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Abstract: In recent years, advanced methods and smart solutions have been investigated for the
safe, secure, and environmentally friendly operation of ships. Since data acquisition capabilities
have improved, data processing has become of great importance for ship operators. In this study,
we introduce a novel approach to ship machinery monitoring, employing generative adversarial
networks (GANs) augmented with failure mode and effect analysis (FMEA), to address a spectrum
of failure modes in diesel generators. GANs are emerging unsupervised deep learning models
known for their ability to generate realistic samples that are used to amplify a number of failures
within training datasets. Our model specifically targets critical failure modes, such as mechanical
wear and tear on turbochargers and fuel injection system failures, which can have environmental
effects, providing a comprehensive framework for anomaly detection. By integrating FMEA into
our GAN model, we do not stop at detecting these failures; we also enable timely interventions and
improvements in operational efficiency in the maritime industry. This methodology not only boosts
the reliability of diesel generators, but also sets a precedent for prescriptive maintenance approaches
in the maritime industry. The model was demonstrated with real-time data, including 33 features,
gathered from a diesel generator installed on a 310,000 DWT oil tanker. The developed algorithm
provides high-accuracy results, achieving 83.13% accuracy. The final model demonstrates a precision
score of 36.91%, a recall score of 83.47%, and an F1 score of 51.18%. The model strikes a balance
between precision and recall in order to eliminate operational drift and enables potential early action
in identified positive cases. This study contributes to managing operational excellence in tanker ship
fleets. Furthermore, this study could be expanded to enhance the current functionalities of engine
health management software products.

Keywords: reliability analysis; prescriptive model; FMEA; GAN; diesel generator failures

1. Introduction

The International Maritime Organization (IMO), the global standard-setting authority
for the maritime industry, has increased scrutiny of ships’ environmental performance.
The IMO added a new annex to the International Convention for the Prevention of Pol-
lution from Ships (MARPOL) in 1997, with a focus on minimizing airborne emissions
from ships, mainly from sulfur oxides (SOx), nitrogen oxides (NOx), ozone-depleting sub-
stances (ODSs), and volatile organic compounds (VOCs), which began being enforced on
19 May 2005. Amendments made to MARPOL Annex VI in 2011 mandated technical and
operational energy efficiency measures to reduce CO2 emissions from maritime shipping.
These measures adopted by the IMO were the first global mandatory GHG reduction
regime for international industry [1]. With the adoption of new amendments, emissions
reductions have become the main focus of research by policymakers. The Energy Efficiency
Design Index (EEDI) aimed to encourage the use of more energy-efficient machinery, thus
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lowering carbon emissions. Energy-saving devices (ESDs) have become standard applica-
tions for almost all newly constructed ships. In 2011, during the 72nd session of the Marine
Environment Protection Committee, it was agreed to adopt the initial strategy for reducing
GHG emissions from ships, with provisions to review this in 2023. The IMO’s initial target
was focused on reducing CO2 emissions per transport work by 70% by 2050 compared
with 2008, and reducing the total annual GHG emissions by 50% by 2050 compared with
the 2008 baseline. The IMO’s initial strategy, aligned with the Paris Agreement, was a
wake-up call for the industry as it highlighted that while ESDs will help operators to
comply with regulations in the short term, they are not the only long-term solution for
the decarbonization of the maritime industry. Various alternatives are currently being
implemented or researched, such as hybrid propulsion systems and the full electrification
of ships, as well as alternative fuels, such as methanol, ammonia, and hydrogen. However,
the maturity level and applicability of these alternatives changes greatly based on the ship
type and size. The quality of marine fuels is crucial for efficient combustion in ships’ main
engines, auxiliary generators, and boilers. It is important to understand the physicochem-
ical properties of the fuel bunkers. Studies show that under consistent cyclic conditions,
fuel supply variations can impact efficiency by up to 5% [2]. Additionally, bunker analysis
can provide guidance to ship operators when troubleshooting combustion-quality-related
problems as well as combustion efficiency problems. While bunker samples are sent to
laboratories for evaluation, it is also possible to carry out a multiparametric assessment of
fuel quality results, which can be completed almost instantly [3]. On the other hand, one of
the greatly varying factors in ship efficiency is operations. The carbon intensity indicator
(CII) is a measure of a ship’s energy efficiency and is described as the grams of CO2 emitted
per cargo-carrying capacity per nautical mile [4].

As expressed above, a couple of factors can be controlled to reduce the carbon in-
tensity of maritime operations. Annual fuel consumption can be controlled by means of
energy-saving devices (ESDs) and efficient operations. As the maritime industry adapts to
environmental regulations, the fatigue resistance of ships’ mechanical components, such
as propellers and engines, is becoming increasingly critical. The implementation of ESDs,
as well as efficient operations such as slow steaming, is pivotal for reducing emissions,
although it necessitates a thorough understanding of the fatigue behavior of these compo-
nents under operational loads [5]. While it may seem easy, identifying inefficient operations
and identifying anomalies requires a set of data, including normal and abnormal conditions.
As the machinery operates within a certain operating range, it is not always easy to identify
anomalies as they start to develop; most of the time, they only become evident when the
equipment fails. Manufacturers set design ranges and alarm parameters, but those variables
mainly focus on the safety aspect of machinery operation, so the efficiency of the machinery
is considered secondary when designing the operating range for machinery. Similarly,
machinery failures are fixed as soon as they are identified. Therefore, this introduces the
problem of data imbalance. The data imbalance problem is frequently the bottleneck of
performance classification. Data imbalance is the terminology used to describe the situa-
tion where the class distributions are not equal, i.e., when one class, which is called the
majority class, far exceeds the other classes, which are called the minority classes. This
is the case when different classes have a significantly different number of samples. Due
to the data imbalance problem, the training algorithm gives more weight to the class(es)
with the majority of samples, which results in biased classifiers. Despite its complexity, the
algorithm’s prediction model needs a lot of data to understand the hidden data correlations
for output prediction. This is attributed to the fact that the training of predictive algorithms
relies on deciphering intricate patterns within historical data. The augmentation of data
quantity corresponds to heightened precision in the predictive model.

