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Abstract: Underwater object detection is crucial in marine exploration, presenting a challenging prob-
lem in computer vision due to factors like light attenuation, scattering, and background interference.
Existing underwater object detection models face challenges such as low robustness, extensive com-
putation of model parameters, and a high false detection rate. To address these challenges, this paper
proposes a lightweight underwater object detection method integrating deep learning and image
enhancement. Firstly, FUnIE-GAN is employed to perform data enhancement to restore the authentic
colors of underwater images, and subsequently, the restored images are fed into an enhanced object
detection network named YOLOv7-GN proposed in this paper. Secondly, a lightweight higher-order
attention layer aggregation network (ACC3-ELAN) is designed to improve the fusion perception
of higher-order features in the backbone network. Moreover, the head network is enhanced by
leveraging the interaction of multi-scale higher-order information, additionally fusing higher-order
semantic information from features at different scales. To further streamline the entire network,
we also introduce the AC-ELAN-t module, which is derived from pruning based on ACC3-ELAN.
Finally, the algorithm undergoes practical testing on a biomimetic sea flatworm underwater robot.
The experimental results on the DUO dataset show that our proposed method improves the perfor-
mance of object detection in underwater environments. It provides a valuable reference for realizing
object detection in underwater embedded devices with great practical potential.

Keywords: lightweight network; YOLO; underwater object detection; attention mechanism;
embedded deployment; image enhancement

1. Introduction

The oceans constitute one of the largest and most biodiverse ecosystems on earth [1].
The 2010 Global Census of Marine Life suggests that there may be over 2 million species of
marine organisms, with only approximately 200,000 species of marine macro-organisms
known to us. The ocean concurrently serves as a significant repository for oil, gas, minerals,
chemicals, and various other aquatic resources. An increasing number of professionals from
diverse fields are involved in the exploration of marine resources [2]. In the past decade, un-
derwater robotics and detection technologies, including Autonomous Underwater Vehicles
(AUVs) and Remotely Operated Vehicles (ROVs) [3,4] have experienced rapid development.
They play a crucial role in the exploitation and conservation of marine resources and have
attracted the attention of many scholars. In this context, the technology of underwater
object detection plays a crucial role. Detection of underwater objects can be classified into
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two main categories: acoustic system detection and optical system detection [5]. It relies on
acquired image information for image analysis, encompassing classification, identification,
and detection. In comparison to acoustic images, optical images offer higher resolution
and greater information content [6,7]. Presently, there is a growing focus on underwater
object detection using optical systems. Nevertheless, the intricate underwater environ-
ment and lighting conditions, along with the inevitable noise during visual information
acquisition, pose significant challenges to the implementation of vision-based underwater
object detection.

The objective of general object detection is to ascertain the location of a target instance
within a natural image, relying on a vast array of predefined categories. This involves
such essential tasks as object categorization and orientation. Presently, object detection
methods can be broadly classified into two groups: traditional object detection methods
and convolutional neural network (CNN)-based object detection methods [8].

Traditional object detection begins with a sliding window strategy [9] for scanning
the entire image, considering the target’s position and aspect ratio variations. Features are
extracted using methods like SIFT [10] and HOG [11], and machine learning classifiers,
including SVM, classify these features to detect objects within the window. However,
traditional methods face challenges such as a lack of universality, high time complexity,
and feature robustness issues, impacting their effectiveness. The emergence of convolu-
tional neural networks (CNN) in recent years has significantly improved accuracy and
speed, particularly in handling complex scenarios and targets, including underwater
object detection.

Numerous studies have demonstrated the superiority of convolutional neural net-
work (CNN)-based object detection over traditional algorithms. Currently, the presence or
absence of anchors in the input data is the primary classification used by object detection
algorithms in deep learning. Anchorless object detection models, such as CenterNet [12],
CornerNet [13], and Transformer [14]-based end-to-end object detection (DETR) [15], elim-
inate the need for target anchors. This enhances model flexibility to adapt to varying
sizes and shapes of targets, ultimately improving object detection accuracy and robust-
ness. However, their suitability for real-time applications is limited due to the more
complex network structure and higher hardware cost requirements. Anchor-based object
detection models [16] mainly include two-stage object detection methods based on region
suggestions such as RCNN [17], Fast-RCNN [18], Faster-RCNN [19], Mask-RCNN [20],
Cascade-RCNN [21], etc., and regression-based object detection algorithms such as the
SSD [22] and YOLO [23] (You Only Look Once) series of algorithms [24–29], and so on.
One-stage object detection algorithms skip the generation of candidate regions and directly
execute operations like feature extraction, classification, and regression on the entire image,
resulting in quicker detection times. The YOLO series of algorithms, as a classical one-stage
object detection approach, is widely utilized for its exceptional detection performance.
Through continuous improvements and innovations, its performance in object detection
tasks has become increasingly outstanding.

Amidst the advancements in underwater robotics, researchers seek an efficient and
easily deployable underwater object detection model to augment the commercial value of
underwater robots. In 2015, Li et al. [30] pioneered the use of deep CNN for underwater
object detection, concurrently creating the ImageCLEF dataset. In 2017, Zhou et al. [19]
enhanced VGG16 by integrating image enhancement techniques and the Faster R-CNN
network for underwater target detection on the URPC dataset. In 2019, Weihong Lin
et al. [31] introduced a generalization model designed to address challenges such as target
overlapping and blurring in underwater object detection tasks. In 2021, to tackle the
heterogeneity of underwater passive targets and classification challenges, Weibiao Qiao
et al. [32] presented a design for timely and accurate underwater target classifiers using
Local Wavelet Acoustic Patterns (LWAP) and Multi-Layer Perceptron (MLP). With the focus
on accuracy improvement, Minghua Zhang et al. [33] shifted attention to the lightweight
aspect of underwater object detection models. To improve real-time and lightweight
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performance, they introduced a lightweight underwater object detection method that
incorporates MobileNet v2, the YOLOv4 algorithm, and an attention mechanism. In 2023,
to address the challenges posed by the intricate underwater scenes and the limited ability
to extract object features, Zhengwei Bao et al. [34] proposed a parallel high-resolution
network for underwater object detection. Kaiyue Liu et al. [35] enhanced the model
performance by incorporating a residual module and integrating a global attentional
mechanism into the object detection network. Dulhare UN et al. [36] employed Faster
R-CNN and data augmentation algorithms to tackle the issue of low accuracy in detecting
humans in underwater environments. In 2024, Rakesh Joshi et al. [37] addressed the issue
of underwater scattering caused by suspended particles in water, severely degrading signal
detection performance. They proposed a degradation condition-based three-dimensional
(3D) integral imaging (InIm) integrated deep learning bifunctional approach for underwater
object detection and classification.

Additionally, deploying these object networks on embedded hardware presents a
new challenge. The prevalent approach involves employing embedded development
boards like Openmv [38], k210 [39], and Jetson series [40] development boards, along
with image acquisition modules, to form a vision system. Xin Feng et al. [41] conducted
a comprehensive analysis of recent advances in computer vision algorithms and their
corresponding hardware implementations. In 2020, Yu-Chen Chiu et al. [42] introduced
a lightweight object detection model based on Mobilenet-v2, demonstrating a balance
between speed and accuracy through real-world tests on the Nvidia Jetson AGX Xavier
platform. Subsequently, in 2023, Sichao Zhuo et al. [43] proposed a lightweight meter
reading recognition network using deformable features and aggregation, deploying it on a
Jetson TX1 smart vehicle for meter reading applications, and realized the performance of
SOTA. Unlike high-performance graphics cards on the host side, limitations such as storage
speed and maximum arithmetic support of embedded development boards constrain the
practical application of various underwater object detection networks [44].

