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Abstract: The absorption and scattering of light in water usually result in the degradation of un-
derwater image quality, such as color distortion and low contrast. Additionally, the performance
of acquisition devices may limit the spatial resolution of underwater images, resulting in the loss
of image details. Efficient modeling of long-range dependency is essential for understanding the
global structure and local context of underwater images to enhance and restore details, which is
a challenging task. In this paper, we propose an agent-guided non-local attention network using
a multi-color space for underwater image enhancement and super-resolution. Specifically, local
features with different receptive fields are first extracted simultaneously in the RGB, Lab, and HSI
color spaces of underwater images. Then, the designed agent-guided non-local attention module
with high expressiveness and lower computational complexity is utilized to model long-range de-
pendency. Subsequently, the results from the multi-color space are adaptively fused with learned
weights, and finally, the reconstruction block composed of deconvolution and the designed non-local
attention module is used to output enhanced and super-resolution images. Experiments on multiple
datasets demonstrated that our method significantly improves the visual perception of degraded
underwater images and efficiently reconstructs missing details, and objective evaluations confirmed
the superiority of our method over other state-of-the-art methods.

Keywords: underwater image enhancement; super-resolution; non-local attention; deep learning

1. Introduction

As a valuable information medium in the deep ocean, underwater images provide a
wealth of data for marine science, resource exploration, and ecological protection. However,
due to optical effects such as water absorption and scattering during the propagation of
light, underwater images are often accompanied by challenging problems such as color dis-
tortion, contrast degradation, lack of clarity, and blurring of details. Moreover, the acquired
underwater images may suffer from low spatial resolution due to the performance limita-
tions of the acquisition equipment. In our study, we focus on addressing these challenges
through two key explorations: underwater image enhancement (UIE) and underwater
image super-resolution (SR).

Underwater-image-enhancement techniques [1,2] focus on adjusting the pixel values
of images to improve their visual quality, thereby increasing the usability of underwater
images for various underwater activities and applications. Existing underwater-image-
enhancement methods are mainly categorized into traditional enhancement methods [3–11]
and learning-based enhancement methods [12–24]. Traditional underwater-image-enhancement
methods include both physical-model-based methods [4–7] and non-physical-model-based
methods [8–11]. Most physical-model-based methods utilize prior knowledge to invert the
underwater imaging model for computing the real scene, and their robustness is influenced
by the accuracy of the prior knowledge. Non-physical-model-based methods directly
modify the pixel values of images using signal-processing methods to improve image
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quality, with no involvement in the imaging model. In recent research, learning-based
underwater-image-enhancement methods have become mainstream, such as methods
based on convolutional neural networks (CNNs) [12–17], generative adversarial networks
(GANs) [18–22], and Vision Transformer (ViT) [23,24]. CNN-based methods achieve image
enhancement by learning the mapping relationship between the raw and reference im-
ages, while GAN-based methods employ adversarial learning to generate realistic images,
focusing on enhancing the overall perceptual quality of underwater images. Currently,
underwater-image-enhancement methods still fall short of satisfactory results. On the one
hand, traditional methods either overlook imaging mechanisms leading to excessive or
insufficient enhancement or rely on specific prior knowledge, making them unsuitable for
diverse underwater scenes. On the other hand, most learning-based methods concentrate
on extracting the local features of images, neglecting the importance of capturing non-local
correlation. Moreover, they predominantly use the RGB color space, which cannot directly
reflect some critical attributes of images, hindering further improvement of issues such as
low contrast, saturation, and brightness.

The basic goal of image super-resolution is to generate a corresponding high-resolution
(HR) image from a low-resolution (LR) counterpart, thereby providing the image with more
details and clarity. Consequently, underwater image super-resolution is crucial for improv-
ing image quality and enhancing visual perception. In recent years, deep-learning-based
approaches, especially CNNs and GANs, have achieved significant advancements in image
super-resolution tasks [25–30]. For instance, Dong et al. [25] were the first to propose using
CNNs to learn the mapping relationship between LR and HR images, generating high-
quality images. The super-resolution algorithm SRGAN introduced by Ledig et al. [28],
incorporating a GAN framework, improves image resolution in a more natural and realistic
manner. While these methods have demonstrated satisfactory performance in terrestrial
images, they may not generalize well to underwater scenes due to significant differences in
underwater optical characteristics compared to terrestrial environments. Additionally, un-
even lighting and varying water quality in different aquatic environments pose challenges
in underwater scenes. To more effectively address the image super-resolution require-
ments in underwater scenes, several methods and datasets [31–33] tailored to underwater
super-resolution tasks have been proposed. For example, Islam et al. [31] constructed
an underwater image super-resolution dataset (USR-248) and introduced two methods,
SRDRM and SRDRM-GAN, based on fully convolutional deep residual networks, aimed at
enhancing the spatial resolution of reconstructed underwater images. While these meth-
ods are effective at improving the quality of underwater images, there is still room for
further optimization.

