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Abstract: Tidal stream turbines (TSTs) harness the kinetic energy of tides to generate electricity by
rotating the rotor. Biofouling will lead to an imbalance between the blades, resulting in imbalanced
torque and voltage across the windings, ultimately polluting the grid. Therefore, rotor condition
monitoring is of great significance for the stable operation of the system. Image-based attachment
detection algorithms provide the advantage of visually displaying the location and area of faults.
However, due to the limited availability of data from multiple machine types and environments, it is
difficult to ensure the generalization of the network. Additionally, TST images degrade, resulting
in reduced image gradients and making it challenging to extract edge and other features. In order
to address the issue of limited data, a novel non-data-driven edge detection algorithm, indexed
resemble-normal-line guidance detector (IRNLGD), is proposed for TST rotor attachment fault
detection. Aiming to solve the problem of edge features being suppressed, IRNLGD introduces
the concept of “indexed resemble-normal-line direction” and integrates multi-directional gradient
information for edge determination. Real-image experiments demonstrate IRNLGD’s effectiveness in
detecting TST rotor edges and faults. Evaluation on public datasets shows the superior performance
of our method in detecting fine edges in low-light images.

Keywords: tidal stream turbine; attachment fault detection; edge detection; renewable energy

1. Introduction

Climate change and energy shortages are two rising issues on the agenda of the world.
Human activities are driving the global warming trend observed since the mid-20th century,
and the effects are irreversible and will worsen in the decades to come. Renewable energy
sources, which are cleaner and more efficient, could play a pivotal role in sustainability de-
velopment. The theoretical capacity of tidal energy in China reaches 110 GW [1], indicating
vast prospects for development. Its underwater generator, the tidal stream turbine (TST),
does not occupy land resources, avoiding noise or visual pollution [2,3]. A TST can provide
similar power to a bigger wind turbine [4]. The above characteristics prove that tidal
stream energy is attractive for electric power generation. However, TSTs are susceptible to
factors such as biofouling [5], sudden changes in instantaneous flow velocity [6], seawater
corrosion [7], cavitation, and turbulence. These factors can result in mechanical faults or
blade damage, leading to torque imbalances and voltage fluctuations, which significantly
affect the quality of power generation, efficiency, and grid stability [8–10]. Biofouling can
cause an increase in device maintenance time and structural loading [11]; there is also a
biosecurity risk since immersed devices can serve as potential vectors for the introduction of
non-native species [12]. Therefore, timely and effectively detection of TST rotor attachment
is of significant importance.
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Current methods for TST rotor attachment detection primarily rely on electrical and
image signals. Electrical signal-based methods, usually utilizing time–frequency or statisti-
cal analysis and machine learning, have shown some effect in detecting unbalanced rotor
attachments [13–16]. However, these methods are susceptible to sea state and can find it
difficult to detect balance attachments. Image-based methods overcome the shortcomings
by analyzing the attachment conditions from underwater TST images directly. They focus
on classification and semantic segmentation networks. Zheng et al. [17] carried out at-
tachment detection using an improved sparse autoencoder (SAE) and Softmax Regression
(SR) method. They collected TST attachment images and divided the data based on the
degree of attachment. Their proposed method achieved higher accuracy compared to the
traditional principal component analysis (PCA) feature extraction algorithm. However,
they only focused on TSTs in a static state, which is an idealized condition not reflective of
reality. Therefore, Xin et al. [18] collected TST images under operational conditions to make
the dataset more representative of real-world scenarios. Then, the data were classified
using a depthwise separable convolutional neural network (CNN), which achieved higher
recognition accuracy than SAE+SR and a reasonable computational cost compared to large
deep networks such as ResNet. However, the classification-based methods fail to precisely
localize and display the biofouling. Peng et al. [19] proposed a semantic segmentation
network to identify TST blade attachments. It identified the TST blade edge by constructing
two branches of coarse and fine segmentation. However, it requires a large number of
labeled data, high computational costs, and a longer training time. Peng et al. [20] proposed
an image generation method, which extended and generated labeled data to reduce the
workload of manual labeling. The proposed C-SegNet further improved the segmenta-
tion accuracy but performed poorly in contour localization. To address the localization
misalignment caused by motion blur, Qi et al. [21] combined preceding and succeeding
frames for fault detection, significantly improving the localization accuracy on blurred
images. However, a remaining challenge is the insufficient diversity in data, leading to
inadequate network generalization. The limited data restricts data-driven algorithms to
specific environments, posing a challenge for the application of TST attachment fault detec-
tion algorithms. Moreover, the severe degradation of underwater images will impact the
extraction of features such as edges.

To address the above problem, this paper proposes a non-data-driven edge detection
algorithm, Indexed Resemble-Normal-Line Guidance Detector (IRNLGD), for TST attach-
ment fault detection. Focusing on the difficulty of extracting edge features in degraded
underwater images, we employ an eight-directional gradient operator to extract image
gradients. Next, to better utilize gradient direction information, we introduce the concept
of “indexed resemble-normal line direction” and calibrate the gradient directions based
on the trend of gradient changes. Finally, edge points are determined through the joint
calibration of gradient direction and magnitude. The experimental results on the TST
dataset and public datasets demonstrate IRNLGD’s effectiveness in dim images. What is
more, a TST attachment fault detection method is explored on the basic of IRNLGD. A two-
level detection is carried out with a data-driven lightweight classification network and
the non-data-driven algorithm IRNLGD. It combines the advantages of both algorithms,
providing more reliable and precise fault detection results.