This is where generative adversarial networks (GANs) have emerged as a groundbreak-
ing solution, enabling the generation of synthetic data that closely resemble real-world data.
The ability to generate synthetic data that accurately capture the underlying distribution
and statistical properties of real data has significant implications. generative adversarial
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networks offer a powerful solution by employing a dual architecture of generator and
discriminator networks, enabling the generation of synthetic data that are remarkably
similar to real data. This paper explores the utilization of GANs in ship machinery anomaly
detection by using synthetic data generation, highlighting their potential to overcome data
limitations and foster innovation across ship machinery anomaly detection.

GANs are powerful algorithms that utilize a dual training process, comprising a
generator and a discriminator. The generator’s objective is to generate synthetic images
that exhibit a high degree of realism, resembling real images. The discriminator is trained
to differentiate between the generated images and real images. As GANs have evolved,
they have made significant progress in unconditional image synthesis, generating images
without any specific conditioning. Different types of GANs are deployed for different
applications: realistic image generation [6,7], natural language processing [8,9], healthcare
and medical imaging [10], reinforcement learning [11], etc. The use of GANs has primarily
focused on computer vision and image generation; however, GANs have emerged as a
promising solution for the generation of synthetic tabular data that exhibit similar statistical
characteristics and patterns to the original data.

In this study, we focus on the prescriptive model of ship machinery monitoring based
on GANs, supported by failure mode and effect analysis (FMEA) techniques. The proposed
prescriptive model for ship machinery monitoring makes the following contributions to
the literature.

First, generative adversarial networks have attracted significant attention and been
applied to varying domains, including shipping. However, to the best of our knowledge,
within the maritime domain, they are still not applied for machinery anomaly detection.
GANs and their variants are used here for object detection and surveillance systems.

Second, data-driven approaches are integrated with FMEA for autonomous decision
support systems (DSSs) for ship machinery systems.

Third, a comparison is made with six different classifiers trained with synthetic data
and tested on real-life data for fault diagnosis. The model achieved 30–83% accuracy on
real-life data for anomaly detection.

The rest of this study is organized as follows. In Section 2, anomaly detection in
the maritime industry is discussed; in Section 3, the main tools used in this study, GAN
and FMEA, are reviewed, followed by an explanation of the proposed prescriptive model.
Section 4 details the results of this study, and in Section 5, the conclusions are discussed.

2. Literature Review

In recent years, data-driven approaches have garnered substantial attention in the
maritime industry, a sector characterized by its historical significance and evolving techno-
logical landscape. The integration of advanced machine learning techniques, particularly
in the realms of computer vision and natural language processing, has not only paralleled,
but in some instances surpassed human performance in certain tasks [12]. This paradigm
shift towards data-centric methodologies in maritime operations is indicative of a broader
trend in industry and academia alike.

With the ever-growing complexity of marine systems, the increasing maintenance
demand and complexity of troubleshooting increases the need for decision support systems.
Investigation reports indicate that 80% of accidents are caused by human error [13].

The categorization of data-driven models into white, black, and gray box models
offers a framework for understanding their applications and limitations [14]. White box
models, known for their transparency and explainability, are grounded in clear, underlying
mechanisms. White box models are widely used, as they are characterized by their explicit
mathematical equations and parameters, which have real-world interpretations. They are
commonly used in reliability analyses [15] and failure analyses [16].

In contrast, black box models operate on statistical inferences, deriving conclusions
from input–output relationships without explicitly revealing their internal workings. With
the growing implementation of IoT devices and increases in the availability and acces-
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sibility of data, black box models are gaining significant momentum. In the maritime
industry, black box models and data-driven algorithms are employed across a diverse
range of applications. These applications include the prediction of fuel consumption by
the main engine [17], voyage optimization via vessel speed optimization [18], and the
prognostics and health management of ship machinery systems [19]. Each of these applica-
tions’ predictive capabilities relies on data-driven models, which aim to enhance the ship’s
operational efficiency and decision-making processes within the maritime sector. Gray
box models represent a hybrid approach, enhancing the predictive capabilities of white
box models by incorporating elements of black box models to address uncertainties. Gray
box models, also called hybrid models, have gained attention as they aim to bridge the
gap between white box models and black box models. They offer a valuable compromise
between transparency and flexibility. By combining domain knowledge and data-driven
insights, gray box models provide versatility and effectiveness to the predictive tools. They
have been used for fuel consumption predictions [20], remaining useful life predictions [21],
hull fouling predictions [22], and engine performance predictions [23].