In addressing the aforementioned issues, this paper proposes an agent-guided non-
local attention-based network for underwater image enhancement and super-resolution.
Specifically, we simultaneously extracted shallow features of underwater images in the RGB,
Lab, and HSI color spaces and utilized agent-guided non-local attention modules to capture
long-range dependency in underwater images. The learned non-local context residuals
were then added to the inputs of the corresponding color spaces to obtain enhanced results
in different color spaces, and then, they were adaptively fused with the learned weights.
The reconstruction block, composed of deconvolution and the designed non-local attention
module, produces enhanced underwater images and super-resolution images. In summary,
the main contributions of this paper are as follows:

1. An agent-guided non-local attention network using the multi-color space is proposed
for underwater image enhancement and super-resolution. The network extracts
feature maps with different receptive fields and captures long-range dependency
in the RGB, Lab, and HSI color spaces simultaneously, then the adaptive fusion
of outputs from different color spaces is achieved with learned weight coefficients.
Finally, enhanced images and high-resolution underwater images are generated by
the reconstruction block.
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2. An agent-guided non-local attention module is designed to capture long-range de-
pendency in underwater images, enhancing the understanding of the global structure
and contextual information. The module performs two non-local attention computa-
tions, demonstrating high expressive power while maintaining significantly lower
computational complexity compared to the typical non-local block.

3. The proposed network outperforms state-of-the-art methods in several objective qual-
ity assessment metrics on multiple datasets, both for underwater image enhancement
and underwater image super-resolution. Qualitative comparisons also demonstrate
that our network produces visually pleasing results.

The rest of this paper is organized as follows: Section 2 reviews related work on
underwater-image-enhancement methods and underwater-image-super-resolution meth-
ods and revisits the non-local block. Section 3 illustrates the network architecture and
relevant internal structures of our method. Section 4 presents the experimental details,
results and analysis, and ablation study. Section 5 provides the conclusion of this work.

2. Related Works
2.1. Underwater Image Enhancement

The underwater-image-enhancement methods based on physical models primarily
utilize prior knowledge to estimate optical parameters in the imaging model and invert the
model to obtain a clean image. For instance, Drews et al. [4] extended the dark channel
prior (DCP) [3] to the underwater dark channel prior (UDCP), using the priors of the blue
and green channels to estimate the depth map, addressing issues caused by the severe
attenuation of red light in water, leading to underwater image distortion and blue–green
color problems. Song et al. [5] employed underwater light attenuation prior information
to calculate the depth map, thereby estimating optical parameters such as background
light and the transmission map for underwater image restoration. Liang et al. [7] used
priors from the red, green, and blue channels to estimate transmission map parameters,
incorporating image brightness, blurriness, and wavelength-related attenuation as priors to
estimate background light and inversely reconstruct the underwater image. Non-physical-
model-based underwater-image-enhancement methods mainly modify the pixel values
of images to achieve enhancement. Jyoti et al. [8] proposed histogram equalization (HE),
utilizing pixel value transformations to adjust the distribution of pixel values throughout
the entire brightness range for a more-uniform distribution and enhanced visual effect.

In recent years, deep-learning-based underwater-image-enhancement methods have
gained extensive attention. Li et al. [12], combining underwater optical characteristics
and the imaging model, provided ten synthetic underwater image datasets and trained
the proposed lightweight underwater-image-enhancement model (UWCNN). Li et al. [13]
constructed a real-world underwater image dataset (UIEBD) used to train the proposed
CNN-based underwater-image-enhancement network (Water-Net), demonstrating the suit-
ability of this dataset for training CNNs. Li et al. [15], leveraging the advantages of physical
models and deep learning, introduced a deep network with multi-color space embedding
(Ucolor), incorporating medium transmission as prior knowledge to guide the network in
generating enhanced images with higher contrast and color correction. Fabbri et al. [18], us-
ing collected real-world clear and degraded underwater images, trained the CycleGAN [34]
to generate paired images, employed to train the proposed GAN-based underwater-image-
enhancement network. Islam et al. [19] adopted the paired image-generation proposed
in [18] to create the underwater dataset (EUVP) and designed a network (FUnIE-GAN)
for fast underwater image enhancement, achieving improved enhancement performance
through a mix of supervised and unsupervised training. Peng et al. [24] introduced a
U-shaped network based on Vision Transformer [35], successfully incorporating the Trans-
former with the self-attention mechanism into the underwater-image-enhancement task.

Physical-model-based underwater-image-enhancement methods have achieved good
performance in certain specific underwater scenes. However, due to the assumed imaging
models that may not fit all underwater scenes and the difficulty in accurately estimating
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multiple imaging parameters, these methods fail to maintain robust performance when
encountering diverse underwater environments. Non-physical-model-based underwater-
image-enhancement methods can improve visual quality to some extent, but they usually
produce over-/under-enhanced results due to the neglect of underwater imaging mecha-
nisms. In comparison to traditional methods, existing learning-based underwater-image-
enhancement methods have made significant progress. Nevertheless, these deep learning
methods based on CNNs and GANs exhibit limitations in robustness and generalization
performance because they overlook the capture of long-range dependency in degraded
images, which is crucial for understanding the global structure of underwater scenes.
While Transformer-based methods emphasize attention to global information, they discard
convolutions that are advantageous for capturing local features, resulting in unsatisfactory
image quality. Additionally, these methods predominantly rely on the RGB color space,
making them insensitive to attributes such as brightness and saturation, thereby limiting
their performance.