The main contributions of this paper are as follows:

1. An effective edge detection algorithm, IRNLGD, is proposed to extract edge from
low-contrast images.

2. A TST attachment fault detection method, MobileNet-IRNLGD, is explored, which
combines data-driven and non-data-driven algorithms to strike a balance between
limited data and precise detection.

3. The proposed TST attachment fault detection method is applied specifically to the
real TST images, demonstrating the feasibility for engineering applications.

The remainder of the paper is organized as follows: In Section 2, we review the related
work on edge detection. In Section 3, the proposed method is introduced in detail. Then,
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the experimental results and analysis are presented in Section 4. Finally, we give the
conclusions of this study in Section 5.

2. Related Work

The TST images captured by underwater sensors degrade due to the environment.
According to the classical Jaffe–McGlamery underwater imaging model [22,23], the received
light by the camera can be divided into three components, i.e., a direct, forward-scattered,
and back-scattered component. The degradation process can be simplified as follows: an
increase in the camera–object distance leads to direct component attenuation, resulting in
low contrast; forward scattering causes convolution of the point spread function with scene
radiance, causing blurring; and increased background light due to backward scattering
amplifies image noise. These factors collectively drive the degradation of underwater
images, resulting in a smaller rate of intensity variation, making it challenging to extract
features such as edges.

Edge detection can significantly reduce the irrelevant information in an image, al-
lowing essential structures to be preserved. Edge detection has a rich history and can
be divided into the following two categories: handcrafted-based methods and machine
learning-based methods [24]. The two main streams have achieved satisfactory perfor-
mance in edge detection tasks. However, they still face challenges when dealing with
specific tasks such as blurred or dim images.

2.1. Handcrafted-Based Edge Detection Methods

The existing handcrafted-based edge detection methods extract spatial, geometric,
and other features from the image. They perform operations such as gradient calculations
or feature statistics to achieve edge detection. Gradient-based detectors, such as Sobel [25],
Laplacian [26], and Canny [27], perform first- or second-order gradient calculations on
the image and combine the gradient values with directions to perform edge detection.
Gonzalez et al. [28] combined gradient and fuzzy logic theory to detect edge of color
images, but the gradient information is not fully used. Ranjan et al. [29] carried out guided
image filtering before edge detection. Their strategy achieves satisfactory results, but the
performance may fluctuate with the manually selected parameters. Ma et al. [30] proposed
a two-level edge detection method, combined with a back propagation (BP) network,
to measure the concrete surface roughness. However, low-quality images can pose a
challenge to the algorithm’s accuracy. According to the analysis of the degradation of
underwater images, the TST images captured by the camera are severely blurred. The pixel
values of a blurred image are represented as a weighted sum of multiple pixels in the
neighborhood of the clear image. Therefore, the image gradient decreases, making it
difficult to extract edge features. The gradient-based edge detection operators often focus
on two or four gradient directions, neglecting the possibility of other gradient directions.
When determining edge points, only the information of the maximum gradient direction
or the dominant direction is considered, limiting the contribution of gradients in other
directions. They do not fully utilize the information about gradient direction, which leads
to the failure of edge detection in low-contrast and blurred images, such as underwater
images, as shown in Figure 1b–d.

2.2. Machine Learning-Based Edge Detection Methods

The machine learning-based methods excel at learning features from a large number
of samples, thereby better capturing edge structures [24,31,32]. Inspired by the idea of edge
patches with obvious local structures, P. Dollár et al. [33] introduced structure learning into
edge detection, proposing a structured edge (SE) detector. This method demonstrates satis-
factory performance in both accuracy and real-time processing. Thanks to the remarkable
performance of deep learning on images, it has gained popularity in edge detection tasks.
Inspired by fully CNN, Xie et al. [34] proposed an end-to-end edge detection algorithm,
Holistically-Nested Edge Detection (HED), which utilized multi-scale and deep supervision
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to improve the localization accuracy of edge pixels. Building on the HED style, Liu et al. [35]
used relaxed deep supervision (RDS) to guide intermediate layer learning, incorporating
operators like Canny and SE to facilitate the learning of edge features. Considering the
commonality between edge detection and image segmentation, Yang et al. [36] introduced
the U-Net [37] structure into edge detection tasks, proposing a fully convolutional encoder–
decoder network (CEDN). Zou et al. [38] constructed DeepCrack based on SegNet [39],
utilizing multi-scale feature fusion for crack detection. Su et al. [40] combined traditional
difference operators with convolution and introduced a Pixel Difference Network (PiDiNet).
It focuses on edge-related features, achieving a better trade-off between accuracy and ef-
ficiency for edge detection. The machine learning-based methods have demonstrated
impressive capabilities, but their performance relies on sufficiently comprehensive datasets.
Their accuracy may not be guaranteed on limited samples.