In conclusion, owing to the complexity of the underwater environment, current under-
water object detection algorithms encounter numerous challenges in practical applications.
These challenges include images affected by seawater refraction, scattering, and other fac-
tors, resulting in blurred images; multi-scale transformation of underwater targets due to
different angles and distances of collected data; target occlusion caused by the aggregation
of underwater organisms; the substantial computational overhead of traditional object
detection models, making deployment on embedded devices difficult, and more. In the
face of these challenges, the field of underwater object detection still has a long way to go.

Among the YOLO series algorithms, YOLOv7 stands out with superior accuracy,
faster speed, heightened stability, and increased suitability for industrial applications.
Consequently, in this paper, we introduce the YOLOv7-GN model, built upon the YOLOv7
framework, and validate the efficacy of our approach through experiments conducted on
underwater images. Our contributions are outlined as follows:

(1) In this study, FUnIE-GAN is employed for underwater image enhancement, and
data enhancement methods, including Mixup, are applied during dataset preprocessing to
capture the feature information of the object effectively.

(2) In this study, an enhanced head network is designed for multiscale higher-order
information interaction, aiming to enhance the spatial interaction capability of YOLOv7-
GN. This improvement allows the extension of self-attention’s second-order interactions to
arbitrary orders by integrating recursive gated convolution (Conv) with a high degree of
flexibility and customizability, all without introducing a significant computational burden.

(3) In order to capture more global features in the image, ACmix is incorporated as
the fundamental model for self-attention and convolution in YOLOv7-GN. Building on
the characteristics of ACmix and Conv, we introduce a novel lightweight higher-order
attentional layer aggregation network, denoted as ACC3-ELAN. ACC3-ELAN optimizes
the gradient length of the entire network compared to ELAN, reduces the number of
parameters, and improves the network’s fusion sensing ability for higher-order features.
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(4) To assess the feasibility of deploying our model on embedded devices and its
effectiveness in practical applications, we designed a biomimetic underwater robot. Sub-
sequently, we deployed our model into this underwater biomimetic robot to conduct real
world testing scenarios.

2. Related Works

In this section, we provide an overview of the underwater image data enhancement
method and introduce Convolutional and Attentional Fusion and Spatial Information
Interaction, along with the YOLOv7 model, to better elucidate our solution.

2.1. Underwater Image Data Enhancement

Feature engineering plays a pivotal role in deep learning. Currently, underwater
datasets face two primary challenges: (1) limited size and (2) typical issues in underwater
data, including color shift, blurriness, low contrast, color distortion, significant noise, and
unclear details. Addressing the issue of dataset size presents a wide array of data en-
hancement methods. In the initial stages, researchers employed data expansion techniques
involving geometric transformations such as random scaling, cropping, and panning. Sub-
sequently, there has been a proposal for data enhancement methods grounded in color
transformations. For instance, enlarging a dataset through adjustments in brightness, hue,
saturation, and other factors. Another technique for data enhancement is Mixup [45].
It involves training a neural network with a convex combination of sample pairs and their
respective labels. Randomly selecting two images from each stack and mixing them in a
given ratio to create a new image is the central concept of Mixup. The formula is expressed
in Equations (1) and (2).

x̃ = λxi + (1 − λ)xj (1)

ỹ = λyi + (1 − λ)yj (2)

where xi, xj represent raw input vectors, yi, yj denote one-hot label encodings, and λ is
a number randomly sampled from the beta distribution λ ∈ [0, 1]. Thus, Mixup extends
the training distribution by integrating linear prior knowledge, achieving expansion with
minimal computational cost. The visual representation of Mixup is depicted in Figure 1.
Additionally, other data enhancement methods include Cut-out [46] and CutMix [47].
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(c) Sample plots generated by Mixup data enhancement.
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In addressing underwater image degradation, traditional methods primarily involve
the histogram technique, which directly manipulates underwater image pixels to enhance
visual effects. Huang et al. [48] introduced the Relative Global Histogram Stretching
(RGHS) method, rooted in the RGB and CIE-Lab color models. In addition, there are
methods based on image restoration. These methods use an image model to estimate the
relationship between clear, blurred, and transparent images. Subsequently, the restored
image is generated through the dark channel prior (DCP) algorithm [49]. Amidst the rapid
evolution of deep learning in computer vision, underwater image enhancement techniques
have made significant progress. Examples include UIE-Net, based on convolutional neural
networks [50], UIECˆ2-Net [51], GAN-based multi-scale dense generative adversarial
underwater image enhancement network [52], FUnIE-GAN [53], and more. The effect of
various underwater image enhancements is illustrated in Figure 2.
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As depicted in Figure 2, deep learning-based image enhancement methods exhibit su-
perior generalization ability and more accurate color reproduction compared to traditional
enhancement methods. The application of visual enhancement techniques effectively re-
solves inherent issues in underwater video images, including color distortion, low contrast,
and fogging. Enhanced underwater images not only improve visual perception but also
offer robust support for the subsequent execution of diverse visual tasks.

2.2. Convolutional and Attentional Fusion

The attentional mechanism’s most notable feature is its ability to capture global fea-
tures effectively. Vision Transformer [54] pioneered the application of Transformer to
Backbone, achieving state-of-the-art (SOTA) performance. Although this approach en-
hances model accuracy, it comes at a higher computational cost. Convolutional networks
can surpass Transformer-based networks in terms of speed for equivalent computational re-
sources. Thus, a paradigm that combines convolution and self-attention can integrate both
high-frequency and low-frequency information while maintaining a balance between speed
and accuracy [55]. X.R. Pan et al. [56] sought a closer connection between self-attention [57]
and convolution. Upon decomposing the operations of these two modules, it becomes
evident that they heavily rely on the same 1 × 1 convolution operation. Based on this obser-
vation, they introduced a hybrid model named ACmix, skillfully integrating self-attention
and convolution with minimal computational overhead. The model is structured into the
following two phases.

In the first stage, the input features are projected by three 1 × 1 convolutions and then
reshaped into N pieces, thus obtaining a rich set of intermediate features containing 3 × N
feature mappings.

In the second stage, convolution and self-attention follow different paradigms. In the
self-attention path, intermediate features are assembled into N groups, each containing
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three features, each from a 1 × 1 convolution. To follow the traditional multi-head self-
attention mechanism [58], the three feature maps corresponding to the self-attention path
are used as query, key, and value. For the convolution path, a lightweight fully connected
layer is used to generate the feature maps by convolving the input features. By shifting
and aggregating the generated features, it is possible to collect information from the local
receptive field like traditional convolution. The overall model is shown in Figure 3.

Finally, the outputs of the two paths are added to obtain the final output, whose
strength is controlled by two learnable scalars:

Fout = αFatt + βFconv (3)

Figure 3. Schematic diagram of ACmix model. (a) Self-attention part. (b) Convolutional part.
The intermediate features in the convolutional paths follow the shift and sum operations in the
conventional convolutional module.