2.2. Underwater Image Super-Resolution

In recent years, extensive research has demonstrated significant advantages in apply-
ing deep learning to address low-level visual tasks, with image super-resolution being
a beneficiary of these advancements. After Dong et al. [25] introduced the three-layer
convolutional neural network (SRCNN) for image super-resolution, newer and deeper
networks have been continually proposed. Mao et al. [26] presented the deeply recursive
convolutional autoencoder network (DSRCNN) to enhance spatial resolution for restoring
image details. The performance of the residual learning-based deep network (EDSR),
proposed by Lim et al. [27], surpassed the SRCNN in single-image super-resolution. Addi-
tionally, Liang et al. [29] applied the Swin Transformer [36] with window self-attention to
single-image super-resolution, achieving significant performance improvements. Recently,
Choi et al. [30] introduced the N-Gram context for adjacent local window interaction,
enhancing the network proposed in [29]. While these methods have achieved satisfactory
performance in terrestrial images, they may not be suitable for underwater super-resolution
tasks because the underwater environment presents optical properties and challenges that
are significantly different from those of the terrestrial environment. These challenges in-
clude blurring and loss of detail due to light attenuation and scattering, color distortion due
to light absorption in the water, and blurring and noise due to currents, particulate matter,
and contaminants. Therefore, studies on super-resolution methods based on underwater
scenes have been initiated. Unlike Islam et al. [31], who proposed a GAN-based fully
convolutional deep residual network for underwater super-resolution, Chen et al. [32]
introduced a CNN model based on channel attention to learn the mapping relationship
between low-resolution and high-resolution images. In addition, Islam et al. [33] proposed
a residual CNN network with a multi-modal loss function (Deep-SESR), capable of simulta-
neously handling enhancement and super-resolution tasks, and constructed an underwater
image benchmark dataset (UFO-120) for enhancement and super-resolution.

Although these super-resolution methods have yielded encouraging results in improv-
ing image quality, there is room for improvement in their ability to enhance visual per-
ception, as they primarily focus on reconstructing image details without fully considering
varying degrees of color distortion. While these methods that achieve both enhancement
and super-resolution address both detail recovery and color correction, their designed
networks lack the capability for global dependency modeling, making it challenging to
capture critical information away from the regions of interest and potentially limiting their
adaptability to various underwater environments.

2.3. Non-Local Block

Models based on CNNs or GANs typically use the depth stack of the convolutional
layers to model long-range dependency, where each layer models pixel relationships
within a local neighborhood. However, direct stacking of convolutional layers is inefficient
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and difficult to optimize due to the difficulty of transferring information between distant
positions. To address this issue, Wang et al. [37] designed a single-layer non-local block to
directly model long-range dependency. Figure 1 illustrates the structure of a widely used
instantiation of the non-local block, embedded Gaussian.

Figure 1. An instantiation of the non-local block: embedded Gaussian. C, H, and W represent the
channel number, height, and width of the input maps, respectively. ⊗ denotes matrix multiplication,
and ⊕ denotes elementwise addition.

The non-local block can be viewed as a query-specific global-context-modeling module,
which enhances features at the query position by querying specific global context vectors.
The process involves matrix multiplication of the query and key to calculate the similarity
between the positions of each pixel and other pixel positions. Subsequently, the calculated
similarity is used to assign weights to each position. Matrix multiplication is then performed
between the weight map and the value to obtain the weighted sum and compute the
query-specific global context vector. The non-local block is a type of Softmax attention
with high expressive power [35], but with high computational complexity squared to
the number of positions. In comparison to the typical non-local block, the agent-guided
non-local attention module designed in this paper maintains the advantages of the high
expressiveness of Softmax attention and lower complexity while preserving the ability to
model long-range dependency.

3. Proposed Method
3.1. Network Architecture

The overall architecture of the proposed network is illustrated in Figure 2. The network
can be divided into four parts: shallow feature extraction, deep feature extraction, adaptive
fusion, and image reconstruction. Each of these parts will be explained in detail next.

Shallow feature extraction. The goal of this part is to obtain shallow features with
diverse receptive fields and rich color information. The Lab color space separates color
information into luminance and two chromatic channels, a and b, which are more aligned
with human perception of color. The HSI color space divides color information into hue,
saturation, and intensity, making color information more interpretable and manageable.
Considering that using large convolutional kernels for processing the intensity component
is more effective in capturing large-scale features in the image and since both HSI and Lab
include a luminance attribute, but Lab simultaneously considers human color perception,
using large convolutional kernels may not preserve luminance information as prominently
as in the HSI color space. Therefore, we employed 3 × 3, 5 × 5, and 7 × 7 convolutional
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kernels for feature extraction in the RGB, Lab, and HSI color spaces of underwater images,
respectively, and obtained the corresponding contextual features:

DLab = RGB2Lab(DRGB)
DHSI = RGB2HSI(DRGB)
f 1
RGB = δ(bn(conv3×3(DRGB)))

f 1
Lab = δ(bn(conv5×5(DLab)))

f 1
HSI = δ(bn(conv7×7(DHSI)))

(1)

where RGB2Lab(·) and RGB2HSI(·) denote the conversion of the color space of an image
from RGB to Lab and HSI, respectively. conv3×3, conv5×5, and conv7×7 denote the convolu-
tion operations with kernels 3 × 3, 5 × 5, and 7 × 7, respectively. bn and δ denote the batch
normalization and PReLU activation functions, respectively.

The output of this part is:

M1 = f 1
RGB ⊙ f 1

Lab ⊙ f 1
HSI (2)

where ⊙ denotes concatenation.

Figure 2. The overall network architecture of the proposed network.