Figure 1. The comparison of different algorithms on underwater TST image: (a) original image;
(b) Canny; (c) Roberts; (d) Sobel; (e) SE; (f) HED [34]; (g) PiDiNet [40]; (h) IRNLGD. The red boxes
indicate the dim region.

In summary, current edge detection algorithms have achieved good results. However,
they still face challenges when dealing with low-quality images. Aiming at the problems
mentioned above, inspired by classical gradient-based operators, we propose an edge
detection algorithm that needs no training. It captures additional gradient clues and
combines gradient magnitudes with directions to determine edges, allowing for effective
preservation of edges in low-contrast images. As shown in Figure 1, most handcrafted-
based methods fail to detect the contour of the TST and none of the compared methods are
able to detect the edges of the dim regions, as indicated by the red boxes in Figure 1b,f,g.
Only the proposed method is capable of detecting the contour of the TST and the edges
between the attachment and the blade in the dim region (as shown in Figure 1h). A detailed
introduction is given in Section 3.

3. Indexed Resemble-Normal-Line Guidance Detector

The edge detection algorithm proposed in this paper is divided into three steps: (1) The
eight-direction gradients of the input image are calculated to form a gradient matrix. (2) The
direction is calibrated according to the pairwise gradient magnitude, and the indexed
resemble-normal-line direction is obtained according to the calibrated direction matrix.
(3) The edge point determination is performed by combining the gradient magnitude
and the indexed resemble-normal-line direction. In the following, we will introduce the
proposed method in detail and return to its application in Section 4.
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3.1. Calculation of Eight-Direction Gradients

Gradients contain rich image information, and edge detection tasks can be performed
using gradients. Traditional operators typically focus on two or four directions when
computing gradients, thereby losing information from other directions. To obtain com-
prehensive multi-directional gradient information, an adjustable eight-direction gradient
calculation method is proposed. The gradient magnitude for the first direction is calcu-
lated by

g1 = γ[ f (x, y)− f (x − 1, y − 1)] = γ

−1 0 0
0 1 0
0 0 0

 ∗

 f (x − 1, y − 1) f (x, y − 1) f (x + 1, y − 1)
f (x − 1, y) f (x, y) f (x + 1, y)

f (x − 1, y + 1) f (x, y + 1) f (x + 1, y + 1)

, (1)

where f (x, y) indicates the pixel intensity of the pixel (x, y). We design an eight-directional
gradient operator, sequentially rotating 45◦ from the first direction. According to Equation (1),
the eight-directional gradient operator is given by:

C1 = γ

−1 0 0
0 1 0
0 0 0

, C2 = γ

0 −1 0
0 1 0
0 0 0


C3 = γ

0 0 −1
0 1 0
0 0 0

, C4 = γ

0 0 0
0 1 −1
0 0 0


C5 = γ

0 0 0
0 1 0
0 0 −1

, C6 = γ

0 0 0
0 1 0
0 −1 0


C7 = γ

 0 0 0
0 1 0
−1 0 0

, C8 = γ

 0 0 0
−1 1 0
0 0 0

, (2)

where γ is the gradient amplification coefficient. It is introduced to amplify the gradient
magnitudes without affecting subsequent gradient comparisons and direction calibration.
Since the edge pixel intensity is based on the gradient magnitude, it is necessary to appro-
priately amplify the gradient values to enhance the edge. However, the calculation may
overflow if γ is too large. Here, we take γ = 2.

For the input image I, the gradient is obtained by convolution with the gradient
operator in the corresponding direction. Therefore, according to Equation (2), the gradient
matrix can be written as G = [G1, . . . , G8], where

Gk = Ck ∗ I k =1, 2, . . . , 8. (3)

Notice that Gk ∈ RH×W . G records pixelwise eight-direction gradient magnitudes of the
input image, and the sequence indicates the corresponding direction. The gradient matrix
G provides the basic information for direction calibration and edge discrimination.

3.2. Indexed Resemble-Normal-Line Direction Calibration

In order to further utilize the cues of the gradient matrix, we introduce gradient
directions in the form of recalibration. In classical algorithms, the role of gradient direction
in edge detection tasks is to determine the edge direction and filter out pixels outside
the specified direction. In this process, only the information of the maximum gradient
direction or dominant direction is considered, resulting in the loss of information from
other directions. Therefore, a novel gradient direction calibration method is proposed to
preserve more useful cues.
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According to the eight-directional gradients mentioned above, the calibrated direction
is given by  Dx,y,k = sgn

(∣∣∣Gx,y,k

∣∣∣− ∣∣∣Gx,y,k+4

∣∣∣)
Dx,y,k+4 = −sgn

(∣∣∣Gx,y,k

∣∣∣− ∣∣∣Gx,y,k+4

∣∣∣),
(4)

where D ∈ RH×W×8 is the calibrated direction matrix. Dx,y,k indicates the kth(k ≤ 4)
calibrated direction of the pixel (x, y). D consists of −1, 0, and 1, indicating the change trend
of a pixel spreading to its neighborhood. When the intensity increases, the corresponding
direction is calibrated as 1.