2.3. Spatial Information Interaction

Spatial interactions are fundamental in deep learning models as they facilitate un-
derstanding the relationships between different spatial locations within images or feature
maps. Traditional convolutional neural networks (CNNs) [59] have limited ability to cap-
ture high-order spatial interactions due to their local receptive fields and shared weights
across spatial dimensions. To overcome this limitation, dynamic convolutional operations,
as employed in Dynamic Convolutional Neural Networks (DCNNs) [60], dynamically
generate weights for convolutional filters based on input data, enabling adaptive attention
to different spatial regions. Moreover, self-attention mechanisms [57], popularized by
Transformer models, have been adapted for computer vision tasks to capture long-range
dependencies and spatial interactions within images [54]. By integrating dynamic convolu-
tion or self-attention mechanisms into CNN architectures, models can capture higher-order
spatial dependencies and effectively exploit spatial context for improved feature represen-
tation and prediction accuracy. Visualizations and comparisons of feature maps produced
by various operations can illustrate how explicit modeling of spatial interactions leads to
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more informative and context-aware representations, ultimately enhancing the modeling
capacity of vision models.

The authors of Hornet [61] also highlight that the explicit higher-order spatial in-
teractions introduced by architectural design contribute to enhancing the modeling ca-
pabilities of visual models. Their convolution-based framework fulfills the role of input
adaptation, long-range interaction, and higher-order information interaction similar to the
vision transformer.

2.4. YOLOv7 Model

YOLO employs convolutional neural networks in two distinct phases: feature extrac-
tion and object prediction. The network analyzes the input image using convolutional
layers to extract relevant feature information in the feature extraction phase. Subsequently,
in the prediction phase, YOLO partitions the image into grids and predicts multiple boxes
for each grid. These predictions are refined by the head network to generate the final result.

The YOLOv7 model [24], an enhanced iteration of the YOLO series, surpasses its
predecessors across multiple performance metrics. The YOLOv7 network consists of
three distinct modules: the input module, the backbone network, and the head network.
It introduces a novel gradient path design network called ELAN [62], which addresses
the degradation issue encountered in depth model convergence during model scaling.
This design strategy leverages existing computational units, resulting in reduced parame-
ters, computation, and hardware resource usage, thereby enhancing inference speed and
learning efficiency.

YOLOv7 is divided into several versions according to the complexity of the network,
such as YOLOv7-tiny, YOLOv7, YOLOv7-X, YOLOv7-W6, YOLOv7-E6, etc., among which
YOLOv7-tiny has 83.19% smaller number of parameters and 86.81% fewer GFLOPs com-
pared to the original network of YOLOv7, but this brings about a performance loss in
recognition accuracy. The work in this paper is based on the YOLOv7-tiny network, which
aims to further lighten the model while improving the accuracy of object detection and
providing a better object detection solution for underwater embedded devices.

3. Methods

In this section, we provide a detailed description of the implementation process and
specifics of our approach. As illustrated in Figure 4, the complete architecture of our
proposed solution involves the image enhancement module and YOLOv7-GN model,
comprising the enhanced backbone network and head network.
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3.1. Underwater Image Enhancement Based on FUnIE-GAN

A Generative Adversarial Network(GAN) [63] consists of a Generator and a Discrimi-
nator. The Discriminator acts as a two-dimensional classifier to distinguish between real
and simulated samples, while the Generator is used to model the real sample distribution
and generate simulated samples based on that distribution. The Generator and Discrimi-
nator undergo iterative training to enable the Discriminator to accurately distinguish the
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source of training samples. Simultaneously, this process aims to enhance the similarity
between the simulated samples generated by the Generator and the standard samples,
ultimately achieving the goal of underwater image enhancement. GAN has demonstrated
significant generative capabilities in the domain of image generation [64] and is extensively
utilized for dataset enhancement.

The core idea of FUnIE-GAN [53] is to find the nonlinear mapping relationship be-
tween the distorted image and the enhanced image through a condition-based GAN model.
The generator in FUnIE-GAN employs a fully convolutional network with a Unet structure.
Both the encoder and decoder consist of five convolutional layers, and the decoder utilizes
anti-convolution. Regarding the discriminator, FUnIE-GAN adopts a Markovian Patch-
GAN [65] to identify local texture and content similarity. The complete network structure
is illustrated in Figure 5.
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Figure 5. The overall network structure of FUnIE-GAN is divided into two parts: Generator and
Discriminator. (a) Generator: a fully convolutional network using the U-net structure, in which the en-
coder and decoder have 5 convolutional layers each, and the decoder uses inverse convolution.
(b) Discriminator: a Markovian PatchGAN is used to seek similarity between local texture
and content.

3.2. YOLOv7-GN
3.2.1. Overview of YOLOv7-GN

There are considerable differences between the underwater and land environments, in-
cluding factors like light attenuation, scattering, absorption, etc. These factors significantly
degrade the quality of underwater images. Thus, a robust backbone is essential for feature
extraction. To enhance model accuracy while minimizing parameter count and computa-
tional load, a lightweight higher-order attention layer aggregation network (ACC3-ELAN)
is introduced into the Backbone. This enhanced Backbone reduces parameter count while
capturing more intricate higher-order feature information across different scales, thereby
facilitating robust feature extraction. In the head network, we leverage the interaction of
multi-scale higher-order information to enhance it and fuse higher-order semantic informa-
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tion from features at different scales. Furthermore, we introduce the AC-ELAN-t module,
derived from pruning based on ACC3-ELAN, to further streamline the entire network
while improving the model performance. Figure 6 illustrates the comprehensive network
structure of YOLOv7-GN.

Figure 6. The overall network structure of YOLOv7-GN.

3.2.2. Backbone Network Based on ACC3-ELAN

ACmix [56] allows our proposed network to gain the ability to globally capture low-
frequency information with a self-attention mechanism at minimal overhead. However,
self-attention alone cannot achieve the same performance as Transformers. The three key
factors for the success of Transformers can be attributed to the input adaptive weight
generation strategy, the long-range spatial modeling capability, and the higher-order spatial
interactions, the first two of which are implemented in the self-attention mechanism.
However, there is no relevant research in the field of higher-order spatial interactions.

The introduction of gn Conv recursive gated convolution [61] serves the purpose
of extending the higher-order spatial interactions. This approach implements spatial
interactions through gated convolution and recursive design, providing flexibility and
customizability. Importantly, it can be compatible with a wide range of convolutional
variants and extends the second-order interaction in self-attention to arbitrary orders
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without introducing significant extra computation. Taking the first-order spatial interaction
as an example, for the input feature x ∈ RHW×C, its specific operation is as follows:

In the first step, x is upscaled to twice its original size by a linear projection layer:

[m0 ∈ RHW×C, n0 ∈ RHW×C] = ϕin(x) ∈ RHW×2C (4)

where H is the feature height, W is the feature width, C is the number of channels of the
feature, and ϕin is the input fully connected layer.

In the second step, the features are matrix partitioned, and the DWConv (Depth-wise
convolution) operation is performed on n0:

n0
′ = f (n0) ∈ RHW×C (5)

where f denotes a depth-separable convolutional layer.
The third step is to multiply n0

′ and m0 to realize the spatial interaction:

m1 = n0
′ · m0 ∈ RHW×C (6)

In the fourth step, the output is mapped to the desired dimension by a linear projection
layer of channel mixing.

yout = ϕout(m1) ∈ RHW×C (7)

The detailed operation flow is shown in Figure 7.
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Figure 7. Principles of first-order spatial interaction. (a) Linear projection layer, which can map the
input c-channels to any dimension. (b) Matrix partitioning splits the input into two outputs of equal
size. (c) Depth-wise convolution. (d) Matrix Multiplication, which is used to calculate the product
between two matrix.

