustrate the effect of the nonlinear parameter on the phase celerity
of traveling waves in the presence of sheared currents. The vertical black lines represent the
values obtained for each of the cases considered by solving the Rayleigh equation, which
match the calculated results for limiting small nonlinearity ε ≃ 0.

Several classical results are confirmed through this figure. First, when considering
a given current configuration, the effect of the dispersive parameter kh is observed. The
longer the waves, the faster they propagate. Also, for a given current configuration, it is
seen that the effect of the nonlinear parameter ε is more important for more shallow waves.
The deviation from the linear theory (the vertical black lines) is faster when kh is small.
Finally, when intercomparing the effect of the current on the phase celerity, for a given kh,
the opposing current is found to slow down propagation. The linearly sheared current
presents a stronger effect than the exponentially sheared one, as expected.
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kh = π, kh = 2π/5, and kh = π/5, for various nonlinear parameters 0.001 ≤ ε ≤ 0.2. Three current
configurations are considered: (a, b) ≃ (0, 0), corresponding to the solution in the absence of current;
(a, b) ≃

(
0,−1 s−1), which is the linearly sheared current; and (a, b) = (0.7, 0), which corresponds to

the exponentially sheared current.

4. Weakly Nonlinear Propagation over Varying Depth and Currents

In this section, numerical results are presented in the case of waves propagating in
constant depth in the presence of shear currents, as obtained by the time integration of the
weakly nonlinear coupled-mode system (Equations (14) and (15)). Taking into account the
observed fast convergence characteristics of the modal expansion, the simplified model
based on Equation (16) is finally used to illustrate results of simulations of waves and shear
currents in variable-bathymetry regions.

4.1. Initialization of the CMS and Comparison with the Fully Nonlinear Method

The purpose of this section is to investigate the ability of the CMS to reproduce the
behavior of water waves in the presence of vortical flow in weakly nonlinear conditions. To
stay consistent with this aim, three cases are considered, involving weakly nonlinear water
waves and various current configurations. First, a no-current case in which (a, b) ≃ (0, 0) is
presented. The case of linear shear current in which (a, b) ≃

(
0,−0.5s−1) is then analyzed.

Finally, an exponential case is presented, in which (a, b) =
(
0.15 m−2, 0

)
. For these three

cases, the water waves parameters are kh = 2π/10 and ε = 0.05, characterizing weakly
non-linear conditions in intermediate water depth. Results will be compared to those
provided by the fully nonlinear method presented in Section 3.

The configuration of the coupled-mode system considered here involves periodical
boundary conditions, while time integration of an initial condition is performed. To
produce the initial condition, two methods were investigated. The first approach was to use
a linear solution and to apply a relaxation term for the nonlinear terms in the first period
of propagation (see, e.g., [22,23]). Another possibility is to start from the fully nonlinear
solution obtained from the model presented in Section 3, providing the full solution in
terms of η and u [32]. In this case, it is necessary to obtain its projection on the solution on
the basis of the CMS, as described in Section 3.3. For the sake of clarity, it is reminded that
the system provided by Equation (34) is solved for each location x of the initial domain for
the CMS, providing the data for un(x, t = 0).

The discrete version of the present CMS is obtained by using high-order finite differ-
ences to approximate horizontal and time derivatives of the wave mode amplitudes un(x, t)
and the free surface elevation η(x, t), on a regular grid (xi = xa + (i − 1)∆x, tn = (n − 1)∆t).
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The mesh is obtained by using Mx steps of equal length ∆x = (xb − xa)/Mx to subdivide
the horizontal interval xa ≤ x ≤ xb. Based on the above analysis concerning the dispersion
characteristics of the present model, in most cases, the number of the retained modes re-
quired for convergence is very small, and the horizontal subdivision of the domain is based
on using 30–40 points per wavelength. In all examples presented and discussed below, the
dimension of the discrete coupled-mode system is of the order of several thousands, and
for the time integration of the dynamic system, a fourth-order BDF scheme is used, with
Courant number (C∆t/∆x)max.