More specifically, assume that there exists a neighborhood of size 3 × 3 for pixel (x, y),
and calculate the eight gradient magnitudes G1, . . . G8. The gradient direction calibration
process is as follows:

1. Compare the magnitude of two gradients at 180◦ to each other;
2. Calibrate the directions to 1, 0, or −1, respectively, based on Equation (4). The calibra-

tion is carried out simultaneously due to the pairwise comparison;
3. Iterate over all gradient magnitudes in the neighborhood.

Following the idea of obtaining multi-directional gradient information, the set of
directions calibrated as 1 in Dx,y is defined as the indexed resemble-normal-line direction
of the pixel (x, y) , marked as rx,y , i.e.,

rx,y =
{

k|Dx,y,k = 1
}

. (5)

rx,y is an indefinite-length vector, with a length of l(l ∈ {1, 2, 3, 4}). It contains the
direction information of intensity growth. Different from traditional methods using single-
direction information, the indexed resemble-normal-line direction records all directions
where the intensity has an increasing trend. It preserves more gradient information and is
beneficial for extracting edge features from degraded images. To fully utilize differential
information across various directions, gradient magnitude and direction are retained to
complement edge discrimination where gradient directions are not recorded in the indexed
resemble-normal-line direction.

3.3. Edge Discrimination

Due to the characteristics of degraded underwater images, edge features such as
gradients are suppressed. Traditional edge detection methods fail because they consider
information limited to partial gradients in the image. Therefore, a multi-directional-based
edge point determination method is proposed. The pixelwise edge discrimination is carried
out by combining the gradient magnitude and the indexed resemble-normal-line direction.
Inspired by classical Gestalt cues [41]: similarity, continuity, and proximity, the following
three criteria are proposed:

1. The gradient magnitude of the edge point is much larger than that of the non-edge.
2. The length of the indexed resemble-normal-line direction of the edge point satisfies

len
(
rx,y

)
≥ 3 .

3. Within 3 × 3 neighborhood of the edge point, at least one pixel has the same indexed
resemble-normal-line direction, and the gradient magnitude is about the same.

Criterion 1 follows the principle of abrupt changes in intensity at edges. The gradient
reflects the intensity variation, where a larger gradient magnitude indicates a more signifi-
cant grayscale variation and a higher likelihood of an edge. For criterion 1, the decision
threshold is calculated as follows:

For the eight-direction gradient Gx,y of pixel (x, y), the quadratic sum matrix Gsx,y
can be given as

Gsx,y =
8

∑
k=1

G2
x,y,k. (6)
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To eliminate the effect of too small pixel values on the threshold calculation, a trunca-
tion parameter µ is set, and a dynamic truncation threshold M can be obtained as

M = µ × max
(
Gsx,y

)
. (7)

The pixel is involved if and only if its quadratic sum value is greater than M. Through
experimental verification, here, we take µ = 0.1.

Then, the threshold λ is calculated as

λ =

√√√√√ H
∑

x=1

W
∑

y=1

{
Gsx,y|Gsx,y ≥ M

}
n

, (8)

where n is the number of pixels involved in the calculation.
Criterion 2 ensures that the detected edge points exhibit intensity variations in as many

directions as possible. This helps in locating edge points accurately and also contributes to
refining the edge. Criterion 3 aims to maintain edge continuity by controlling the similarity
of gradients among neighboring pixels.

In conclusion, the proposed IRNLGD is finally detailed through the following steps:

1. Calculating eight-direction gradients: after graying the input image, the grayscale
image is convolved with the eight-direction gradient operator to calculate the gradient
matrix G.

2. Indexed resemble-normal-line direction calibration: First, the gradients on the oppo-
site direction are compared. The eight directions are calibrated to −1, 0, or 1, and saved
in the gradient direction calibration matrix D. Then, for each pixel, the set of the chan-
nel sequence numbers with value 1 in D is denoted as indexed resemble-normal-line
direction r.

3. Edge discrimination: First, the decision threshold λ is calculated based on the gradient
matrix G. Then, the edge points are judged by the proposed criteria.

3.4. MobileNet-IRNLGD TST Rotor Attachment Detection Network

In image-based TST attachment detection methods, the classification methods perform
category-level detection, with a relatively low dependence on data diversity but insufficient
precision in detection. The segmentation algorithm, on the other hand, conducts pixel-level
detection, accurately indicating attachment and blade regions, but it requires abundant data
under various conditions to ensure accuracy. To balance the limited data and high-precision
detection, we explore a two-level TST rotor attachment detection method that combines the
strengths of classification and segmentation: a classification network conducts first-level
detection for preliminary fault severity assessment, while a non-data-driven IRNLGD edge
detection branch performs second-level detection for precise fault localization. The design
of the two-level detection combines the advantages of supervised algorithms and non-data-
driven methods: the category-level detection in the first stage can fully utilize the existing
data priors with the advantages of a deep network to make a preliminary fault assessment,
reducing the workload of manual identification; the pixel level in the second stage can
further locate the fault on the basics of fault assessment, and conduct secondary detection
to prevent possible false alarms in the first step, providing more precise fault detection
results for subsequent maintenance operations.