Despite their advantages, a primary concern with the use of data-driven models in
maritime applications is the autonomy of their decision-making. The reliance on purely
data-driven methods can obscure the nuanced understanding that domain expertise pro-
vides. To bridge this gap, recent studies have advocated for a dual approach that synergizes
data-driven techniques with domain knowledge [24–26]. This involves integrating expert
insights into black box models to enhance their relevance and applicability in real-world
maritime scenarios.

In the context of maritime operations, anomaly detection plays a pivotal role in
ensuring safety, security, and efficiency. Recent advancements in this area have been
significantly influenced by the integration of cutting-edge technologies. The Internet of
Things (IoT) has revolutionized data collection in maritime environments, offering real-time
monitoring capabilities. When combined with machine learning algorithms, devices can
provide instantaneous anomaly detection.

The integration of advanced data-driven approaches in anomaly detection within the
maritime industry marks a significant stride towards modernizing and securing maritime
operations. However, the successful implementation of these technologies necessitates a bal-
anced approach, addressing the challenges mentioned earlier. One of the main challenges
with classification problems is the lack of labeled data for the anomaly class. Many of the
anomaly detection capabilities are rule-based, such that simple rules trigger an alarm [27].
Additionally, the majority of diagnostics systems were found to rely on physics-based
models [28] and predictive models’ targeting to minimize prediction errors, which the
prediction results mostly ignored [29].

This study focuses on addressing the key challenges highlighted in anomaly detection
in the maritime domain. The first problem we are tackling is the data imbalance problem
via the implementation of GAN-based synthetic failure data generation. One of the primary
methods used to address the imbalance in datasets is the use of various resampling tech-
niques, such as undersampling, oversampling, and the synthetic minority oversampling
technique (SMOTE) [30]. However, where anomalies are rare, GANs can generate realistic
examples of these events by improving the model’s ability to detect them.

Secondly, in order to overcome the lack of recommendations in predictive systems, we
are proposing an effective FMEA-based DSS that leverages the systematic identification
and prioritization of potential failure modes to guide the decision-making process.

3. Methodology
3.1. FMEA

Failure mode and effect analysis (FMEA) is a systematic, structured approach used
to identify, assess, and mitigate potential points of failure within a process or product
design. The primary objective of this method is to proactively pinpoint and resolve issues
that could lead to failures, with a focus on prevention rather than rectification. This
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approach significantly reduces downtime and enhances the overall reliability and safety of
the manufacturing process across its entire lifecycle, from initial production to eventual
service [31].

The origins of FMEA can be traced back to the 1940s, originating from the U.S. military,
which published MIL-P-1629 in 1949 [32], marking its development as a methodical tool for
failure analysis [33]. However, it was first notably adopted in 1963 during the Apollo space
project, where it played a crucial role in ensuring the safety and reliability of the spacecraft
and mission operations. Its use was initially more prevalent within military projects, where
the stakes were exceptionally high.

The broader industrial adoption of FMEA, particularly in the automotive industry,
gained momentum following notable incidents and the increasing demand for safety and
quality assurance. A pivotal moment was its introduction by the Ford Motor Company
in response to the Pinto affair. This incident highlighted the critical need for systematic
safety and risk assessment methods in the automotive industry, leading to the widespread
implementation of FMEA. It was used not just to enhance product safety, but also to comply
with growing regulatory standards and public expectations for safer vehicles [34]. In 1994,
certain manufacturers, called the Big Three (Chrysler, Ford, and General Motors), published
updated rankings and clarifications. These efforts were presented in SAE J 1739, called
“Potential Mode and Effects Analysis in Design and Potential Failure Mode and Effects
Analysis in Manufacturing and Assembly Process Reference Manual” [35].

Since then, FMEA has evolved and been integrated into various industrial sectors,
becoming a cornerstone of risk management and quality assurance practices. Its application
extends beyond the automotive industry, encompassing sectors such as aerospace [36],
healthcare [37], and electronics [38], where the identification and mitigation of potential
failures are crucial for both safety and operational efficiency.

Risk evaluation is determined by the Risk Priority Number (RPN) within FMEA
studies. This number is a product of the Occurrence, Severity and Detection values. The
results of the exercise enable decision-makers to prioritize the determined failures and
implement preventive measures to lower system risks [39]. In this study, we used the
framework developed by the British Standards Institution, IEC 60812:2018 [40]. The risk
severity indices adopted within this study are presented in Tables 1–3 [41,42].

Table 1. Definition of severity indices, revised from [41,42].

Score Severity (S) Linguistic Term

1 No effect. None
2 Engine operable with negligible effect. Very Low
3 Engine operable with slight degradation of performance. Low

4 Engine operable with minor effect on performance. Engine does not
require repair. Low

5 Engine operable but performance degraded. Engine requires repair. Moderate
6 Engine operable and safe but performance degraded. Moderate

7 Engine performance severely affected but functions. The engine may
not operate. High

8 The engine is inoperable. Engine failure is hazardous and occurs
without warning. High

9 Engine failure resulting in hazardous outcomes and/or
noncompliance with regulations. Very High

10 Engine failure is hazardous and occurs without warning. Very High

Table 2. Definition of occurrence indices, revised from [41,42].

Score Occurrence (O) (Failure Rate
Measured in Operating Days) Linguistic Term

1 <1 in 1,500,000 Remote
2 1 in 150,000 Very Low
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Table 2. Cont.