The fundamentals of higher-order spatial interactions remain consistent with first-
order interactions. The key distinction involves altering the dimension of the output
derived from the linear projection layer. By doing so, spatial interactions can be realized, as
depicted in Figure 8 for the third-order spatial information interactions of g3 Conv.

Underwater images are commonly affected by lighting conditions, scattering, and
absorption, leading to diminished image quality. In this study, we employ the GNHB
residual connection module based on gn Conv recursive gated convolution. The residual
structure introduces additional information paths through jump connections and feature
passing, facilitating improved learning and capturing of underwater object features.

ACmix combines self-attention with convolution. gn Conv recursive gated convolution
extends the self-attention mechanism with higher-order spatial interactions of feature
information, and neither introduces additional computational overhead. We combine
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the two and propose a lightweight higher-order attentional layer aggregation network
(ACC3-ELAN) for use in Backbone. Compared to the original ELAN structure, ACC3-
ELAN acquires more extensive global higher-order attentional features while concurrently
decreasing the number of parameters.
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As illustrated in Figure 9, ACC3-ELAN builds upon the state-of-the-art ELAN ar-
chitecture [62]. ELAN introduces a layer aggregation architecture with efficient gradient
propagation paths, utilizing the shortest and longest gradient paths of each layer in the net-
work. It optimizes the gradient lengths of the entire network through the stack structure in
the computational blocks. ELAN enables the network to learn more abstract and advanced
feature representations, capturing richer information in the input data and enhancing the
model’s expressive power. However, stacking multiple convolutional blocks leads to a
significant increase in parameters and computational load, which we aim to mitigate.

To address this concern, we initiate model pruning on the original ELAN module.
We evaluate the importance of each convolutional layer in ELAN, filter out redundant
branch convolutional modules, and remove them. The pruned module is more lightweight,
albeit with some performance loss. Subsequently, we replace the convolutional layers on
the non-residual links in the pruned model with GNHB and ACmix. A combination of
GNHB and ACmix is utilized on the main link. The input features initially pass through
a GNHB to acquire preliminary higher-order semantic information. Subsequently, an
ACmix is applied to enable the self-attention mechanism to globally capture low-frequency
information with minimal computational expenditure. Finally, another GNHB is employed
to further enhance the higher-order semantic information. In comparison to the original
pure convolutional layers, this hybrid paradigm combines the two approaches to obtain
richer global higher-order attentional features with reduced computational effort.
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3.2.3. Improved Head Network Based on Multi-Scale Higher-Level Information Interaction

The primary role of the Head part in YOLOv7 is to conduct multi-scale feature fusion
of feature maps and regression prediction. Given the varied sizes and scales of targets in
underwater environments, we replace the original convolutional layer with three GNHBs
at the connection between the Backbone and Head. This replacement enhances the fusion
of higher-order semantic information across different scales, enabling the extraction of
more robust feature representations. The output channels of the three GNHB modules at
the connection are 64, 128, and 128, respectively, arranged in a gradient based on the scale
of the features. The receptive field can be dynamically adjusted to meet the detection and
localization requirements of objects with different scales.

Instead of using ACC3-ELAN in the Head, we adopt the lighter weight AC-ELAN-t.
In particular, the input and output channels remain unchanged, and the GNHB modules in
ACC3-ELAN are replaced by CBS convolutional modules. This substitution further reduces
the complexity of the overall network, facilitating easy deployment to edge devices.

4. Experiments and Results

In this section, we begin by presenting the experimental configurations and materials.
Next, specific ablation experiments are conducted on YOLOv7-GN, followed by a detailed
evaluation of the performance of the FUnIE-GAN underwater image enhancement. Finally,
the model is compared with mainstream object detection models, and its deployment on
an embedded device is discussed.

4.1. Experimental Environment

In our algorithm design and implementation, we employed the PyTorch deep learning
framework. For model training, we utilized stochastic gradient descent to optimize the
model parameters, setting the momentum to 0.937 and the weight decay parameter to
0.0005, and incorporating the Mixup image mashup data enhancement technique with a
probability of 0.15. Additionally, for effective model training, we employed the dynamic
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learning rate method, initializing the learning rate to 0.01 and gradually decreasing it using
the cosine learning rate strategy [66]. The batch size was set to 16, and the number of
workers was set to 30 to enable multi-threaded data loading. The complete training process
of the model spanned 300 epochs, with each epoch representing the entire training dataset
being fed into the network once.

In this experiment, all parameters are consistent with YOLOv7 [24] except for batch
size and epochs, ensuring experimental fairness. Setting the epochs to 300 aims to prevent
model overfitting/underfitting and reduce training hardware costs. The choice of batch
size was primarily informed by studies [67,68] from other scholars and tasks of similar size.
Experimental equipment and environmental setup details are provided in Table 1.

Table 1. Experimental setup and specific parameters.

Parameter Configuration

CPU model Intel Xeon Gold 6248R
GPU model NVIDIA RTX A6000 (48 GB)

CUDA version CUDA 11.4
Python version Python 3.8.10

Deep learning framework Pytorch 1.12.1
Operating system Ubuntu 20.04.3 LTS

4.2. Evaluation Metrics and Dataset
4.2.1. Evaluation Metrics

To accurately evaluate the object detection model’s performance in this study, we
utilized precision, recall, Mean Average Precision (mAP), and F1 score as the performance
evaluation metrics. Firstly, IoU (Intersection over Union) is a commonly used evaluation
metric in the field of object detection to measure the degree of overlap between the model
detection results and the actual target location. It quantifies the accuracy of detection by
calculating the ratio of the intersection area to the union area of the detected box. If A is
used to denote a real object box in the dataset and B is used to denote the predicted box
after model detection, then the expression of IoU is as follows:

IoU =
A ∩ B
A ∪ B

(8)

Precision measures how many of the samples that the model recognizes as positive
categories are true positive categories. The expression is shown in Equation (9), where TP
is the number of true cases (samples correctly predicted by the model to be positive), and
FP is the number of false positive cases (samples incorrectly predicted by the model to be
positive). Recall is a measure of how many of the true positive categories are successfully
recognized by the model, and the formula is shown in Equation (10), where TP is the true
cases, and FN is the false negative cases (samples incorrectly predicted by the model as
negative categories).

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

Mean Average Precision (mAP) is a widely used, comprehensive metric used to evalu-
ate object detection. mAP accounts for the differences between various object categories,
and its calculation involves the area under the Precision–Recall curve. In object detection,
AP is typically calculated at different confidence thresholds to generate the Precision–Recall
(P–R) curve. However, the model may only be effective at a specific threshold (e.g., 50%).
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Therefore, we specifically use mAP50 to evaluate performance. Generally, a higher mAP
value indicates better performance of the model in object detection.

APc = ∑
∫ 1

0
p(Rc)dRc (11)

mAP =
1
N

N

∑
i=1

APi (12)

The F1 Score is the reconciled average of Precision and Recall, which combines the
precision and recall of the model.

F1 score =
2 × P × R

P + R
(13)

In this study, we denote accuracy, recall, and detection class as P, R, and c, respectively.
Additionally, TP, FN, and FP represent true-positive, false-negative, and false-positive
instances, respectively. Here, N denotes the total number of categorized classes.