Classification allows for an initial assessment of the severity of faults. The standard
convolution-based CNNs can achieve effective feature extraction but often come with a
considerable parameter count, leading to constraints on hardware resources. For the conve-
nience of practical applications, a lightweight network is necessary for category-level detec-
tion. Considering the significant reduction in computational complexity offered by depth-
wise separable convolution, we employed MobileNetV1 [42] as the backbone network.
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Depthwise separable convolution reduces the network parameter count by decom-
posing the standard convolution into depthwise convolution and pointwise convolution.
The network parameter count mainly depends on the 1 × 1 pointwise convolution and the
fully connected layer. The first layer of standard convolution and depthwise convolution
parameters account for less than 2%. The overall parameter count is significantly reduced
compared with that of the deep CNN, which can be verified by the experimental results in
Section 4.

The proposed IRNLGD is extended to achieve pixel-level attachment detection. The
edge detection, offering the semantic output, is carried out to visualize the attachment
localization. The edge detection branch is paralleled with MobileNet, and the detection
results are given in both branches. The data are input into the trained network branch
for classification, and the IRNLGD branch achieves fault localization. The design of two-
level detection combines the supervised algorithm with the non-data-driven method,
achieving complementarity.

4. Results and Discussion

In this section, we test the performance of our algorithm. First, the proposed method is
applied on the TST dataset. Then, we conducted experiments on the BSDS500 dataset [43]
and the UIEB [44] dataset to evaluate the universality of the proposed method. The perfor-
mance of the proposed method is compared with classical and state-of-the-art methods.

4.1. Experiment on TST Dataset

To demonstrate the effectiveness of the proposed method for TST rotor attachment
detection, experiments were conducted on the TST dataset. The dataset is obtained by
simulating TST rotor attachment faults on a marine current power generation system
experiment platform and collected with an underwater camera.

4.1.1. Data Collection Experiment

To ensure the sample diversity, we add more fault types and different data collection
environments on the basis of Ref. [17]. The data collection experiment is performed on
the marine current power generation system experimental platform, and the structure and
parameters are the same as Ref. [18]. The rope is used to wrap around the TST rotor to
simulate the biofouling, as shown in Figure 2. Different degrees of attachment are simulated
by employing dry ropes of varying weights and different wrapping methods. Specifically,
the degree of attachment is distinguished by the dry rope weight (20 g, 40 g, and 60 g),
area, and position. The total number of winding turns is 13, of which there are 3 different
configurations for 40 g, namely 13, 3 (near the tip)-10 (near the hub), 6 (near the tip)-7
(near the hub). The detailed attachment degrees are shown in Table 1. The data collection
experiment is carried out in two working environments of clean and turbid water. Image
data collection is carried out at different shooting angles to simulate the real underwater
monitoring situation. The collected data are divided into 11 categories according to the
attachment degrees. The training set and test set contain 100/50 images for each category,
totaling 1100/550 images.
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Figure 2. Examples of TST rotor attachments: (a) in air; (b) in water. The red boxes indicate the
attachment area.

Table 1. Details of attachment degrees of TST.

Category Classifier Labels Attachment Details

Attachment degree 0 0 0 g-0 g-0 g
Attachment degree 1 1 0 g-20 g-0 g
Attachment degree 2 2 0 g-20 g-40 g
Attachment degree 3 3 0 g-20 g-60 g
Attachment degree 4 4 20 g-40 g-60 g
Attachment degree 5 5 20 g-40 g (6-7)-60 g
Attachment degree 6 6 40 g (6-7)-40 g (6-7)-60 g
Attachment degree 7 7 40 g-40 g (6-7)-60 g
Attachment degree 8 8 40 g (3-10)-40 g (6-7)-60 g
Attachment degree 9 9 40 g (3-10)-40 g (3-10)-60 g

Attachment degree 10 10 40 g-40 g (3-10)-60 g

4.1.2. Network Implementation Details

The method implementation process and network have been stated in Section 3. All
the algorithms are designed by Python 3.9. The classification network is built with open
source deep learning framework TensorFlow [45]. The details of the network parameters
involved are listed in Table 2.

Table 2. Parameter settings of the lightweight network.

Parameter Name Value

Learning rate 1.0 × 10−3

Training epochs 1000
Training batch size 16

Image size 495 × 495
Width coefficient α 1.0

Resolution coefficient ρ 1.0

4.1.3. Experiment Results

We apply the proposed MobileNet-IRNLGD rotor attachment detection network to the
TST dataset to validate the effectiveness. First, we evaluate the performance of MobileNet in
first-level detection. Table 3 shows the average results of classification networks under ten
repeated experiments. The dataset comes from the data collection experiment mentioned
above. It can be seen that MobileNet achieves the best performance in terms of reducing
the number of trainable parameters. In the case of costing 13.68% parameters of ResNet50,
the accuracy of MobileNet is 2.21% higher. The two-layer CNN and VGG-16 fail to extract
attachment features well due to insufficient network layers, so the recognition accuracy is
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unsatisfying. Moreover, because of the standard convolution, the number of parameters is
dozens or even hundreds of times that of MobileNet, even if the depth is not as deep as
the same. The results of two different ResNets show that the accuracy of the network does
not increase significantly with the depth of the network; it can be analyzed that the TST
images are captured underwater, and the contrast decreases compared with the onshore
image due to the medium absorption and attenuation of light propagation. As the image
intensity decreases, the features will be lost in the deep network, so the accuracy does not
improve much with the increase in the network depth.