Score Occurrence (O) (Failure Rate
Measured in Operating Days) Linguistic Term

3 1 in 15,000 Low
4 1 in 2000 Low
5 1 in 400 Moderate
6 1 in 80 Moderate
7 1 in 20 High
8 1 in 8 High
9 1 in 3 Very High
10 >1 in 2 Very High

Table 3. Definition of likelihood of detection indices, revised from [41,42].

Score Likelihood of Non-Detection (D) Linguistic Term

1 Almost certain that control system will detect a potential
cause and subsequent failure mode. Remote

2 Very high chance control system will detect a potential cause
and subsequent failure mode. Very Low

3 Low chance the control system will detect a potential cause
and subsequent failure mode. Low

4 Low chance the control system will detect a potential cause
and subsequent failure mode. Low

5 Moderate chance the control system will detect a potential
cause or subsequent failure mode. Moderate

6 Low chance the control system will detect a potential cause or
subsequent failure mode. Moderate

7 Very low chance the control system will detect a potential
cause and subsequent failure mode. High

8 Remote chance the control system will detect a potential cause
or subsequent failure mode. High

9 Very remote chance the control system will detect a potential
cause or subsequent failure mode. Very High

10 Control system cannot detect potential cause of failure or
subsequent failure mode. Very High

In the process of conducting an FMEA for a marine auxiliary diesel generator, a
specialized team of experts, as listed in Table 4, undertook a comprehensive review. This
review encompassed both the system and subsystem levels of the diesel generator, ensuring
a thorough understanding of all potential points of failure was obtained. The team’s
approach was methodical, focusing on identifying and evaluating various failure modes
that could impact the generator’s performance and reliability in marine environments.

Table 4. FMEA team details.

Expert No. Position Education Level Experience

1 Engineering
Superintendent Bachelor’s degree 20 Years

2 Engineering
Superintendent Master’s degree 15 Years

3 Chief Engineer Bachelor’s degree 12 Years
4 Chief Engineer Bachelor’s degree 9 Years
5 Reliability Engineer Master’s degree 20 Years
6 Reliability Engineer Master’s degree 10 Years

A key aspect of this analysis involved the determination of the Risk Priority Number
(RPN) for each identified failure mode. The RPN is a crucial metric in FMEA, quantify-
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ing the risk associated with each potential failure by considering its severity, occurrence
likelihood, and detection difficulty. However, traditional FMEA is commonly criticized
due to its drawbacks in practical applications [43]. Fuzzy FMEA stems from the need
to address the uncertainties and subjective assessments often encountered in traditional
FMEA. Fuzzy FMEA is widely used when dealing with qualitative and uncertain infor-
mation [44–47]. We used linguistic expressions to evaluate the ratings and trapezoidal
membership function derived from studies within the literature [48]; Tables 5–7 summarize
the fuzzy scale developed [43] from the literature. Figure 1 represents the fuzzy FMEA
process. Trapezoidal membership function is used thanks to its flexibility in representing
phenomena with a clear range of full membership, while triangular functions are better
suited to approximations or when data naturally cluster around a midpoint [49].

Table 5. Fuzzy severity matrix.

Linguistic
Expression Fuzzy Numbers Criteria

Extremely Low 1, 1, 2, 3 No effect to slight effect on engine.

Low 2, 3, 4, 5 Negligible effect on engine to reduced
engine performance.

Medium 4, 5, 5, 6 Minor effect on engine to degraded performance.
High 5, 6, 7, 8 Reduced performance to inoperable engine.

Extremely High 7, 8, 9, 10 Severely affected engine to engine failure
resulting in hazardous effects.

Table 6. Fuzzy occurrence matrix.

Linguistic Expression Fuzzy Numbers Criteria

Extremely Low 1, 1, 2, 3 1 in 1,500,000 to 1 in 15,000
Low 2, 3, 4, 5 1 in 150,000 to 1 in 400

Medium 4, 5, 5, 6 1 in 2000 to 1 in 80
High 5, 6, 7, 8 1 in 400 to 1 in 8

Extremely High 7, 8, 9, 10 1 in 20 to 1 in 2

Table 7. Fuzzy detection matrix.

Linguistic
Expression

Fuzzy
Numbers Criteria

Extremely
Low 1, 1, 2, 3 Remote chance to low chance control system will not detect.

Low 2, 3, 4, 5 Very low chance to moderate chance control system will
not detect.

Medium 4, 5, 5, 6 Low chance to moderate chance control system will not detect.
High 5, 6, 7, 8 Moderate chance to high chance control system will not detect.

Extremely
High 7, 8, 9, 10 High chance to very high chance control system will not detect.

A trapezoidal fuzzy number is defined by four parameters (a, b, c, and d), where a
and d are the “feet” of the trapezoid, representing the lowest and highest points where the
membership function is greater than zero, and b and c are the shoulders of the trapezoid,
representing the range where the membership function equals one.

By calculating the RPN, the team was able to prioritize the failure modes, focusing
on those that posed the greatest risk and required immediate attention. To enhance the
robustness of the FMEA, insights from the existing literature on marine diesel engines were
integrated for analysis [31,50–54]. An excerpt of the FMEA is presented in Table 8.
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Table 8. Excerpt from the FMEA study for auxiliary diesel generator.

Component Failure
Mode Effects of Failure Cause of Failure Severity Occurrence Detection RPN

Cylinder
Head

Exhaust
Valve Failure Low power output. Material fatigue. 8.09 3.28 4.22 111.98

Fuel Injection
Valve

Nozzle
worn/blocked

Poor atomization,
engine misfiring,
reduced engine
performance.