Both initializing procedures are compared in the case involving no current, and results
are presented in Figure 9, concerning η(x, t) and un(x, t), n = 0, 1, 2. In this figure, results
indicated by using red lines corresponding to the calculations based on the fully nonlinear
method presented in Section 3, obtained by means of the stream function formulation.
Green lines present the time evolution computed by means of the CMS using a linear initial
condition, together with a relaxion scheme for the nonlinear terms. Finally, blue lines
correspond to results obtained with by the CMS, initialized with the projection described
by Equation (34). It appears that the results of computation are compatible with the steady
traveling solutions, by using both initialization approaches, and in the next examples, only
the projection method (Section 3.3) is used.
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Figure 9. Time evolution of the free surface elevation and the first, second, and third mode of the 
horizontal velocity. The parameters considered are (𝑎, 𝑏) = (0,0), 𝜀 = 0.05, and 𝑘ℎ = 𝜋/5, in the 
case of no current. Red lines correspond to the results obtained with the fully nonlinear method 
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Figure 9. Time evolution of the free surface elevation and the first, second, and third mode of the
horizontal velocity. The parameters considered are (a, b) = (0, 0), ε = 0.05, and kh = π/5, in the case
of no current. Red lines correspond to the results obtained with the fully nonlinear method presented
in Section 3. Green presents the results obtained with the CMS, initialized with the relaxation method
described in Section 4.1. Blue lines correspond to results obtained with the CMS, initialized with the
projection described in Section 3.3.

Next, in Figure 10, the time evolution of the free surface elevation and the first,
second, and third mode of the horizontal velocity are shown, as obtained by the present
CMS, in the case of an opposing linear shear current characterized by the parameters
(a, b) =

(
0,−0.5 s−1), ε = 0.05, and kh = π/5.

Here again, the results presented are in good agreement with the fully nonlinear
simulations. It is observed that no differences can be seen as far as the free surface elevation
and the propagating mode u0 are concerned. When it comes to modal amplitudes u1 and u2,
and noting that the vertical scales of the last two subplots of Figure 10 have been increased
by 25 and 50 times for comparison purposes, the results obtained by the present method
are considered to be very satisfying, both in terms of phase and amplitude. Yet, some
small oscillations in the modal amplitude are observed, related to the numerical integration.
However, the latter differences are minor concerning the solution for the total velocity field
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u(x,z,t), which, in the examined nonlinear case, is approximated by truncating the present
expansions defined by Equations (2) and (5) and keeping only the first three terms.
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Figure 10. Time evolution of the free surface elevation and the first, second, and third mode of the
horizontal velocity. The parameters considered are (a, b) =

(
0,−0.5 s−1), corresponding to a linear

shear current. Moreover, ε = 0.05 and kh = π
5 . Red lines correspond to the results obtained with the

fully nonlinear method presented in Section 3. Blue lines correspond to results obtained with the
CMS, initialized with the projection described in Section 4.1.

Finally, in Figure 11, similar results are presented in the case of an opposing cur-
rent showing an exponential vertical profile, characterized by the parameters (a, b) =(
0.15 m−2, 0

)
, in the case of nonlinear waves in intermediate water depth ε = 0.05 and

kh = π/5. The time evolution of the free surface elevation and the first, second, and third
mode of the horizontal velocity are shown, as obtained by the present CMS, and compared
to the fully nonlinear solution of Section 3.
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In this example, the results presented in Figure 11 indicate a small discrepancy between
the stream function solution and the CMS calculation, which is due to a very small difference
(of the order of 1.25%) in wave celerity as calculated by the present CMS. Yet, when it comes
to the behavior of the amplitudes, for the free surface elevation, but also for the modes u0,
u1, and u2, the agreement is still very satisfaying.

In both the above examples, we also observe the fast decay of the modal amplitudes
(accordingly to Figure 7), indicating that in such cases, un(x, t), for n > 0, is more than
an order of magnitude less than u0(x, t), confirming the applicability and usefulness of
the simplified model provided by Equation (16). Still, some limitations of the numerical
integrator of the system are observed, and future work will be devoted to further improving
its performance.

4.2. Wave Propagation over Rippled Bed in the Presence of Shear Current

Finally, we consider here the application of the present CMS for an example concerning
wave propagation over variable bathymetry in the presence of an opposing sheared current.
The problem of water waves reflected by periodic undulating topography, known as
Bragg resonant reflection, has been studied extensively in the last few decades. When the
surface wavelength is about twice the topographic wavelength, the incoming waves are
significantly reflected by the periodic bottom, and only a small part of the wave energy is
transmitted. Since the problem has strong implications in coastal engineering, it has been
widely studied; see, e.g., the study by Mei [33] and the references therein. More recently,
the nonlinearity involved in the process has attracted some of the attention of the scientific
community [34,35]. In particular, an investigation of the effects of Bragg reflection on
harbor oscillations has been presented by Gao et al. [36,37]. The nonlinear problem of wave–
bottom interactions involving a piecewise linear depth varying current was investigated
recently by Raj and Guha [38]. For this reason, the Bragg reflection problem constitutes an
interesting configuration to explore through the CMS.