Deep feature extraction. The goal of this stage is to efficiently model long-range
dependency with lower computational complexity and obtain non-local contextual residu-
als in different color spaces. Firstly, similar to the shallow-feature-extraction part, 3 × 3,
5 × 5, and 7 × 7 convolutional kernels are used to extract deeper feature representations.
Subsequently, the obtained feature maps are concatenated with the corresponding shallow
feature maps and fed into the agent-guided non-local attention module to generate feature
maps containing non-local contextual information:

f 2
RGB = δ(bn(conv3×3(M1)))⊙ f 1

RGB
f 2
Lab = δ(bn(conv5×5(M1)))⊙ f 1

Lab
f 2
HSI = δ(bn(conv7×7(M1)))⊙ f 1

HSI

(3)

f 2
RGB = Ag−NL( f 2

RGB)
f 2
Lab = Ag−NL( f 2

Lab)
f 2
HSI = Ag−NL( f 2

HSI)
(4)

where Ag-NL refers to the Ag-NL module.
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The output of this part can be expressed as:

M2 = f 2
RGB ⊙ f 2

Lab ⊙ f 2
HSI (5)

Adaptive fusion. This part aims to integrate the results obtained through feature
learning in different color spaces as comprehensively as possible, thereby generating a
color-corrected map:

f 3
RGB = δ(bn(conv3×3(M2)))⊕ DRGB

f 3
Lab = δ(bn(conv5×5(M2)))⊕ DLab

f 3
HSI = δ(bn(conv7×7(M2)))⊕ DHSI

(6)

M3 = conv1×1( f 3
RGB)⊕ conv1×1(Lab2RGB( f 3

Lab))⊕ conv1×1(HSI2RGB( f 3
HSI)) (7)

where ⊕ denotes elementwise addition, conv1×1 denotes convolution with kernel 1 × 1,
and Lab2RGB(·) and HSI2RGB(·) denote the conversion of the color space of the image
from Lab and HSI back to RGB.

Image reconstruction. The goal of this stage is to further capture long-range de-
pendency in the corrected image and ultimately generate enhanced and super-resolution
images. Initially, local features of the color-corrected map are extracted using a 3 × 3 decon-
volution operation. Subsequently, these features are concatenated with the color-corrected
map and fed into the agent-guided non-local attention module. Finally, a 3 × 3 deconvolu-
tion layer (followed by a pixel-shuffle layer for the SR task) is employed to generate the
predicted image:

f 4 = Ag−NL(δ(bn(deconv3×3(M3)))⊙ M3)
Eh×w×3 = δ(bn(deconv3×3( f 4)))

Rscale·h×scale·w×3 = pixelshu f f le(Eh×w×3·scale2
)

(8)

where deconv3×3 denotes the deconvolution layer with kernel 3 × 3, pixelshu f f le denotes
the pixel-shuffle layer, and scale refers to the scale factor of SR. Eh×w×3 denotes the en-
hanced underwater image, and Rscale·h×scale·w×3 denotes the super-resolution underwa-
ter image.

3.2. Agent-Guided Non-Local Attention Module

Capturing long-range dependency in underwater images is advantageous for enhanc-
ing the network’s perception of the overall context. This enables the network to consider
various parts of the image more comprehensively, leading to improved handling of color
distortion and more-accurate restoration of detailed information. The typical non-local
block, while effective in long-range modeling, comes with high computational complexity
and is typically applied sparingly in the network architecture. To achieve the efficient cap-
ture of long-range dependency, we designed the agent-guided non-local attention module
(Ag-NL module), as illustrated in Figure 3.

The Ag-NL module can be represented as:

O = σ(QAT)σ(AKT)V + DWC(I)
A = Globalpooling(I) ∈ C×1 (9)

where Q, K, V ∈ RC×HW denote Query, Key, and Value, respectively. σ denotes the Softmax
activation function, and DWC(·) denotes the depthwise convolution. I denotes the input;
O denotes the output; A denotes the agent, which is obtained by applying global average
pooling to the input I.
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First, A is used as the query, and attention computation is performed between A, K,
and V to aggregate global information from K and V, resulting in agent features. Subse-
quently, A is used as the key, and the agent features are used as the value. By employing Q
for the second attention computation, the global information of the agent features is broad-
cast to each query, thereby achieving efficient global context modeling. Simultaneously,
the depthwise convolution is applied to the input feature maps to enhance feature diversity.
Finally, the obtained global context is utilized to strengthen the input feature maps with di-
versity. The computational complexity of the typical non-local block is O(C(HW)2), where
O(·) denotes complexity. In contrast, our Ag-NL module has a complexity of O(CHW), re-
ducing the computational complexity while retaining the ability for long-range dependency
modeling, making it applicable to multiple locations in the network architecture.

Figure 3. Agent-guided non-local attention module (Ag-NL Module). C, H, and W represent the
channel number, height, and width of the input maps, respectively. ⊗ denotes matrix multiplication,
and ⊕ denotes elementwise addition.

3.3. Loss Function

To train the proposed network, we designed a comprehensive loss function that
includes the L1 loss, SSIM loss, and perceptual loss. The L1 loss is used to measure global
similarity; the SSIM loss is employed for structural similarity; the perceptual loss assesses
the consistency in image content. The L1 loss, also known as the mean absolute error
(MAE), calculates the mean of the absolute difference between all pixels of the predicted
image ŷ and the ground-truth image y, as follows:

L1 =
W

∑
m=1

H

∑
n=1

|ŷ(m, n)− y(m, n)| (10)

The SSIM loss is used to enhance the structural and textural similarity between the
predicted image ŷ and the ground-truth image y, and the computation can be expressed as:

LSSIM = 1 −
(2uŷuy + µ1)(2σŷy + µ2)

(u2
ŷ + u2

y + µ1)(σ
2
ŷ + σ2

y + µ2)
(11)
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where uŷ and σŷ represent the mean and standard deviation of the predicted image ŷ, uy
and σy represent the mean and standard deviation of the real image y, and σŷy represents
the covariance.