Table 3. Quantitative experimental results of the five networks.

Name of Network Trainable Parameters Accuracy

MobileNet 3,218,251 96.69%
ResNet-101 42,522,699 94.48%
ResNet-50 23,530,571 94.46%
VGG-16 134,305,611 25.00%

Two-layer CNN 63,046,091 12.50%

Next, we assess the performance of IRNLGD. To verify the effectiveness of the pro-
posed algorithm in a complex underwater environment, the operating environment of
the TST is divided into clean/turbid water. Each environment is further characterized by
strong/weak illumination. The data under strong illumination come from Ref. [17], and the
data under weak illumination come from the data collection experiment mentioned above.
Four representative edge detection algorithms are selected, including Canny, SE, HED,
and PiDiNet. The mean squared error (MSE) and average gradient (AG) are employed to
evaluate the performance of each method. MSE is used to evaluate the similarity of the
edge detection results to the original images, while AG is used to measure the rate of gray
change in the results, which reflects the clarity and the expression of detail. The quantitative
evaluation results are presented in Table 4. IRNLGD achieves the best results in both MSE
and AG, indicating that the edges detected by the proposed method are closest to the
original image and possess the richest details. Canny and PiDiNet are ranked second
and third, respectively. The outcome is consistent with the characteristics observed in
qualitative comparisons. Figure 3 shows some results on the TST dataset, with two samples
for each environment. The experimental results indicate that SE hardly detects meaning-
ful edges. The results of HED and parts of Canny are discontinuous, failing to detect
closed edges, as shown in the blue boxes in Figure 3. While PiDiNet achieves the most
outstanding performance among the comparative methods, its output cannot distinguish
between attachments and blades. This leads to a crucial problem: when the blades are
completely covered by attachments, the results from PiDiNet fail to provide meaningful
information, as indicated in the green boxes in Figure 3. Only the proposed IRNLGD
can detect complete blade contours and the texture of attachments, which can achieve
attachment localization (the red boxes in Figure 3). What is more, a detailed comparison is
conducted to demonstrate the advantages of the proposed method in TST attachment fault
detection. The performance evaluation criteria are: (1) the ability to separate the foreground
and background; (2) the ability to detect the edge of the TST rotor; and (3) the ability to
distinguish between the blades and attachment.

Table 4. The quantitative comparison results of five methods on TST dataset.

Method MSE AG

Canny 17,374.37 9.186
SE 17,573.62 0.647

HED 17,813.11 3.299
PiDiNet 17,471.07 3.953
IRNLGD 16,742.77 14.627
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Figure 3. The comparison of five edge detection methods on TST dataset: (a) original image; (b) Canny;
(c) SE; (d) HED [34]; (e) PiDiNet [40]; (f) IRNLGD.
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Figure 4 shows the edge detection results of the TST image under clean water and
strong illumination. Canny is capable of capturing the complete edge of the TST rotor and
can partially differentiate the attachment from the blades. However, the distinction may not
be very clear. SE and HED fail to obtain the complete edge of the rotor. PiDiNet captures
complete edges but fails to differentiate between the blades and attachment, which may
affect the subsequent maintenance process. The proposed algorithm not only captures clear
and complete edges of the TST rotor but also highlights the distinction between healthy
blades and the attachment.

Figure 4. The comparison of five edge detection methods for clean water and strong illumination:
(a) original image; (b) Canny; (c) SE; (d) HED [34]; (e) PiDiNet [40]; (f) IRNLGD. The red boxes
indicate the attachment area.

Figure 5 shows the edge detection results of the TST image under turbid water and
strong illumination. Similar to Figure 4, Canny can extract rotor edges but cannot indicate
the location of the attachment. SE is almost completely ineffective, and HED detects
incomplete edges. PiDiNet can detect complete edges, but they tend to be thick with
insufficient refinement. It also ignores the localization of the attachment. IRNLGD is
capable of both extracting complete edges and indicating attachment areas.

Figure 6 shows the edge detection results of the TST image under clean water and
weak illumination. We use several boxes to highlight the details. Except for SE, most of
the algorithms can detect clear edges but some differences exist: Canny and IRNLGD can
extract fine edges and differentiate between clean blades and biofouling regions, while the
other two can only identify the outline. HED can only detect partial edges and tends to
lose edges in details, such as the attachments at the blade tip (left red box in Figure 6d);
the detected edges are incomplete, as shown in the dark side of the blade (right green box
in Figure 6d). PiDiNet can extract precise rotor edges but fails to distinguish between the
blades and attachment. What is more, it also displays some edges of background, which
are useless for fault diagnosis. In the comparison of Canny and IRNLGD, the attachment
area detected by Canny shows partial loss (left red box in Figure 6b), but IRNLGD can
fully display the texture of the attachment (left red box in Figure 6f). Both of them have
achieved better results in edge refinement than other methods. Canny performs well
in refinement due to non-maximum suppression. However, it is important to note that
Canny’s high performance relies on manually selected thresholds, while the proposed
IRNLGD is adaptive.
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Figure 5. The comparison of five edge detection methods for turbid water and strong illumination:
(a) original image; (b) Canny; (c) SE; (d) HED [34]; (e) PiDiNet [40]; (f) IRNLGD. The red boxes
indicate the attachment area.