Carbon deposits
from incomplete

combustion.
4.84 6.18 2.95 88.24

Turbocharger Nozzle Ring
Fouled

Increased exhaust
temperature, engine

efficiency drop.

Combustion
quality. 4.65 8.39 1.95 76.08

Piston Piston Ring
Worn

Low compression
pressure, scoring of

cylinder liner, oil
contamination.

Inadequate
lubrication. 7.55 4.72 5.15 183.52

The results obtained from the failure mode and effect analysis (FMEA) provide a
critical foundation for formulating prescriptive actions to manage and mitigate risks, as
well as serving as a crucial input for the development of machine learning algorithms,
aiming to classify different types of failures.

3.2. GAN

An emerging method, generative adversarial networks (GANs), proposed by Good-
fellow et al., consists of two neural networks, called the generator and discriminator. The
generator is used to generate new samples by learning the underlying principles of the
dataset and is used for the generation of new datasets, while the discriminator tries to cate-
gorize the generated data as real or false [55]. GANs have gained popularity in academia,
as they were first used as a generative algorithm, providing results that were indistin-
guishable from the real data. The training process is often expressed as a minimax game,
where the generator minimizes the probability of the discriminator being correct, and the
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discriminator minimizes the probability of making a mistake. The equilibrium of this game
ideally results in the generator producing realistic samples that are indistinguishable from
real data [56]. GANs have been successfully applied in various domains, including image
synthesis [57], text-to-image synthesis [58], composing [59], and last but not least, anomaly
detection [60].

The working architecture of this network is demonstrated in Figure 2.
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Figure 2. Representation of the generative adversarial network algorithm.

The generator takes random noise as its input and generates synthetic data. While
trying to create samples that are realistic, it learns to map random noise to data samples
without having direct access to the real data. The generator is trained through its communi-
cation with the discriminator. The discriminator is a binary classifier that evaluates whether
a given sample is real or fake; it acts as classifier for the generator’s output. Iterative
and adversarial training processes are performed simultaneously for the generator and
discriminator; as the generator improves, the discriminator must adapt to the increasingly
realistic generated samples. The ideal optimization outcome is the Nash equilibrium, where
the generator produces samples that capture the distribution of real samples [61].

The training of the GAN can be described as follows.
{x1, x2, x3, . . ., xn} represent the real-world data; z represents random noise input to the

generator. At the start of each training iteration, the sampling of noise vector z takes place.

zi ∼ N(0, 1) (1)

Using the noise vector, the generator creates a batch of fake data:

G(zi)

Concurrently, a batch of real data samples, xi, is drawn from the training dataset.
The discriminator is trained on the real data with the objective of correctly classifying

them as real:
Lossforrealdata : −log(D(xi)) (2)

where D represents the discriminator network.
The discriminator is also trained on the false data generated by the generator, with the

goal of correctly classifying them as false.

Lossforfakedata : −log(1 − D(G(zi))) (3)
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The total loss for the discriminator is represented by the sum of the losses for real and
false data, which is used to update the discriminator’s parameters.

LD = − 1
m

m

∑
i=1

(yilog D(xi)) + (1 − yi)log(1−D(G(zi))) (4)

After updating the discriminator, the generator is trained with the goal of producing
data that the discriminator classify as real.

LG = − 1
m

m

∑
i=1

(log(D(G(zi))) (5)

The entire process is repeated iteratively until convergence criteria are met or prede-
fined conditions are met, such as a certain number of epochs being completed.

3.3. Classification Models
3.3.1. Random Forests

Breiman proposed a machine learning algorithm: an ensemble of decision trees. It builds
multiple decision trees and merges them together to obtain prediction results [62]. The Figure 3
presented below illustrates a typical representation of the Random Forest algorithm.
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3.3.2. Decision Tree Classifier

Decision trees are non-parametric supervised learning methods that are generally
used for classification and regression problems. A decision tree learns simple decision
rules inferred from the data features. The model is represented as a tree, where each node
represents a feature, each branch represents a decision rule, and each leaf node represents
an outcome. The decision at each node splits the data into subsets based on the value
threshold of the feature.

3.3.3. Logistic Regression

Logistic regression is a statistical model for analyzing data in which there are one or
more independent variables that determine an outcome. The outcome is measured with a
dichotomous variable. The logistic function can be described as follows [63]:

σ(z) =
1

1 + e−z (6)

3.3.4. AdaBoost Classifier

Adaptive Boosting is an ensemble technique that combines multiple weak learners to
create a strong learner. It sequentially adjusts the weights of the training data, where more
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weight is given to misclassified instances at each iteration, causing the model to focus more
on difficult cases. With dataset features given as X and labels represented by Y, each weak
learner, ht, is assigned a weight:

αt =
1
2

ln
(

1 − errort

errort

)
(7)

The final strong learner is a weighted combination of all weak learners:

F(x) =
T

∑
t=1

αtht(x) (8)

3.3.5. K-Nearest Neighbors (KNN)

The k-nearest neighbors algorithm, based on the ‘k’ closest data, points to a given
point in a dataset and makes predictions based on its neighbors [64]. In classification tasks,
KNN assigns a class to the new data point based on the majority class of its ‘k’ nearest
neighbors [65]. A mathematical representation of the algorithm can be expressed as follows:

d
(
x, x′

)
=

n

∑
i=1

(∣∣(xi − x′ i
)∣∣p

)1/p
(9)