For underwater image quality evaluation, we utilize two non-reference evaluation
metrics, Naturalness Image Quality Evaluator (NIQE) [69] and Underwater Color Image
Quality Evaluation (UCIQE) [60]. The computation of NIQE relies on the fitting process
of both the natural and distorted images. First, NIQE establishes the fitting relationship
between natural and distorted images by obtaining their means (k1, k2) and variance
matrices (λ1, λ2). Then, it evaluates the quality of the images, calculating the distance
between the fitting parameters of the warped images and the fitting parameters of the
natural images. The NIQE value is a quantification of this difference, with lower values
indicative of higher image quality.

NIQE =

√
(k1 − k2)

T(
λ1 + λ2

2
)
−1

(k1 − k2) (14)

UCIQE involves key parameters for image quality assessment. First, δc represents the
standard deviation of color intensity, conl denotes the contrast of luminance, and µs is the
mean of saturation. These parameters are weighted by specific constant value (∂1, ∂2, ∂3),
with values of 0.4680, 0.2745, and 0.2576, respectively. These constant values align with the
data in the literature [70].

UCIQE = ∂1 × δc + ∂2 × conl + ∂3 × µs (15)

The UCIQE formula quantifies the overall image quality in a weighted manner by
combining the averages of color intensity, brightness contrast, and saturation. A higher
UCIQE value corresponds to better image quality.

4.2.2. Dataset

DUO [71] is an open-source underwater dataset created in 2021. The dataset comprises
a total of 74,515 objects including sea cucumbers, sea urchins, scallops, and starfish, with
quantities of 7887, 50,156, 1924, and 14,548, respectively. As depicted in Figure 10, sea
urchins are the most numerous, constituting 67% of the overall count. Due to variations
in the economic values of different seafood products, leading to differences in species
numbers, the overall data distribution exhibits a clear long-tail pattern. Figure 10 also
illustrates the distribution of center coordinates and target sizes of the boxes in the dataset.
The overall dataset sample distribution is observed to be unbalanced, with small targets
(w < 0.3, h < 0.4) constituting the majority of the data, posing a more significant challenge
for each object detection model.
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Simultaneously, we employ two non-reference underwater image evaluation metrics,
NIQE and UCIQE, to assess the underwater image quality of the dataset. This facilitates
the subsequent quantitative comparison of underwater image enhancement effects. Table 2
presents all the key information of the DUO dataset.

Table 2. Overall information about the DUO dataset.

Dataset Environment Image Number Holothurian Echinus Scallop Starfish NIQE UCIQE

DUO Sea Floor 7782 7887 50,156 1924 14,548 11.893 0.4209

4.3. Ablation Experiments

To comprehensively assess the effectiveness of each scheme for YOLOv7-GN, we
conducted ablation experiments on the DUO dataset, outlining the improvement strategies
in Table 3. The performance evaluation focuses on precision (P), recall (R), F1 score, Mean
Average Precision (mAP50 and mAP50:95), Parameters, Giga Floating-point Operations
Per Second (GFLOPs), and the size of the weights file generated after completing model
training (Model Size). The results of each scheme are presented in Table 4. Additionally,
the results of the ablation experiments are depicted in Figure 11 to facilitate the observation
of data variations.
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Table 3. Different improvement programs based on YOLOv7.

Scheme GNHB AC-ELAN-t ACC3-ELAN

YOLOv7-tiny
(baseline)

ACEL-YOLOv7t
√

ACC3-YOLOv7t
√

C3-YOLOv7t
√

C3-ACEL-YOLOv7t
√ √

YOLOv7-GN (ours)
√ √ √

Table 4. Ablation experiment results. Parameters in bold are optimal.

Model P (%) R (%) F1 (%) mAP50 (%) mAP50:95 (%) Parameters (M) GFLOPs Model
Size (MB)

YOLOv7 (baseline) 84.45 77.55 80.85 84.79 62.7 6.23 13.9 11.72
ACEL-YOLOv7t 85.35 77.8 81.4 85.34 62.49 5.91 13.1 11.52

C3-YOLOv7t 84.62 78.52 81.46 86.02 63.73 6.04 13.6 11.87
C3-ACEL-YOLOv7t 87.2 78.28 82.5 86.21 64.22 5.93 13.4 11.68

ACC3-YOLOv7t 85.88 79.81 82.73 86.25 64.19 5.54 12.4 11.11
YOLOv7-GN 87.48 78.46 82.72 86.78 65.11 5.45 12.6 11.05
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Specifically, in the ACEL-YOLOv7t scheme, we integrate the AC-ELAN-t obtained
from pruning ACC3-ELAN into the head network. This replaces the original ELAN module
connected to the detection head, and we arrange the AC-ELAN-t modules in a gradient
according to the size of the feature pyramid. The other ELAN modules in the network
remain unchanged. To investigate the impact of ACC3-ELAN on the extraction ability of
high and low-frequency features and the overall network size, we primarily replace and
improve the ELAN in the Backbone of the ACC3-YOLOv7t scheme. After each MP module
in the Backbone, we replace the ELAN module with ACC3-ELAN, using it as a connection
to the HEAD feature pyramid (FPN) at a key location. In the C3-YOLOv7t scheme, we
primarily explore the gain of higher-order information interaction brought by GNHB to the
overall network. We replace the two 1 × 1 convolutional layers connecting the Backbone
in the original HEAD feature pyramid (FPN) with GNHB modules. Subsequently, we
insert another GNHB module at the end of the Backbone to further enhance the network’s
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ability to extract higher-order information. The C3-ACEL-YOLOv7t scheme is our pro-
posed improved head network based on multi-scale higher-order information interaction.
Combining the above three makes up our improved algorithm called YOLOv7-GN.

The results of the ablation experiments are presented in Table 4. From Table 4, we can
see that the YOLOv7-tiny algorithm has lower F1 scores, mAP, and other object detection
metrics. Simultaneously, there is still potential for further compression of model parameter
counts, GFLOPs, and the size of the trained model. ACEL-YOLOv7t introduces our
lightweight ELAN module for the first time compared to the original algorithm, resulting
in decreased model parameter counts, GFLOPs, and Model Size. Crucially, while the model
is lightweighted, the integration of self-attention and convolution through ACmix cleverly
improves global dependency modeling. ACEL-YOLOv7t improves mAP by 0.55% and
reduces the number of model parameters by 0.32.

In the C3-YOLOv7t scheme, we employ recursive gated convolution at the key connec-
tion location of the Backbone and feature pyramid (FPN), providing higher-order feature
information of different sizes. This simple design brings a 1.23% performance improvement
to the mAP of the network and increases the F1 score by 0.61%. However, the size of
the network is increased. For the C3-ACEL-YOLOv7t scheme, compared to the previous
scheme, the improved head network based on multi-scale higher-level information inter-
action achieves a more significant performance improvement. It increases mAP by 1.42%,
P by 2.25%, and F1 by 1.65%. The model parameters are reduced by 0.3 million while taking
advantage of the higher-level spatial interaction with gated convolution and
recursive design.

The ACC3-YOLOv7t scheme demonstrates the performance of the lightweight higher-
order attention layer aggregation network. ACC3-ELAN enables Backbone to possess three
simultaneous capabilities: an input adaptive weight generation strategy, long-distance
spatial modeling capability, and higher-order spatial interaction. This scheme increases R,
F1, and mAP by 2.26%, 1.88%, and 1.46%, respectively, while reducing the number of model
parameters by 0.69 million and GFLOPs by 1.5. Notably, ACC3-YOLOv7t achieves the best
recall (R) and GFLOPs among all scenarios, illustrating that the lightweight higher-order
attentional layer aggregation network (ACC3-ELAN) efficiently reduces the calculated load
and captures most actual positive samples, minimizing the chances of missing the target.