Figure 6. The comparison of five edge detection methods for clean water and weak illumination:
(a) original image; (b) Canny; (c) SE; (d) HED [34]; (e) PiDiNet [40]; (f) IRNLGD.

Figure 7 shows the edge detection results of the TST image under turbid water and
weak illumination. SE fails to detect a meaningful edge. HED produces incomplete contours
(right green box in Figure 7d) and fails to detect the boundary between the attachment
and blade near the tip (left red box in Figure 7d). PiDiNet offers advantages in edge
extraction, but it cannot indicate the attachment areas. Canny and IRNLGD perform well
in distinguishing between the blade and the attachment, but Canny tends to lose details in
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densely textured areas (right green box in Figure 7b). In contrast, IRNLGD not only detects
complete edges but also clearly distinguishes the attachment area from the blades.

Figure 7. The comparison of five edge detection methods for turbid water and weak illumination:
(a) original image; (b) Canny; (c) SE; (d) HED [34]; (e) PiDiNet [40]; (f) IRNLGD.

4.2. Experiment on BSDS500 Dataset

Due to the lack of a publicly available edge detection dataset designed for underwater
images, the BSDS500 dataset is used to evaluate the quality of the proposed edge detection
algorithm. The dataset is universally adopted for natural edge detection evaluation, con-
sisting of 500 natural images and real human annotations. Each image is segmented by five
different experts independently. The five segmentation results are combined with equal
weights for objective ground truth. Color channel attenuation and blurring operations are
performed on the dataset to simulate the characteristics of an underwater environment.

We employ three quantitative metrics commonly used in edge detection evaluation:
the optimal dataset scale (ODS), optimal image scale (OIS), and average precision (AP).
Table 5 compares the different edge detection algorithms on BSDS500. The proposed
algorithm does not obtain satisfactory results in quantitative evaluation, primarily because
IRNLGD can detect fine edges, while human ground truth focuses more on contours and
ignores details. This difference causes the detected detailed textures to be penalized in
the evaluation. The distinctive feature can be highlighted in visual comparisons. Figure 8
compares the results of IRNLGD with those of other methods. Due to the simulated
underwater operation, the images are degraded and feature extraction is compromised,
leading to various degrees of failure for the algorithms: SE fails to detect meaningful
edges; HED produces a few non-closed contours, losing the most meaningful information,
as shown in Figure 8d,e. Canny and PiDiNet achieve better performance among the
compared methods but still exhibit incomplete edges. There are discontinuities in low-
contrast regions, which is evident in the results of Canny (Figure 8c). The dependence of
deep learning on data can result in decreased performance when dealing with new types
of samples. For example, in Figure 8f, PiDiNet fails to detect edges or produces weak
responses in some dim areas. In contrast, IRNLGD can detect complete edges and capture
details not marked in human ground truth, such as the bird wing in sample III in Figure 8g.
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The proposed method may have weaker noise suppression capabilities but successfully
detects complete edges and fine textures.

Table 5. Quantitative results on the BSDS500 dataset.

Detectors ODS OIS AP

Human 0.80 0.80 -
Sobel 0.563 0.594 0.537

Canny 0.546 0.548 0.004
Roberts 0.553 0.581 0.524

SE 0.668 0.683 0.659
HED [34] 0.557 0.560 0.041

PiDiNet [40] 0.762 0.777 0.753
IRNLGD 0.487 0.489 0.009

Figure 8. The comparison of five edge detection methods on the BSDS500 dataset: (a) original image;
(b) ground truth; (c) Canny; (d) SE; (e) HED [34]; (f) PiDiNet [40]; (g) IRNLGD. I, II, and III refer to
different samples. The red boxes indicate details.
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4.3. Experiment on UIEB Dataset

Experiments were conducted on the UIEB dataset [44] to demonstrate the proposed
method’s effectiveness on underwater images. The dataset contains 950 original underwater
images captured under various illuminations, including natural light, artificial light, or a
combination of both. Due to the lack of an objective and publicly available human ground
truth, only a qualitative assessment is performed here.

Figure 9 shows some detection results. Due to the degradation of underwater images,
Canny and SE fail to detect meaningful edges and only prove effective in some high-contrast
regions. HED produces a clear contour but can only detect partial edges in a high-turbidity
environment. PiDiNet takes into account the idea of pixel differentiation and is sensitive to
gradients, achieving more complete edge detection compared to HED. However, it also
misses some edges, especially in low-contrast regions, as shown in red boxes in Figure 9e.
IRNLGD not only achieves complete edges but also detects fine details, even in dim parts
(as shown in the green boxes in Figure 9f). Moreover, its performance does not rely on an
extensive amount of data for training.