3.3.6. Xtreme Gradient Boosting

The extreme gradient boosting method is an advanced implementation of the gradi-
ent boosting algorithm developed by Chen and Guestrin [66]. XGBoost improves upon
the base gradient boosting algorithm through system optimization and provides model
flexibility [67]. The ensemble model in XGBoost is defined as follows:

F(x) =
K

∑
k=1

Fk(x) (10)

3.4. Proposed Methodology
3.4.1. Conceptual Framework

We propose an automated prescriptive framework that adopts a state-of-the-art gener-
ative adversarial network to address data imbalance problems when limited anomaly data
are available. The use of GANs has been proposed by various studies [68–70]; however, the
majority of existing studies only focus on the proportion of anomaly detection, whereas the
novelty of our proposal comes from its prescriptive framework.

The model starts with data collection from ship machinery. With the rapid imple-
mentation of the IoT, the available sensory information from ship machinery increased
exponentially. The number of data points can reach up to 3000 depending on the vessel
type. Diesel generators play an essential role in ships, serving as the backbone for power
generation on a vast array of vessels. Diesel generators supply electricity for auxiliary
systems and accommodation, including navigation, communication, and safety systems;
therefore, their reliability, fuel efficiency, and ability to operate under demanding conditions
are essential. Figures 4 and 5 present a conceptual framework and detailed flowchart of
the model.
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3.4.2. Data Description

In our case study, the dataset that we used was collected from a diesel generator
installed on a 310,000 DWT oil tanker, and the data collection period was six months with
1 min intervals. The data collected from the diesel generator include 33 features directly
related to the engine and engine subsystems. Vessel specification, principal information
about the diesel generator, and the parameters selected for analysis are shown in Table 9,
Table 10, and Table 11, respectively.

Table 9. Vessel specifications.

Item Specification

Vessel Type Crude Oil Tanker
Gross Tonnage 163,214 t

Deadweight Tonnage 319,398 t
Length/Breadth 336/60 m

Year Built 2018
Service Speed 15.7 knots

Main Engine Power 25,330 kW
Generator Power/Count 1540 kW × 1/1760 kW × 2

Draft 20.8 m
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Table 10. Equipment specification.

Item Specification

No. of cylinders 8
Rated speed (rpm) 900

Cylinder bore (mm) 210
Piston stroke (mm) 320

Mean effective pressure (bar) 24.1
Compression ratio 17:1

Table 11. Dataset variables.

Sensor Name Description Unit

ADE1HZ01 GE Frequency Hz
ADE1KW01 GE Load kW
ADE1KW02 GE Load %
ADE1VI01 GE Voltage Volt
ADE1PF01 GE Power Factor Unitless
ADE1PI01 GE FO Inlet Pressure Bar
ADE1PI02 GE LO Inlet Pressure Bar
ADE1PI03 GE TC LO Inlet Pressure Bar
ADE1PI04 GE Filter LO Inlet Pressure Bar
ADE1PI05 GE HT Water Inlet Pressure Bar
ADE1PI06 GE LT Water Inlet Pressure Bar
ADE1PI08 GE Charging Air Pressure Bar
ADE1PI09 GE FO Filter Inlet Pressure Bar
ADE1SI01 GE Revolution Rpm
ADE1SI02 GE TC Revolution Rpm
ADE1TI01 GE FO Inlet Temp ◦C
ADE1TI02 GE LO Inlet Temp ◦C

ADE1TI03 GE HT Water Outlet
Temperature

◦C

ADE1TI04 GE HT Water Inlet
Temperature

◦C

ADE1TI05 GE LT Water Inlet Air Cooler
Temperature

◦C

ADE1TI06 GE LT Water Outlet Air
Cooler Temperature

◦C

ADE1TI07 GE Charging Air Temperature ◦C
ADE1TI08 GE Exhaust Gas TC Inlet ◦C
ADE1TI09 GE Exhaust Gas TC Inlet ◦C
ADE1TI10 GE Exhaust Gas TC Outlet ◦C

ADE1TI11 GE Exhaust Gast Outlet
Cylinder #1

◦C

ADE1TI12 GE Exhaust Gast Outlet
Cylinder #2

◦C

ADE1TI13 GE Exhaust Gast Outlet
Cylinder #3

◦C

ADE1TI14 GE Exhaust Gast Outlet
Cylinder #4

◦C

ADE1TI15 GE Exhaust Gast Outlet
Cylinder #5

◦C

ADE1TI16 GE Exhaust Gast Outlet
Cylinder #6

◦C

ADE1TI17 GE Exhaust Gast Outlet
Cylinder #7

◦C

ADE1TI18 GE Exhaust Gast Outlet
Cylinder #8

◦C
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3.4.3. Exploratory Data Analysis

Data-driven methods involve working with the available data to obtain insights and
build models; exploratory data analysis (EDA) and data preprocessing are inseparable steps
in this process. EDA consists of in-depth statistical summaries, visualization techniques,
and pattern recognition to determine the inherent characteristics of variables and the
relationships between them. Statistical analytics during EDA, such as computing the
central tendencies, dispersion, and correlation coefficients, provide quantitative insights
into the dataset’s structure [71]. Data preprocessing addresses data quality issues. This
involves employing techniques such as imputation for missing values, normalization or
standardization techniques used for scaling the values of features, and the use of statistical
methods that are less sensitive to the presence of outliers [72]. This framework ensures the
reliability of the models that are built by addressing potential biases and outliers before the
modelling steps start. Table 12 shows a summary of the statistical analysis of the dataset
after the cleaning of data.