Perceptual loss is used to calculate the distance between the predicted image ŷ and
the feature representation of the ground-truth image y, which is based on the trained VGG
network. Let ϕ(·) be the last convolutional layer of the VGG-19 network [38]. The percep-
tual loss is calculated as the L1 loss between the predicted image ŷ and the ground-truth
image y; Lperc can be expressed as:

Lperc =
W

∑
m=1

H

∑
n=1

|ϕ(ŷ)(m, n)− ϕ(y)(m, n)| (12)

Thus, our comprehensive loss function can be expressed as:

L = ω1L1 + ω2LSSIM + ω3Lperc (13)

where ω1, ω2, and ω3 were empirically set to 1.0, 1.0, and 0.5, respectively, to balance
different loss terms.

4. Experimental Results and Analysis

We first introduce the experimental datasets and evaluation metrics, along with the im-
plementation details of the experiments, then present the underwater-image-enhancement
results and the underwater-image-super-resolution results, as well as the analysis of the
results, while the ablation study in the final vignette demonstrates the effectiveness of
our method.

4.1. Datasets and Implementation Details

We utilized publicly available underwater image datasets to train and evaluate our net-
work, namely UIEBD [13], SQUID [39], USR-248 [31], and UFO-120 [33]. UIEBD comprises
890 pairs of real-world underwater images and their corresponding reference images, along
with 60 challenging unpaired degraded underwater images. It serves as an underwater-
enhancement dataset, and the 60 unpaired images are available for testing the generalization
performance. SQUID contains a large number of images captured at different locations
with varying water characteristics, with 16 representative images often used for testing the
performance of the enhancement methods. The USR-248 dataset consists of 1060 image
pairs for training and 248 pairs for testing, serving as an underwater super-resolution
dataset. The UFO-120 dataset includes 1500 training pairs and 120 testing pairs, serving
as both an underwater super-resolution and enhancement dataset. In our experiments,
UIEBD was randomly split into 800 pairs for training (Train-U) and the remaining 90 pairs
for testing (Test-U90), while UFO-120 was split into 1500 pairs for training (Train-UFO)
and 120 pairs for testing (Test-UFO120) for the underwater image enhancement task. USR-
248 and UFO-120 were used for the underwater super-resolution task. The challenging
60 images from UIEBD (Test-C60) and SQUID were employed to test the generalization
performance of competing enhancement methods.

The proposed network was trained using the Adam optimizer with the parameters
set to β1 = 0.5, β2 = 0.999, and ε = 10−8. The initial learning rate was 5×10−4, and we
set milestones = [150, 250, 400] with gamma = 0.5 for non-uniformly adjusting the learning
rate. The total epoch was set to 500 with batch sizes of 10 (for SE and 2× SR) and 15
(for 4× SR). We implemented our network using the PyTorch (the version number: 1.7.1)
framework and an NVIDIA RTX 2080TI GPU (NVIDIA, Santa Clara, CA, USA). Due to
memory constraints, the UIEBD training set was adjusted to 256 × 256 and randomly
cropped to a 128 × 128 patch. For the SE task on UFO-120, the images were randomly
cropped to a 160 × 120 patch. The training set for the 2× SR task was randomly cropped to
a 160 × 120 patch, while the 4× SR training set was randomly cropped to an 80 × 60 patch.
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Our network has 1.36 MB parameters and can perform 2× SR on 18 images of size 320 × 240
in 1 s.

4.2. Evaluation Metrics

We employed both full-reference and non-reference image-quality metrics to compre-
hensively evaluate and compare the proposed method with competing methods. The full-
reference metrics included the mean-squared error (MSE), the peak signal-to-noise ra-
tio (PSNR), and the structural similarity index (SSIM), which assess the proximity and
structural–textural similarity between the generated images and the reference images. For
the PSNR and SSIM, higher values indicate better performance, while for the MSE, lower
values are desirable. The non-reference metrics consist of the underwater image quality
measure (UIQM) [40] and underwater color image quality evaluation (UCIQE) [41], which
provide a comprehensive evaluation of underwater image quality based on factors such as
color intensity, saturation, clarity, and contrast.

4.3. Underwater Image Enhancement Results

We compared our method with UDCP [4], ULAP [5], HE [8], UWCNN [12], Water-
Net [13], FUnIE-GAN [19], Ucolor [15], URSCT-SESR [23], Deep SESR [33], and U-Trans [24].

Quantitative evaluation. In Table 1, we present the full-reference evaluation results
on Test-U90 and the non-reference results on Test-C60 and SQUID. In Table 2, we provide
the full-reference and non-reference evaluation results on Test-UFO120. Additionally, we
present the model parameters of the competing methods in Table 1.

Table 1. The evaluation results of different methods on Test-U90, Test-C60, and SQUID. The best
result is in red under each case, and the second-best is in blue.

Method Params (M)
T-U90 Test-C60 SQUID

MSE PSNR (dB) SSIM UIQM UCIQE UIQM UCIQE

UDCP [4] - 4542.44 12.09 0.59 1.45 0.53 0.94 0.55

ULAP [5] - 2254.50 16.27 0.76 1.66 0.53 0.87 0.46

UWCNN [12] 0.04 3260.72 13.92 0.67 2.38 0.47 2.12 0.44

Water-Net [13] 1.09 848.16 20.05 0.85 2.67 0.56 2.34 0.54

FUnIE-GAN [19] 7.02 1448.76 17.75 0.75 2.64 0.52 2.12 0.48

Ucolor [15] 149 433.06 22.65 0.89 2.61 0.53 2.13 0.50

URSCT-SESR [23] 11.19 2097.75 16.18 0.78 1.51 0.54 1.37 0.49

U-Trans [24] 31.59 595.95 21.32 0.78 2.59 0.53 2.13 0.51

Ours 1.36 432.14 22.99 0.91 2.64 0.55 2.25 0.50

Table 2. The full-reference and non-reference evaluation results of different methods on Test-UFO120.
The best result is in red under each case, and the second-best is in blue.