Figure 9. The comparison of five edge detection methods on the UIEB dataset: (a) original image;
(b) Canny; (c) SE; (d) HED [34]; (e) PiDiNet [40]; (f) IRNLGD.

4.4. Analysis

Based on the above experimental results, it is evident that the proposed method
outperforms other techniques in the detection of fine edges in underwater images. IRNLGD
obtains better results on the TST and UIEB datasets than other methods. The failure of the
compared methods is due to the scattering during the propagation of light underwater,
which causes image degradation. Forward scattering weakens the energy of the light,
blurring the image and defocussing the contour lines; backward scattering allows light
reflected by floating particles to enter the camera, resulting in an image with much noise.
These factors make underwater images characterized by low contrast and attenuated
intensity, leading to the failure of various edge detection algorithms that perform well in
air images. The pixel values of underwater images do not vary significantly, making some
gradient-based operators unable to obtain the desired results. The accuracy of supervised
algorithms relies on rich training data. They fail on underwater images with low contrast
due to a lack of labeled samples. However, our method considers gradients in multiple
directions, allowing for the capture of richer information. Additionally, IRNLGD creatively
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introduces the concept of “gradient direction calibration”, enabling gradient directions
to directly participate in edge determination; it contributes to IRNLGD’s ability to better
capture changes in pixel intensity with limited information, thus facilitating edge detection
in degraded images such as those with low light or turbidity.

In the quantitative assessment, the results of IRNLGD are undesirable. The reason is that
BSDS500 is annotated for image segmentation and contour detection, and some detailed edges
detected by the proposed method are penalized. However, the new edges and textures can also
provide valuable information in some cases. The quantitative evaluation results of supervised
algorithms are generally better due to the advantage of deep learning-based methods with
good feature extraction. They can extract deep feature representations from a large number of
training images. A similar feature extraction process does not exist in unsupervised methods.
However, our method can still obtain satisfactory results and has no requirement for paired
data for training. Therefore, the proposed IRNLGD is competent for edge detection tasks.

While the proposed method has some limitations compared with other methods, these
can also be turned into advantages in certain situations. It is undeniable that, in terms of
semantic understanding, IRNLGD falls short compared to deep learning-based approaches.
However, the performance of deep learning relies on a large amount of labeled data, which
is not aligned with the research purposes. The advantage of IRNLGD lies precisely in
its ability to perform comprehensive and detailed edge detection without the need of
training. Additionally, the proposed IRNLGD exhibits some noise in certain samples; this
is acceptable. IRNLGD is designed for fault diagnosis in underwater equipment such as
a TST, and this characteristic helps to distinguish between attachments and equipment
bodies in the outcome: submerged devices often use smooth materials and anti-fouling
coatings to delay biofouling, while the biofouling has a rough surface [46,47]. Experimental
results on the TST dataset demonstrate that IRNLGD can fully display the texture of
attachments, thereby indicating attachment areas; something that other methods cannot
achieve. Therefore, a small amount of noise does not diminish the contribution of the
proposed method to the research purposes.

In summary, the proposed method can detect fine edges better, without training or
manually selected thresholds, and is more robust than other methods.

5. Conclusions

In this paper, a novel edge detection method IRNLGD based on multi-direction
gradient is proposed. IRNLGD enhances the edge determination process by calibrating the
gradient directions, allowing a more comprehensive inclusion of gradient from multiple
directions. Experiments on a TST dataset, BSDS500, and UIEB demonstrate as follows:
(1) IRNLGD can effectively detect edges in low-quality images; and (2) IRNLGD can
detect a greater amount of fine texture information. In addition, we explore a two-level
TST rotor attachment detection method, MobileNet-IRNLGD. IRNLGD is added as a
branch to the classification network MobileNet, which provides fault location while the
MobileNet provides attachment degree. The advantages of this method are: (1) It requires
less computational resources, reducing hardware demands. (2) It combines supervised
algorithms with non-data-driven methods to achieve complementarity, reducing the need
for extensive training data. The proposed MobileNet-IRNLGD can provide preliminary
fault diagnosis in the first stage, enabling technical staff to take appropriate measures based
on the fault severity. During underwater cleaning operations, the precise fault localization
in the second stage can provide necessary reference and guidance for operators. Since the
proposed edge detection method, IRNLGD, is a non-data-driven algorithm, it can meet the
monitoring needs of various types of submerged turbines and other underwater devices.
This can be extrapolated from experiments conducted on the UIEB dataset, as our method
can also achieve detailed edges and texture detection in degraded underwater images.
Overall, the proposed IRNLGD has demonstrated its effectiveness in edge detection, and the
MobileNet-IRNLGD has also shown promising results and potential.
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IRNLGD can effectively extract edge information from TST images without requiring
paired data for training. However, it faces challenges when dealing with images affected
by motion blur. In the future, the research will focus on exploring solutions for the motion-
blurred images.
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