Data-driven methods predict the target variable by harnessing the variational rela-
tionship embedded in the dataset, which is often discerned through correlation analysis.
This involves understanding and quantifying the associations between input features and
output. Correlation analysis, typically using measures such as the Pearson correlation
coefficient, is employed to reveal the strength and direction of the linear relationships
between variables [73]. The iterative nature of data-driven models means that models are
tuned based on the variational relationships discovered during the correlation analysis.
Model tuning involves incorporating additional features, adjusting model parameters, or
exploring different algorithms. A general outline of the study is illustrated in Figure 4,
and the Pearson correlation analysis and strongest correlation variables are shown in
Figures 6 and 7, respectively. In order to maintain the diversity of the generated sam-
ples, the trade-off regarding high-dimensionality data and computational complexity was
evaluated, and the decision was made to not to drop any features from the dataset.J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 17 of 24 
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Table 12. Summary of dataset.

ADE1PF01 ADE1PI01 . . . ADE1HZ01 ADE1KW01

Count 239,955 239,955 . . . 239,955 239,955
Mean 0.791248 7.5867185 . . . 59.919766 817.076

Std 0.022278 0.429746 . . . 0.089750 194.1677
Min 0.5 6.1 . . . 58.8 0
25% 0.78 7.2 . . . 59.9 648
50% 0.79 7.2 . . . 59.9 863
75% 0.8 8 . . . 60.0 977
Max 0.84 9.4 . . . 60.5 1385
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4. Results and Discussion

The synthetic data that were generated resemble real data; then, the imbalanced dataset
was classified according to the framework described in Section 3.4.1. The specifications
of the device used for modelling were established with an Intel Core i7-13700F 2.10 GHz
processor, 16 GB of RAM, NVIDIA GeForce RTX 4070, and 1TB SSD hard disk. During the
modelling process, TensorFlow 2.10.0 was utilized within a Python 3.9.18 programming
environment. In order to generate the synthetic data, various hyperparameter tuning
operations were performed throughout the GAN modelling phase, where the model
underwent significant changes in its performance as the training process evolved. The
GAN architecture integrates a discriminator with a total of four layers (512, 256, 128, and
1) and a generator comprising three layers (1024, 2048, and 4096), employing LeakyReLU
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as the primary activation function, and using intermediate layers and sigmoid in the final
layer of the discriminator. Tables 13 and 14 summarize the key hyperparameters used
during modeling. Additionally, during performance optimization, we implemented Python
packages Cprofiler and Snakeviz to visualize the computation time of the algorithm. The
final computational performance of the GAN architecture is demonstrated in Figure 8.

Table 13. Hyperparameters for the discriminator.

Hyperparameter Value

Number of dense layers 4
Units in each dense layer [512, 256, 128, 1]

Activation functions [LeakyReLU, LeakyReLU, LeakyReLU,
Sigmoid]

Dropout rates [0.5, 0.5, 0.5]
Batch normalization Default

Table 14. Hyperparameters for the generator.

Hyperparameter Value

Number of dense layers 3
Units in each dense layer [1024, 2048, 4096]

Activation functions [LeakyReLU, LeakyReLU, LeakyReLU]
Batch normalization 0.8

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 19 of 24 
 

 

as the primary activation function, and using intermediate layers and sigmoid in the final 
layer of the discriminator. Tables 13 and 14 summarize the key hyperparameters used 
during modeling. Additionally, during performance optimization, we implemented Py-
thon packages Cprofiler and Snakeviz to visualize the computation time of the algorithm. 
The final computational performance of the GAN architecture is demonstrated in Figure 
8. 

Table 13. Hyperparameters for the discriminator. 

Hyperparameter Value 
Number of dense layers 4 
Units in each dense layer [512, 256, 128, 1] 

Activation functions [LeakyReLU, LeakyReLU, LeakyReLU, Sigmoid] 
Dropout rates [0.5, 0.5, 0.5] 

Batch normalization Default 

Table 14. Hyperparameters for the generator. 

Hyperparameter Value 
Number of dense layers 3 
Units in each dense layer [1024, 2048, 4096] 

Activation functions [LeakyReLU, LeakyReLU, LeakyReLU] 
Batch normalization 0.8 

 
Figure 8. Computational performance of the GAN architecture. Figure 8. Computational performance of the GAN architecture.

Synthetic data were generated and evaluated using various metrics before the best
model for the GAN was chosen. These metrics included the discriminator’s accuracy
when using real samples and generated samples, the F1 score, the precision score, and the
recall score. Table 15 presents the accuracy of the discriminator using the GAN model at
different epochs.
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Table 15. Summary of key metrics for generative adversarial network evaluation.