Here, we consider a sinusoidal bottom topography in the middle of the domain of an
otherwise flat horizontal bottom of depth h = 0.22 m, i.e., the bottom slope and curvature
are zero for a significant length at the ends of the domain. Such a configuration has been
tested experimentally in the flume of SeaTech, University of Toulon, France, depicted in
Figure 12, and measurements of the reflection coefficient were collected in order to study
the Bragg resonance of wave and current systems and its effects on the reflection coefficient.
An inclined perforated screen was used to generate the shear of the opposing current
at the downwave end of the flume. The position of the wave probes for estimating the
reflection and transmission of waves from measured wave data are shown in Figure 13. At
the upwave end of the channel, an electromagnetic piston was used to generate regular
waves. At the downwave end of the flume, a sloping beach was used to absorb waves.
The opposing current was injected into the channel by a hydraulic pump, and a perforated
screen was used to control the shear; see Figure 13. The sinusoidal bottom profile consists
of 10 ripples of amplitude 0.035 m and length 0.5 m. The opposing shear current vertical
profile is approximately linear:

U(x, z) = U0(x) + S(x)z (36)

where U0(x) is the surface current and S(x) denotes the shear. In this case, the current
vorticity field is Ω0(x) = S(x).

We consider as an example the reflection of waves over a rippled bed with the presence
of an opposing current with a mean speed of 0.17 m/s. More details are provided in Laffite
et al. [39], where estimations concerning the spatial variation of shear S(x) are available. In
this case, the shear is estimated to be negative near the entrance of the wave and becomes
oscillatory above the sinusoidal bottom. Based on the above, the horizontal distribution
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of the shear in the domain is calculated by assuming the conservation of the mass of the
current flow as follows:

S(x) =
2

h(x)

(
U0(x)− h(0)

h(x)
U0(0)

)
+

2h(0)
h(x)2 S(0) (37)

where x = a and x = b denote the coordinates of the wave entrance and exit in the domain.
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Indicative distributions of current parameters used in the sequel for calculations of
waves by the present CMS are presented in Figure 14.

J. Mar. Sci. Eng. 2024, 12, 509 21 of 28 
 

 

 
Figure 14. Current data for waves propagating over the sinusoidal bottom of Figure 4. The surface 
current 𝑈଴(𝑥) in the case of no shear is plotted by using a blue line and the effect of shear 𝑆(𝑥) is 
shown by using a red line, respectively. 

As concerns the conditions for Bragg resonance, it is known that the resonant reflec-
tion of surface water waves by sinusoidal bars in the presence of a current is manifested 
when 𝑘௣ + 𝑘௠ = 𝐾௕, (38)

where 𝐾௕ is the wavenumber of the bottom profile, and 𝑘௣ and 𝑘௠ are obtained as the 
roots of the dispersion relation for opposing and following current, respectively. 𝜎ଶ(𝑥) = 𝜎଴(𝑥)𝜎ଶ(𝑥) = 𝑘௣(𝑥)𝑔tanh ቀ𝑘௣(𝑥)ℎ(𝑥)ቁ, (39)

where g is the gravity acceleration. Equation (39) is formulated with respect to an average 
relative frequency estimated by 𝜎 = ඥ𝜎଴𝜎ଶ = ට(𝜔 ± 𝑈଴ ⋅ 𝑘௣,௠)(𝜔 ± 𝑈ଶ ⋅ 𝑘௣,௠), (40)

where 𝑈଴ is the surface current and 𝑈ଶ = 𝑈଴ − 𝑆(2𝑑) s the value of the current at a pen-
etration depth defined as 2d; see also Touboul et al. [22]. An extended version of the above 
relation has been derived and discussed in Belibassakis et al. ([23], Section 2.4). 

In the experimental tests, the incident wave frequencies ranged from 0.7 Hz  to 1.5 Hz  with amplitudes between 0.5 − 2 cm , ensuring relatively small steepness, both 
without a current and with the vertically sheared current. Predictions obtained from the 
present model are presented in Figures 15 and 16 in the case of sinusoidal incident waves 
with a frequency of 1.1 Hz, close to wave resonance conditions, and a wave amplitude of 1 cm, without current and with the consideration of the sheared current. In these figures, 
a space–time plot of the free surface elevation 𝜂(𝑥, 𝑡) is shown, as calculated by the pre-
sent method. The result corresponds to periodic waves propagating over a sinusoidal bed 
(also depicted in the figure at an average depth of 22 cm), without any current (Figure 15) 
and with the effects of a sheared current with a linear vertical profile (Figure 16), as mod-
eled, respectively, by using the data in Figure 14. The bottom profile varies only along the 
x-axis, and the opposing current is also directed along the x-axis, as indicated in the fig-
ures. Since the wave generated at the upwave end of the flume is harmonic, the plot of the 
free surface history at 𝑡 = 0 (shown along the t-axis) is sinusoidal. 