Method MSE PSNR (dB) SSIM UIQM

HE [8] 3433.87 13.52 0.55 2.44

UDCP [4] 3020.50 14.47 0.50 1.95

ULAP [5] 1017.88 18.77 0.65 2.22

UWCNN [12] 1984.30 16.41 0.59 2.88

Water-Net [13] 819.03 19.70 0.69 3.02

Ucolor [15] 821.32 19.56 0.69 3.10

Deep SESR [33] 332.26 23.76 0.75 3.12

Ours 268.20 24.54 0.78 2.90
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As shown in Table 1, our method achieved the best performance on Test-U90. For the
MSE, PSNR, and SSIM metrics, our method obtained improvements of at least 0.21%, 1.35%,
and 2.25%, respectively. Additionally, our method ranked second in results on Test-C60,
just behind the best-performing Water-Net [13]. On the SQUID testing dataset, our method
achieved the second-highest UIQM. Table 2 indicates that the non-reference result (UIQM)
of our method on Test-UFO120 was not as high as Deep SESR [33], Ucolor [15], and Water-
Net [13], but our full-reference evaluation results were the best, where the PSNR improved
by 3.28% compared to the second-best performer. Tables 1 and 2 demonstrate that our
method had a significant advantage in improving the quality and restoring the structure
and texture of the underwater images, along with good generalization performance.

Visual assessment. In Figures 4–6, we present the visual quality of the underwater
images enhanced by competing methods and our method, sourced from Test-U90, Test-C60,
SQUID, and Test-UFO120. As shown in Figures 4 and 6, noticeable color distortions and
low sharpness are observed in the raw images. ULAP [5] and UWCNN [12] to some extent
improved the quality of the degraded images, but the enhanced images exhibited some color
casts. Water-Net [13] enhanced the image quality of the degraded images and alleviated the
color distortion, but the overall enhanced images appear darker. FUnIE-GAN [19] improved
the quality of bluish and greenish underwater images and enhanced the visual quality, but it
tended to overly enhance low-illumination underwater images and introduced artifacts.
Ucolor [15] effectively mitigated color casts in the degraded images and improved the image
sharpness, but the enhanced images still exhibited little color bias. While URSCT-SESR [23]
improved the quality of most underwater images, it exacerbated the color casts significantly
and introduced over-enhanced artifacts. U-Trans [24] and Deep SESR [33] successfully
removed the color deviations from the degraded images and enhanced the visual quality,
but the quality of the enhanced images can still be improved. In contrast, our method
not only effectively corrected the color deviations in the degraded underwater images,
but also significantly improved the image quality, resulting in clear images with visually
satisfying outcomes. In Figure 5, ULAP [4], FUnIE-GAN [19], and URSCT-SESR [23] exhibit
severe color casts in the enhanced results of yellowish and greenish underwater images,
with almost no improvement in brightness for the low-illumination underwater images.
Water-Net [13] improved the visual effects of underwater images presenting different color
distortions, but exhibited an overall dark appearance in the enhanced results of bluish
underwater images. Ucolor [15] and U-Trans [24] effectively improved the visual quality of
the underwater images with different color distortions and enhanced the brightness for
low-illumination underwater images, but the enhanced images still had some color bias.
Our method significantly improved the brightness and contrast of the low-illumination
underwater images and enhanced the visual quality of the greenish, bluish, and yellowish
underwater images.

4.4. Underwater Image Super-Resolution Results

We compared our method with several state-of-the-art methods, including SRCNN [25],
DSRCNN [26], SRResNet [28], EDSRGAN [27], SRGAN [28], SRDRM [31], SRDRM-GAN [31],
PAL [32], Deep SESR [33], and SwinIR-NG [30].

Quantitative evaluation. We present the quantitative evaluation results on the USR-
248 and UFO-120 testing datasets, as shown in Tables 3 and 4, respectively. Additionally,
we present the model parameters of the competing methods in Table 3. In Table 4, each
assessment metric is a predicted value obtained by adding or subtracting the standard
deviation from the mean. In experiments, metric values may vary due to factors such as
noise or algorithm sensitivity, and the mean plus or minus the standard deviation quantifies
this uncertainty to present more-robust data.
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Figure 4. Visual comparisons on underwater images sampled from Test-U90. The number on the
top-right corner of each image refers to its PSNR/SSIM (the larger, the better).
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Figure 5. Visual comparisons on underwater images sampled from Test-C60 and SQUID. (a) Input raw
image, (b) ULAP [4], (c) Water-Net [13], (d) FUnIE-GAN [19], (e) Ucolor [15], (f) URSCT-SESR [23],
(g) U-Trans [24], and (h) ours.
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Figure 6. Visual comparisons of underwater images sampled from Test-UFO120. The number on the
top-right corner of each image refers to its PSNR/SSIM (the larger, the better).
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Table 3. Quantitative results on USR-248 with scale factors 2× and 4× for underwater image SR.
The best result is in red under each case, and the second-best is in blue.