Epochs

Discriminator
Accuracy on

Real
Samples

Discriminator
Accuracy on
Generated
Samples

F1 Score Precision
Score Recall Score

50 69.38% 28.25% 15.10% 8.54% 65.06%
100 47.24% 57.12% 67.18% 55.04% 86.18%
200 89.38% 44.57% 19.32% 10.69% 99.89%
500 89.09% 19.72% 14.93% 12.35% 18.86%

1000 89.49% 6.51% 30.47% 18.72% 81.86%
2000 89.43% 100.00% 15.89% 8.88% 75.35%

The discriminator’s accuracy when using real data remained strong throughout the
iterations, whereas its accuracy when using generated samples fluctuated significantly; it
achieved a perfect accuracy of 100%, which indicates that the model was overfitted. Based
on the accuracy of the discriminator, 100 and 200 epochs stand out as the best performers.
However, accuracy, as a traditional metric, might provide misleading results [74]. There-
fore, an evaluation of additional metrics is required. In summary, the GAN model, at
100 epochs, achieves an F1 score of 67.18%, yielding the best results regarding the bal-
ance between precision and recall; thus, the GAN model with 100 epochs can be used for
classification problems.

After the selection of the optimal GAN model, a comparative study was conducted to
evaluate the performance of six different classifiers: AdaBoost, Random Forest, decision
tree, Logistic Regression, KNN, and XGBoost. The performance of the classifiers in the
classification algorithm was evaluated by several metrics, namely, accuracy, precision,
recall, F1, and elements of the confusion matrix. These metrics offer a multifaceted view
of each classifier’s performance, which is crucial for understanding their applicability to
classification tasks. Table 16 presents a summary of the classification results, along with the
metrics used for evaluation.

Table 16. Summary of classifier metrics.

Epochs Classifier Accuracy Precision Recall F1 TN FP TP FN

100 AdaBoost 81.84% 34.28% 77.75% 47.58% 95,611 20,522 10,703 3063

100 Random
Forest 68.07% 24.92% 99.97% 39.89% 74,660 41,473 13,762 4

100 Decision
Tree 67.90% 21.06% 73.85% 32.78% 78,032 38,101 10,166 3600

100
Logistic
Regres-

sion
30.08% 11.16% 80.41% 19.60% 28,008 88,125 11,069 2697

100 KNN 80.48% 32.91% 81.05% 46.81% 93,391 22,742 11,157 2609
100 XGBoost 83.13% 36.91% 83.47% 51.18% 96,489 19,644 11,491 2275

Based on a comparative study of six classification algorithms, XGBoost emerged as the
best classification algorithm, with an accuracy of 83.13% and an F1 score of 51.18%. This
also indicates the effectiveness of the XGBoost algorithm for varying data distributions.
However, logistic regression displayed significant limitations, with an 80.41% recall rate,
suggesting that, while it can identify the majority of positive instances, it had a high rate
of misclassification. AdaBoost and KNN classification algorithms achieved respective
accuracies 81.84% and 80.48%; the increased number of false positives indicates a potential
trade-off when aiming to achieve high sensitivity. Random Forest and decision tree classi-
fiers also had an increased false positive rate, which demonstrates the overfitting problem
that can occur with a given dataset. This indicates the need for feature selection in order to
improve the model’s generalization ability.
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5. Conclusions

The growing data acquisition abilities are increasing the demand for data-driven
methods; therefore, GAN studies are increasing exponentially. The implementation of
GAN algorithms in the maritime domain is concentrated in the area of vessel trajectory
prediction [75] and object detection [76]. This study presents a pioneering approach to ship
machinery monitoring by integrating GAN with FMEA techniques. The classification with
engineering approaches such as FMEA enhances the prescriptive abilities of the framework
by providing treatment actions for the detected anomalies. Our model, validated using
real-time data from a diesel generator on a 310,000 DWT oil tanker, demonstrates significant
potential in enhancing the precision and recall of anomaly detection in maritime operations.
The developed algorithm shows a high accuracy of 83.13% and achieves a balance between
precision and recall, thus facilitating early operational interventions. The contributions
of this research extend to ensuring operational excellence in tanker ship fleets, offering
a novel pathway for the advancement of engine health management software products.
Additionally, predictive tools require a significant amount of data in order to establish
baseline conditions for machinery. Baseline data are used to understand the relationship
between features and equipment behavior. However, the degradation of machinery is
expected to occur over time; therefore, baselines for algorithms generally need to be
adjusted over time. The implementation of the GAN models can significantly reduce the
time required to establish baseline readings for machinery condition monitoring and enable
operators to use these tools more efficiently. Similarly, when anomalies are experienced,
they are immediately remedied. Thus, the availability of anomaly data is limited. One
potential extension for this study is to strengthen existing engine health management
software products by training the GAN model on the engine’s operational data. This
integration could improve the accuracy and effectiveness of anomaly detection and failure
monitoring systems. Lastly, even though it has been around for decades, the popularity
of transfer learning has surged in recent years due to advancements in deep learning
algorithms. A GAN model that is pre-trained on a dataset could be used for domain-specific
regularization. One natural extension of this framework is the implementation of Multi-
Criteria Decision Making (MCDM) methods. The use of methods such as the Preference
Ranking Organization Method for Enrichment Evaluation (PROMETHEE) or Technique
for Order of Preference by Similarity to Ideal Solution (TOPSIS) could enable operators
to implement the best alternative from a set of alternatives based on their performance.
Another potential extension to the proposed framework is the implementation of feature
extraction algorithms such as Principal Component Analysis (PCA), which could be used
to quantify the contribution of particular features to different types of anomalies. Through
continuous improvement and adaptation, this model aims to significantly contribute to the
safe, secure, and environmentally friendly operation of ships globally.
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