Figure 14. Current data for waves propagating over the sinusoidal bottom of Figure 4. The surface
current U0(x) in the case of no shear is plotted by using a blue line and the effect of shear S(x) is
shown by using a red line, respectively.

As concerns the conditions for Bragg resonance, it is known that the resonant reflection
of surface water waves by sinusoidal bars in the presence of a current is manifested when

kp + km = Kb, (38)
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where Kb is the wavenumber of the bottom profile, and kp and km are obtained as the roots
of the dispersion relation for opposing and following current, respectively.

σ2(x) = σ0(x)σ2(x) = kp(x)gtanh
(
kp(x)h(x)

)
, (39)

where g is the gravity acceleration. Equation (39) is formulated with respect to an average
relative frequency estimated by

σ =
√

σ0σ2 =
√(

ω ± U0 · kp,m
)(

ω ± U2 · kp,m
)
, (40)

where U0 is the surface current and U2 = U0 − S(2d) s the value of the current at a
penetration depth defined as 2d; see also Touboul et al. [22]. An extended version of the
above relation has been derived and discussed in Belibassakis et al. ([23], Section 2.4).

In the experimental tests, the incident wave frequencies ranged from 0.7 Hz to 1.5 Hz
with amplitudes between 0.5 − 2 cm, ensuring relatively small steepness, both without
a current and with the vertically sheared current. Predictions obtained from the present
model are presented in Figures 15 and 16 in the case of sinusoidal incident waves with a
frequency of 1.1 Hz, close to wave resonance conditions, and a wave amplitude of 1 cm,
without current and with the consideration of the sheared current. In these figures, a
space–time plot of the free surface elevation η(x, t) is shown, as calculated by the present
method. The result corresponds to periodic waves propagating over a sinusoidal bed (also
depicted in the figure at an average depth of 22 cm), without any current (Figure 15) and
with the effects of a sheared current with a linear vertical profile (Figure 16), as modeled,
respectively, by using the data in Figure 14. The bottom profile varies only along the x-axis,
and the opposing current is also directed along the x-axis, as indicated in the figures. Since
the wave generated at the upwave end of the flume is harmonic, the plot of the free surface
history at t = 0 (shown along the t-axis) is sinusoidal.

In both cases, a rapid decay of the mode amplitudes is observed. Moreover, we observe
in Figures 15 and 16, illustrating the history of the free surface elevation over the sinusoidal
bed, that the results indicate strong reflection. In the case of waves opposing the shear
current, we clearly observe the shortening of the wavelengths and the steepening of waves
in Figure 16, especially over the sinusoidal bottom. Moreover, in this case, the disturbance
of the flow due to the combined effect of the rippled bed and the vorticity contained in the
vertically sheared current is seen to generate a more complicated pattern, related to the
wavenumber asymmetry due to the presence of the current.
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In Figure 17, the reflection coefficient, plotted as a function of the wave frequency
(in the laboratory frame of reference), is presented for both cases, considering the current
or not. Together with the experimental results, we present results obtained numerically
by means of the present CMS model. These results were obtained by considering various
incident wave conditions, namely a = 0.002 m, a = 0.005 m, and a = 0.01 m. Thus, the
effect of nonlinearity in the reflection process is observed. It appears that both the peak
frequency and its amplitude are better described when the considered wave amplitude
approaches the one considered in the experiments. This result confirms that although
Bragg reflection is a linear process, nonlinear hydrodynamical interactions play a role in the
interaction process. Further investigation of the present CMS, including results concerning
the calculation of reflection and transmission coefficients for various wave frequencies and
comparisons with results from other works and experimental data, will be considered in
future work, as well as an extension to three-dimensional problems; see, e.g., [31,40].
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5. Conclusions