YOLOv7-GN is a fusion of the previously mentioned schemes, and in comparison with
the baseline, YOLOv7-GN achieves significant improvements. Specifically, YOLOv7-GN
enhances precision (P) by 3.03%, recall (R) by 0.91%, F1 score by 1.87%, and mean Average
Precision (mAP) by 1.99%. Moreover, the number of model parameters and GFLOPs are
reduced by 0.78 million and 1.3, respectively. The model size is also decreased by 0.67 MB.
Compared to the baseline, YOLOv7-GN showed better performance in terms of accuracy,
recognition speed, and model size.

To further characterize the enhancement effect of our method on the original model,
we compare YOLOv7-GN with the baseline model’s Precision–Recall curves, as illustrated
in Figure 12. This curve illustrates the trade-off between precision (Precision) and recall
(Recall) at varying confidence thresholds, with the area between the curve and the axes
representing the Average Precision (AP). The results show that the AP of YOLO-GN is
higher, and the overall performance is better, than that of the benchmark model.

We additionally conducted a comparison of the F1–Confidence curves for both models,
as depicted in Figure 13. Combining the F1 Score and Confidence in the object detection
task, the F1–Confidence curve serves as a metric for evaluating the model’s performance.
The curve illustrates the correlation between the F1 Score and Confidence across various
confidence thresholds, facilitating the analysis of the model’s performance under differ-
ent confidence levels. Experimental results indicate that YOLOv7-GN exhibits superior
recall compared to the benchmark model across most confidence levels. This suggests
that YOLOv7-GN strikes a balance between Precision and Recall, enhancing robustness,
especially in scenarios with an imbalanced distribution of samples in the target category.
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4.4. Underwater Image Enhancement

In this section, we examine the impact of diverse image enhancement methods on un-
derwater image enhancement and compare traditional image enhancement methods with
the FUnIE-GAN method. Initially, we illustrate the effects of various image enhancements
through subjective evaluation. Subsequently, we employ two non-reference evaluation
metrics to assess the enhancement effect objectively. Finally, we implement the optimal
underwater image enhancement scheme in YOLOv7-GN and assess the performance of the
enhanced version.
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4.4.1. Evaluation of Underwater Image Enhancement

We employed various common underwater image enhancement methods for compar-
ative analysis, namely Gamma Correction (GC), CLAHE [72], HE [73], ICM [74], Rayleigh
Distribution (RD) [75], RGHS [48], UCM [76], and FUnIE-GAN. Table 5 presents a compar-
ison of the definitions, advantages, and disadvantages of common image enhancement
methods. Illustrated in Figure 14, we selected four scenarios with distinct challenges
from the DUO dataset as test samples, encompassing green, turbid, and low-visibility
scenarios, respectively.

Table 5. Comparison table of common image improvement methods.

Method Definitions Advantages Drawbacks

GC Apply a power transformation to
every gray value of the image

Easy to use and performs
effectively in low-light conditions

Susceptible to distortion in
high-contrast images

HE [73] Uniform distribution of the
grayscale histogram

Effectively increases image
contrast without relying on
parameter settings

Following the homogenization
process, dark areas may exhibit
noise

CLAHE [72]

Optimization of image
block-to-block transition problem
in HE method using linear
interpolation approach

Enhanced naturalness of images
and noise suppression

For images with low global
contrast, the effect may not be as
good as global histogram
homogenization

ICM [74]
Stretching the contrast of the RGB
algorithm and the saturation and
intensity stretching of the HIS

Equalizes the color contrast in the
images and also address the
problem of lighting.

Parameters need to be adjusted for
different underwater
environments

RGHS [48]
A shallow water image
enhancement method based on
adaptive parameter acquisition

Adaptive to different image
conditions

Fine-tuning parameters is
necessary for complex
environments

UCM [76] An unsupervised color correction
method

Efficiently removes the bluish color
cast and improve the low red color

The enhancements exhibit
instability and incur high
computational costs

RD [75]
The histograms of the RGB and
HSV models of the image are
adjusted and fused separately

Effectively improves image
contrast and reduces the effect of
blue-green color difference

Oversaturation may occur in some
scenarios
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Figure 14. Comparison of common underwater image enhancements.

From the results depicted in Figure 14, it is evident that the FUnIE-GAN method
attains a more realistic color restoration of underwater images while maintaining a certain
level of clarity during dehazing. The GC method enhances the overall brightness of the
photo and is effective in high-contrast scenes between foreground and background, but its
overall enhancement effect is relatively weak. The CLAHE, ICM, and RGHS methods all
achieve varying levels of dehazing and color restoration on the original image, with RGHS
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performing the best in the fourth group of photos by naturally eliminating greenish hues.
The HE and RD methods achieve strong color restoration on underwater images, resulting
in images with richer colors than the real-world images and serious purple fringing around
the objects. The UCM method performs comparably to FUnIE-GAN, but FUnIE-GAN
outperforms in terms of clarity and color restoration. In the second group of photos,
FUnIE-GAN successfully restores the blue ocean in the background, while UCM exhibits
a brownish-green hue. Overall, the FUnIE-GAN method achieves the most balanced
performance, with clear distinctions between targets and backgrounds in the enhanced
images and restoration of more realistic textures and color features.

Then, we employed two non-reference evaluation metrics, UCIQE and NIQE, to
objectively assess these various image enhancement methods. A random image from the
dataset was selected as the original image, and the score of this image served as the baseline.
The final results of the objective evaluation are presented in Table 6.

Table 6. The UCIQE and NIQE scores of different image enhancement methods. The numbers
in parentheses represent the amount of change compared to the baseline. The bolded parameters
are optimal.

Method UCIQE NIQE

Original 0.4766 12.877
GC 0.4487 (−0.0279) 12.666 (−0.211)

CLAHE 0.5567 (+0.0801) 13.143 (+0.266)
HE 0.6139 (+0.1373) 12.924 (+0.047)

ICM 0.5255 (+0.0489) 13.178 (+0.301)
RGHS 0.5779 (+0.1013) 12.833 (−0.044)
UCM 0.5912 (+0.1146) 13.317 (+0.44)
RD 0.6251 (+0.1485) 11.294 (−1.583)

FUnIE-GAN 0.6035 (+0.1269) 15.691 (+2.814)

From the results in Table 6, it is evident that, except for GC and RGHS, all other
methods exhibit improvement in image quality compared to the original images. FUnIE-
GAN achieves the best performance in terms of the EIQE metric, with a score increase of
2.814 points compared to the original image. UCM obtains a score of 13.317, while HE
and RD achieve scores of 12.924 and 11.294, respectively. Regarding the UCIQE evaluation
metric, all methods, excluding GC, demonstrate improvement compared to the baseline.
RD and HE receive scores of 0.6251 and 0.6139, respectively, while FUnIE-GAN achieves a
score of 0.6035. It is noteworthy that RD and HE attain slightly higher scores in the UCIQE
metric. We speculate that this might be associated with the evaluation criteria of UCIQE,
which quantitatively assesses non-uniform color shifts, blurriness, and low contrast using a
linear combination of chromatic standard deviation, saturation, and contrast. The higher
saturation and contrast in RD and HE could contribute to their better performance in
UCIQE. Furthermore, Figure 15 illustrates the detailed performance of FUnIE-GAN and
HE methods on the fourth group of photos.