Method
Params (M) PSNR SSIM UIQM

2× 4× 2× 4× 2× 4× 2× 4×
SRCNN [25] 0.06 0.06 26.81 23.38 0.76 0.67 2.74 2.38

DSRCNN [26] 1.11 1.11 27.14 23.61 0.77 0.67 2.71 2.36
EDSRGAN [27] 1.38 1.97 27.12 21.65 0.77 0.65 2.67 2.40

SRGAN [28] 5.95 5.95 28.05 24.76 0.78 0.69 2.74 2.42
SRDRM [31] 0.83 1.90 28.36 24.64 0.80 0.68 2.78 2.46

SRDRM-GAN [31] 11.31 12.38 28.55 24.62 0.81 0.69 2.77 2.48
PAL [32] 0.83 1.92 28.41 24.89 0.80 0.69 – –

SwinIR-NG [30] 1.18 1.20 29.03 25.66 0.79 0.68 2.65 2.54
Ours 1.36 1.39 29.10 25.76 0.80 0.67 2.71 2.60

Table 4. Quantitative results on the UFO-120 with scale factors 2× and 4× for underwater image SR.
The best result is in red under each case, and the second-best is in blue.

Method
PSNR SSIM UIQM

2× 4× 2× 4× 2× 4×
SRCNN [25] 24.75 ± 3.7 19.05 ± 2.3 0.72 ± 0.07 0.56 ± 0.12 2.39 ± 0.35 2.02 ± 0.47

SRResNet [28] 25.23 ± 4.1 19.13 ± 2.4 0.74 ± 0.08 0.56 ± 0.05 2.42 ± 0.37 2.09 ± 0.30
SRGAN [28] 26.11 ± 3.9 21.08 ± 2.3 0.75 ± 0.06 0.58 ± 0.09 2.44 ± 0.28 2.26 ± 0.17
SRDRM [31] 24.62 ± 2.8 22.26 ± 2.5 0.72 ± 0.17 0.59 ± 0.05 2.59 ± 0.64 2.28 ± 0.35

SRDRM-GAN [31] 24.61 ± 2.8 22.21 ± 2.4 0.72 ± 0.17 0.58 ± 0.13 2.59 ± 0.64 2.27 ± 0.44
Deep SESR [33] 25.49 ± 3.3 24.75 ± 2.8 0.71 ± 0.19 0.66 ± 0.05 2.82 ± 0.47 2.55 ± 0.35

Ours 25.79 ± 3.0 24.97 ± 2.8 0.72 ± 0.16 0.71 ± 0.17 2.66 ± 0.56 2.62 ± 0.54

As shown in Table 3, our method achieved the highest PSNR values on the USR-248
testing dataset for both scale factors 2× and 4×. For the 2× underwater SR, our method
achieved SSIM values close to the top performer. At the 4× scale factor, our method
achieved the best UIQM results, with an improvement of 2.36% compared to the second-
best performer. In Table 4, for the 2× scale factor on the UFO-120 testing dataset, our
method achieved the second-best PSNR and UIQM values. At the 4× scale factor, our
method demonstrated superiority in all image-quality-evaluation metrics on the UFO-
120 testing dataset, with improvements of 0.89%, 7.58%, and 2.75% in the PSNR, SSIM,
and UIQM, respectively, compared to the second-best method.

Visual assessment. Figure 7 presents a visual comparison of the super-resolution
results on the USR-248 testing dataset with scale factors 2× and 4× between our method
and competing methods, and Figure 8 shows a visual comparison of the UFO-120 testing
dataset with scale factors 2× and 4×. As shown in Figure 7, we observed that images
generated by EDSRGAN [27], SRDRM-GAN [31], and SwinIR-NG [30] at a scale factor
of four exhibited noticeable artifacts and distortion. Images generated by SRCNN [25],
DSRCNN [26], and SRDRM [31] lacked clear texture details. SRGAN [28] and PAL [32]
successfully recovered the texture details, but lacked color consistency in images generated
at a scale factor of two. In contrast, our method generated images that closely resembled
the HR images, with richer texture details and without unpleasant artifacts. In Figure 8, the
images generated by SRCNN [25], SRResNet [28], SRGAN [28], and SRDRM [31] showed
some color deviations and failed to recover the texture details at a scale factor of four.
SRDRM-GAN [31] generated high-resolution images, but exhibited some color deviations.
The images generated by Deep SESR [33] had color similarity with respect to the HR
images, but needed improvement in terms of sharpness. In comparison, our method not
only enhanced the image sharpness, but also effectively corrected the color deviations,
resulting in improved visual quality.
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Figure 7. Visual comparisons of underwater images sampled from the USR-248 testing dataset
with scale factors 2× and 4×. (a) Input raw image, (b) HR, (c) SRCNN [25], (d) DSRCNN [26],
(e) EDSRGAN [27], (f) SRGAN [28], (g) SRDRM [31], (h) SRDRM-GAN [31], (i) PAL [32], (j) SwinIR-
NG [30], and (k) ours.