A coupled-mode system based on the velocity formulation of the wave field was
developed and used for modeling wave scattering by inhomogeneous, sheared currents in
variable bathymetry regions. The model is based on a modal series expansion of the wave
velocity based on vertical eigenfunctions, which are dependent on local depth and flow
parameters, including the propagating and evanescent modes. A new derivation of a sim-
plified weakly nonlinear system was introduced using decomposition to a mean flow and a
perturbative wave field, and it was subsequently used to study wave–current–seabed inter-
action problems in inhomogeneous domains. For defining data describing the incoming
waves at the inlet boundary, knowledge of periodic traveling nonlinear water waves over a
flat bottom is required. Specific solutions were derived using the semi-analytical method
based on the stream function formulation for cases of water waves propagating above
sheared currents with linear and exponential profiles. The obtained results clearly illustrate
the effect of the current vortical distribution on the nonlinear behavior and phase speed
of water waves, in the same order of magnitude as the dispersion parameter, suggesting
that sheared currents are expected to have a strong influence on refraction and diffraction
phenomena in variable-bathymetry regions. Examples concerning the propagation of
waves and currents in cases with depth inhomogeneities were subsequently presented and
discussed, illustrating the applicability and performance of the present model. In particular,
Bragg reflection by sinusoidal bottom profiles was analyzed, and 5% to 10% differences in
the reflection peak were observed in the presence of a current, due to the combined effects
of nonlinearity and vorticity on the behavior of water waves. Future work is planned
towards the extension of the model to three-dimensional problems, including the case of
waves interacting with currents at an angle.
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Appendix A. Expansion of the Momentum Equations on the Basis

Starting from Equations (14) and (15), we now introduce the expansions given by
Equations (2) and (5). Proceeding term by term, we obtain

∂u
∂t =

∞
∑

n=0
Z(1)

n (z; h, η)
∂un(x,t)

∂t ,

∂
∂x

(∫ η
z

∂w
∂t dξ

)
= −

∞
∑

n=0

∂
∂x

[
∂

∂x

(
Z(3)

n
∂un
∂t

)
− Z(2)

n (η)
∂η
∂x

∂un
∂t

]
,

∂
∂x [U0(η) · u(η)] =

∞
∑

n=0

∂
∂x (U0(η) · un),

∂
∂x [W0(η) · w(η)] = −

∞
∑

n=0

∂
∂x

[
W0

∂
∂x

(
Z(2)

n (η)un

)]
.
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where Z(3)
n is defined by

Z(3)
n =

∫ η

z
Z(2)

n (ξ; h, η)dξ.

The expressions of E1, E2, F1, and F2, involving the vorticity fields, as derived in [27],
are as follows:

E1 = −
+∞
∑

n=0
W0

(
Z(0)

n + ∂2Z(2)
n

∂x2

)
un +

(
2W0

∂Z(2)
n
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n

)
∂2un
∂x2 ,
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F2 =
+∞
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n=0

[∫ η
z Ω02Z(1)

n dξ
]
un,

where Ω02 is the background vorticity, defined as ∂U0/∂z − ∂W0/∂x, and where Z(0)
n is

defined by Z(0)
n = ∂Z(1)

n /∂z. For explicit nonlinearities, we obtain

1
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Appendix B. Detailed Expression of the Coefficients

Considering the developments provided in Appendix A, the present coupled-mode
system reduces to the following form:

M
∑

n=0

{
A1mn

∂un
∂t + B1mn

∂2un
∂t∂x + C1mn

∂3un
∂t∂x2 + D1mnun + E1mn

∂un
∂x + F1mn

∂2un
∂x2 + G1mn

∂3un
∂x3

}
+H1m

∂η
∂x = NL(1)

m , m = 0, 1, · · · , M, and

∂ η

∂ t
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∂ x
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∂ un
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In the above system of equations, the right-hand side contains all nonlinear terms, and
the coefficients are defined by
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and
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In the coefficients expressed above, the values of the functions Z(0)
n , Z(1)

n , Z(2)
n , and

Z(3)
n at the free surface elevation η are often used. Using the definition of these functions, it

is easily seen that for all of them,

f (z = η; h,η) = f (z = 0; h,η) +
∂ f
∂z

(z = 0; h,η)η+ O
(
η2
)

and the following approximation is used for vertical integrals as concerns the treatment of
implicit nonlinearities.: ∫ η

z
f (ξ)dξ =

∫ 0

z
f (ξ)dξ+ f (0)η+ O

(
η2
)

In the present work, a weakly nonlinear system is obtained, and the above second-
order terms in η, which will eventually result in third-order terms in (u,η), will be dis-
carded, maintaining consistency with the order of approximation of the explicit non-
linearities. This significantly facilitates the calculation of the system coefficients at the
pre-processing stage. On the other hand, as already mentioned, the explicit nonlinearities
are retained in the system and the nonlinear terms NL(1)

m and NL(2) are as follows:

NL(1)
m =

〈
E3, Z(1)

m

〉
+
〈

∂F3
∂x , Z(1)

m

〉
−
〈

1, Z(1)
m

〉
1
2

∂
∂x

[
u(η)2 + w(η)2

]
,

and NL(2) = −u(η) ∂η
∂x .
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