From Figure 15, it is evident that the images enhanced by the HE method display
a broad spectrum of colors but also experience significant local color distortions. In the
magnified detail image, it is apparent that the sea urchin has lost its original color and is
even subjected to hue shifts, particularly noticeable in the bottom right corner. This clearly
impacts on the object detection task.

In conclusion, we assess the image enhancement effects from both subjective and
objective perspectives. The evaluation results unequivocally illustrate that the FUnIE-GAN
underwater image enhancement method attains a more comprehensive enhancement effect.
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4.4.2. Evaluation of Object Detection Models after Underwater Image Enhancement

In order to investigate the potential impact of underwater image enhancement on
object detection performance, we selected two relatively balanced methods, CLAHE and
FUnIE-GAN, for testing. The enhanced datasets were incorporated into the YOLO-GN
network during training, and the test results are presented in Table 7. CLAHE-YOLOv7-GN
denotes the use of CLAHE as the underwater enhancement method, while FUnIE-YOLOv7-
GN designates the utilization of FUnIE-GN as the underwater enhancement method.
From the experimental outcomes, we found that the CLAHE method achieved the highest
improvement in object detection accuracy, but there was a decrease in recall rate and other
metrics. This could be attributed to the fact that, in certain scenarios, CLAHE may render it
challenging to differentiate between objects and the background, consequently resulting in
an elevated rate of missed detections. The FUnIE-GAN method showed improvements in
recall rate, F1 score, and mAP, with a 2.64% increase in mAP50:95 and a 0.16% increase in
mAP50. In comparing the results of CLAHE and FUnIE-GAN, it is apparent that image
enhancement algorithms aim to improve the perceptual quality of images to the human eye.
However, improvements in image evaluation metrics do not necessarily correlate directly
with improvements in object detection performance. Additionally, diverse underwater
image enhancement methods may necessitate fine-tuning for better adaptation to various
object detection tasks in different scenarios.

Table 7. Effect of CLAHE and FUnIE-GAN image enhancement methods on object detection perfor-
mance. The bolded parameters are optimal.

Model mAP50 (%) mAP50:95 (%) R (%) P (%) F1 (%)

Original Image-YOLOv7-GN 86.76 65.18 77.98 88.13 82.74
CLAHE-YOLOv7-GN 85.84 64.53 75.31 88.35 81.31
FUnIE-YOLOv7-GN 86.92 67.82 79.87 87.56 83.54
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Figure 16 employs the Class Activation Mapping (CAM) feature visualization tech-
nique to produce weighted heatmaps, enabling a thorough comprehension and comparison
of the detection performance and decision-making procedures among different enhance-
ment methodologies. From the figure, we can see that predicting on the original unpro-
cessed image led to many false positives due to the network showing a high interest in
regions where there were no objects. The use of FUnIE-GAN reduced this issue without
losing any targets. Although the RD method performed better than FUnIE-GAN in terms
of the UCIQE evaluation metric, its actual object detection performance was consistent
with our analysis and prediction. The excessive color enhancement interfered with the net-
work’s judgment, making it difficult for the network to detect targets in the lower regions
of test images. The YOLOv7-GN combined with the FUnIE-GAN paradigm was the final
method proposed.
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Figure 16. Comparison of attention maps trained by different underwater image enhancement
methods. Visualization of the attentional map of the detector neck onto the enhanced input im-
age using the CAM method. (a) Original input image. (b) Attention map of the original image.
(c) FUnIE-GAN. (d) CLAHE. (e) GC. (f) RD. The darker color in the attention map represents the
higher probability that the network thinks there is a target here, and the more interested the network
is in this region.

4.5. Comparison with Other Object Detection Methods

To objectively assess the effectiveness of YOLOv7-GN, we compare our method with
several state-of-the-art (SOTA) object detection methods in this section, including Faster
R-CNN [18], the YOLOv5 series, and the latest YOLOv8 series. All experiments were
conducted under identical environmental conditions and datasets, and the results are
presented in Table 8. The visual analysis of the results is depicted in Figure 17.

The F1 score reflects the network’s balanced performance in terms of precision and
recall. YOLOv7-GN achieved an F1 score of 82.72, which is second only to the best result. Al-
though YOLOv3 showed superior results in the F1 score, it experienced a 2.87% decrease in
mAP50% compared to YOLOv7-GN, and the generated model size increased by 10.67 times.
YOLOv7-GN demonstrated the best performance in terms of the mAP50% metric, with
a 12.98% improvement over Faster R-CNN and a 2.88% improvement over YOLOv5s. It
is noteworthy that YOLOv7-GN achieved these performance improvements with only
5.45 million parameters, fewer even than top-performing models such as YOLOv8s and
YOLOv5s. In terms of network size comparison, YOLOv5s exhibited similar performance
to YOLOv7-GN but significantly compromised accuracy.
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Table 8. Comparison experiment. Bolded parameters are optimal.

Model Backbone F1 (%) mAP50 (%) Parameters (M) GFLOPs Model Size
(MB) *

TOOD [77] ResNet18 - 76.5 18.85 33.52 -
Faster R-CNN [78] ResNet50 79.78 73.8 41.14 63.26 -

RetinaNet [79] ResNet50 67.81 70.4 36.17 52.62 -
YOLOv3 DarkNet53 83.41 83.91 61.53 155.3 117.82

YOLOv5m CSPDarkNet53 82.63 84.27 20.88 48.3 40.25
YOLOv5s CSPDarkNet53 82.21 83.9 7.03 16.0 13.75
YOLOv8s CSPDarkNet53(c2f) 82.55 86.12 11.17 28.8 21.49

YOLOv7-GN ACC3-DarkNet53 82.72 86.78 5.45 12.6 11.05

* Model Size: Due to the different coding formats used to generate weights, only the Model Size of the YOLO
series will be compared here.
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4.6. Visual Result Analysis

In this section, we visualize the detection results and further analyze the differences
in our method’s detection performance. Underwater object detection is affected not only
by factors such as refraction and scattering of seawater, which can cause image blurring,
but also by the clustering of underwater organisms. This can lead to multiple overlapping
targets, and the varying distances between the captured images and the targets can result
in multi-scale transformations, which pose a great challenge to underwater object detection
models. We randomly selected six test images for visual comparison and further analysis
of the detection results, as shown in Figure 18.

From the detection results, both models exhibit good performance when the image
background is simple and the target stands out. However, in cases where target overlap
occurs, such as in the first group of images, the baseline model experiences missed detec-
tions. When the target background is complex, YOLOv7-GN detects objects with higher
confidence and demonstrates fewer instances of missed detections compared to the baseline
model. We have achieved superior performance while compressing the model size, further
validating the effectiveness of the improvements proposed in YOLOv7-GN.

To visually illustrate the advantages of YOLOv7-GN, we present the feature attention
effects in the form of heatmaps, as depicted in Figure 19.
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the network pays to them during recognition.
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From Figure 19, it is evident that compared to YOLOv7, YOLOv7-GN significantly
enhances the focus on the target region by incorporating a lightweight higher-order atten-
tion aggregation network. The network concentrates attention more on the core features of
the target, effectively suppressing other noise and unrelated features in the image. This
observation suggests that YOLOv7-GN exhibits enhanced robustness.