Figure 8. Visual comparisons of underwater images sampled from the UFO-120 testing dataset
with scale factors 2× and 4×. (a) Input raw image, (b) HR, (c) SRCNN [25], (d) SRResNet [28],
(e) SRGAN [28], (f) SRDRM [31], (g) SRDRM-GAN [31], (h) Deep SESR [33], and (i) ours.
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4.5. Analysis and Discussion

The physical-model-based underwater-image-enhancement methods UDCP [4] and
ULAP [5] rely on manual priors for estimating the parameters in an underwater imaging
model. This makes their predictions susceptible to being dominated by prior information,
leading to the risk of over-/under-recovered artifacts in scenes beyond the assumed con-
ditions. The non-physical-model-based method HE [8] directly modifies the pixel values,
overlooking the varying light attenuation characteristics under water, resulting in an intro-
duction of excessive red components and exacerbating color bias. UWCNN [12], trained
on a synthetically generated underwater dataset with prior knowledge of underwater
scenes, may face challenges when adapting to real-world underwater image enhancement.
Water-Net [13] introduces white balancing, which is not always reliable for underwater
images and often leads to visually darker restored images. FUnIE-GAN [19], due to its
simple model design, may easily reach bottlenecks in the complex-feature-learning process,
potentially causing color casts in the recovery results. Ucolor [15], incorporating estimated
transmission maps from a presumed underwater imaging model into a deep network, may
struggle to adapt to all underwater scenes. URSCT-SESR [23], a U-Net-based network
with multiple downsampling layers, might lose some image information, resulting in
unsatisfactory outcomes. U-Trans [24], splitting the input image into fixed-size patches
and independently processing each patch, could produce boundary artifacts. Given the
distinct nature of underwater imaging compared to terrestrial scenes, super-resolution
methods like SRCNN [25], SRGAN [28], and SwinIR-NG [30] may struggle to effectively
handle degraded underwater images with color distortion. Residual-learning-based deep
networks like SRDRM [31], SRDRM-GAN [31], and Deep SESR [33] might be constrained
in performance due to insufficient attention to long-range dependencies. PAL [32], a pro-
gressive network based on channel attention, may fail to provide satisfactory results when
dealing with underwater images exhibiting significant color distortion or low illumination,
as the RGB color space is insensitive to saturation and brightness. Our method utilizes
the designed non-local attention module with high expressiveness and low complexity to
model long-range dependency in the multi-color space, enabling the generation of visually
pleasing underwater images.

4.6. Ablation Study

We conducted ablation studies to demonstrate the effectiveness of multi-color space
utilization, multi-receptive field feature extraction (i.e., using convolution operations with
different kernels k), and the agent-guided non-local attention module (Ag-NL module).
Specifically, we trained the models in different cases on the UIEBD dataset for underwa-
ter image enhancement, then quantitatively evaluated the results on Test-U90 using the
full-reference metrics MSE, PSNR, and SSIM, and assessed the performance on Test-C60
using the non-reference metrics UIQM and UCIQE. Table 5 presents the model parameters,
FLOPs, and evaluation results, and visual comparisons are shown in Figure 9. As shown
in Table 5, using only the RGB color space and features extracted with the same recep-
tive field size yielded decent results, but employing the multi-color space and different
receptive fields further improved the performance. It is noteworthy that, compared to
models without the Ag-NL module, our model, while having slightly higher complexity,
exhibited significantly better performance. From Figure 9, we can observe that the im-
ages generated by our method had the highest image quality and the best visual effects,
while the images generated in other cases may exhibit some color bias or unsatisfactory
clarity. Table 5 and Figure 9 demonstrate that utilizing the multi-color space and multi-
receptive field feature extraction is beneficial for capturing more-diverse features, thereby
enhancing network performance. The agent-guided non-local attention module (Ag-NL
module) efficiently modeled long-range dependency with lower computational complexity,
significantly boosting network performance.
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Table 5. Image quality assessment of models in different cases.

Model Params (M) FLOPs (G)
T-U90 Test-C60

MSE PSNR (dB) SSIM UIQM UCIQE

with only RGB color space 1.36 44.54 447.15 22.91 0.90 2.43 0.54
with same receptive field

(k = 5) 1.25 40.96 453.41 22.84 0.91 2.45 0.55

without Ag-NL module 1.19 39.06 785.66 20.21 0.89 2.50 0.51
ours 1.36 44.54 432.14 22.99 0.91 2.64 0.55

Figure 9. From left to right: (a) input raw image, (b) Results of only using RGB color space, (c) results
with same receptive field, (d) results without Ag-NL module, and (e) ours. Top row: the sample is
from Test-U90, and the number on the top-right corner of each image refers to its PSNR/SSIM (the
larger, the better); bottom row: the sample is from Test-C60, and the number on the top-right corner
of each image refers to its UIQM/UCIQE (the larger, the better).

5. Conclusions

In this paper, we proposed an agent-guided non-local attention-based network using
the multi-color space for underwater image enhancement and super-resolution. The net-
work consists of four parts: shallow feature extraction, deep feature extraction, adaptive
fusion, and image reconstruction. Specifically, in the shallow-feature-extraction part, we
simultaneously extracted features from the RGB color space and Lab/HSI color spaces,
which are closer to human perception of color, enriching the color diversity of features
for underwater images. Multiple designed agent-guided non-local attention modules
were seamlessly applied in the deep-feature-extraction part, efficiently accomplishing
long-range dependency modeling and aiding the network in better understanding the
global structure of underwater scenes. Extensive experimental results demonstrated that
the proposed method outperformed other state-of-the-art methods on multiple bench-
mark datasets. However, the proposed method has some weaknesses, such as training
data dependency and computational complexity. The limited availability of diverse and
representative training data may affect the robustness and effectiveness of the method,
especially under challenging underwater conditions. The computational complexity of
the method makes it less suitable for real-time applications. In the future, we will aim to
extend the proposed approach to underwater video enhancement and super-resolution to
meet the demands of practical applications and enhance the practicality and applicability
of underwater-image-processing technology.
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