4.7. Embedded Deployed Results

To assess the feasibility of deploying our proposed lightweight model on embedded
devices, we designed a biomimetic flatworm underwater robot to validate the algorithm’s
practical applications. Illustrated in Figure 20, this robot utilizes a reciprocating crank
rocker mechanism as a power transmission component, employing a drivable flexible
skeleton to transmit power. It also features drive fins that oscillate reciprocally, generating
a stable waveform to propel the robot forward. We integrated a Jetson Nano [80] as the
visual processing module at the tail of the biomimetic robot, connecting it to the camera
module at the robot’s head via a data cable, thereby establishing the visual system of the
biomimetic robot.

After assembling the biomimetic robot based on the model, we evaluated the feasibility
of deploying our method on embedded devices in an actual underwater environment.
Initially, we implemented YOLOv7-GN on the Jetson Nano embedded host computer.
Jetson Nano, a small and cost-effective artificial intelligence (AI) computer developed by
NVIDIA, incorporates a high-performance NVIDIA Maxwell architecture GPU and a quad-
core ARM Cortex-A57 processor known for its exceptional energy efficiency. This device
supports various AI frameworks, including TensorFlow, PyTorch, and Caffe, enabling the
development and deployment of deep learning models on edge devices. In comparison
to the mainstream embedded deep learning development board Jetson TX2, Jetson Nano
has 2.75 times less computing power, imposing more stringent requirements on model size
deployment. Nevertheless, our method operates smoothly on Jetson Nano, providing a
comprehensive visual system. As illustrated in Figure 21, we fabricated the biomimetic
robot and conducted relevant underwater tests.
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Figure 21. Real-world testing of the biomimetic flatworm robot. (a) Photograph of the robot.
(b) The underwater working state of the robot. (c) Ubuntu recognition result interface.

In the tests, we compare mainstream embedded-oriented object detection models with
YOLOv7-GN, including YOLOv7-tiny and YOLOv5s, on this robot. Their corresponding
scheme EM-YOLOv7-tiny, EM-YOLOv5s, and EM-YOLOv7-GN. The results are presented
in Table 9. Besides the key metrics, the table displays the accuracy for each category. Accord-
ing to the experimental results, EM-YOLOv7-GN achieves the highest mAP and boasts the
smallest parameters and GFLOPs. EM-YOLOv5s exhibits the highest AP value for object
recognition in both Echinus and Starfish categories, while EM-YOLOv7-tiny demonstrates
a more balanced performance. These results demonstrate the superior balance between
accuracy and network size that EM-YOLOv7-GN provides on embedded platforms.

Table 9. Comparative experiments on embedded platforms. The bolded parameters are optimal.

Model mAP (%)
AP (%)

Parameters (M) GFLOPs
Holothurian Echinus Scallop Starfish

EM-YOLOv7-tiny 78.5 80.1 88.1 57.5 88.4 6.23 13.9
EM-YOLOv5s 77.7 80.8 91.3 48.3 90.3 7.03 16.0

EM-YOLOv7-GN 81.0 83.1 88.7 63.1 89.1 5.45 12.6

In conclusion, we have conducted both theoretical verification and practical deploy-
ment testing of the algorithm. Through the final practical validation, we have seen the
possibility of actual application implementation of YOLOv7-GN, rather than just staying at
data comparison and theoretical analysis.

5. Discussion

In the domain of underwater object detection, relying solely on 2D convolutions is
insufficient for capturing deeper feature information due to substantial environmental
variations and diverse target scales and morphologies. The utilization of global attention to
capture features would not only escalate the training model’s cost but also substantially
increase the overall network size, contradicting our initial goal of developing lightweight
networks deployable on embedded devices [55,56]. We assert that the key to achieving
superior performance with YOLOv7-GN lies in the paradigm of combining convolution and
self-attention. This approach not only integrates high and low-frequency information but
also strikes a balance between speed and accuracy. Moreover, through network structure
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design, we have empowered the network to enhance its fusion perception capability of
multi-scale higher-order features without an increase in the number of parameters.

In this study, we completed the deployment of the proposed YOLOv7-GN on an under-
water robot for practical testing. During the testing phase, we observed limitations in our
method. Firstly, the initialization of the model takes longer due to hardware performance
constraints. Secondly, the camera transmits jittery images during actual operation due
to the robot’s motion mode, posing challenges for the object detection model. The robot
scheme discussed in the paper represents our preliminary design, and we plan to enhance
both the hardware and software aspects of our program for further improvements.

In our future work, we plan to explore the utilization of our method as a pre-task for
object tracking, a prominent research area in computer vision. Object tracking involves
continuously monitoring the position of an object in a video sequence and updating its
location in response to movement, deformation, or occlusion. Object tracking is widely
used in various fields such as remote sensing video target tracking, species conservation,
etc. Many object tracking systems utilize object detection to initialize the tracker, providing
the initial position and bounding box of the target. We hypothesize that employing our
method as a pre-task for object tracking will not only enhance the performance of object
tracking but also contribute to making the entire system more lightweight. In the upcoming
research, we aim to validate this hypothesis.

Furthermore, we will consider the migration capability of our method in different
application scenarios. In our practical research, we have identified several application
scenarios in the object detection that pose challenges, such as color shifts in the original
image, transformations of the target scale, and similarities between the target and the
background. These scenarios include satellite remote sensing images and target detection
in UAV aerial images. In UAV aerial image object detection, the color shift of the original
image occurs due to the weather or to the noise source generated by the photosensitive
element in the equipment. Most notably, UAVs are embedded devices like underwater
robots, and the vision system of UAVs also requires a lightweight model to enable more
sophisticated control and versatile functionality. Thus, we will extend the application of
our method to the task of object detection in remote sensing images from UAVs and explore
the possibility of its application in additional fields.

6. Conclusions

Complex underwater environments present significant challenges to object detection
models, particularly for deployment in underwater UAVs, where lightweight and efficient
models are essential. Existing object detection models like YOLOv7 and Faster R-CNN
suffer from limitations such as poor robustness and high computational cost. This paper
proposes an innovative approach to underwater object detection by leveraging deep learn-
ing techniques and image enhancement methods to address the aforementioned challenges.
Underwater images are enhanced using FUnIE-GAN and fed into YOLOv7-GN. To reduce
parameters and enrich global higher-order attention features, a lightweight ACC3-ELAN
network based on ACmix and gn Conv recursive gated convolution is introduced. Ad-
ditionally, a multi-scale higher-order information interaction head network is proposed
for robust feature extraction by fusing semantic information from different scales. For
further efficiency, we also integrate a lighter AC-ELAN-t module into the head network. To
assess the feasibility of deploying our proposed lightweight model on embedded devices,
we conduct underwater tests using a biomimetic flatworm underwater robot equipped
with Jetson Nano as the visual processing module. We compare the FUnIE-GAN image
enhancement with various other methods to evaluate its effectiveness in enhancing the
object detection model’s performance. Through detailed experiments, we confirm the
efficacy of FUnIE-GAN for image enhancement. For YOLOv7-GN, we conduct ablation
experiments and compare it with other mainstream object detection models. Our method
outperforms these common object detection models in terms of Mean Average Precision
(mAP) and model size, achieving well-balanced performance between underwater object
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detection accuracy and model size. In the future, the proposed method will be utilized
as an initial task for target tracking, and we will explore its transferability to fields such
as UAV aerial photography, thereby expanding the deployment and application of the
algorithm presented in this paper.
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