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Abstract: Marine bioprospecting is a dynamic research field that explores the oceans and their
biodiversity as noteworthy sources of new bioactive compounds. Anthozoans are marine animals
belonging to the Cnidaria phylum characterized by highly specialized mechanosensory cells used
both for defence against predators and prey capture. Here, high concentration of cnidocysts have
been isolated from the Mediterranean zoanthid coral Parazoanthus axinellae (Schmidt, 1862) and their
antimicrobial potential has been investigated. The cnidocyst extract exerted significant antibacterial
activity against some human pathogens capable of developing resistance to conventional antibiotics
such as Streptococcus agalactiae and Coccus sp., and against several Vibrio species, including some
microbial strains for humans and farmed fish, such as Vibrio alginolyticus, Vibrio anguillarum, Vibrio
fischeri, Vibrio harveyi, and Vibrio vulnificus. Results have been discussed in light of both the ecological
aspects and biotechnological value of the cnidocyst extract in the nutritional, nutraceutical, and
pharmaceutical fields.
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1. Introduction

Marine bioprospecting is a dynamic research field with explosive growth in recent
decades, which continues to evolve. Nowadays, it is evident that the oceans and their
biodiversity are a significant source of novel bioactive compounds, probably the largest
resource to be discovered around the world [1]. Marine invertebrates can prove to be rich
sources of natural products that display various types of biological activities employed in
their defence system against microbial pathogens, parasites, and predators, or at various
levels of intraspecific and interspecific communication, such as exchanging signals within
marine communities [2,3]. To date, approximately 16,000 natural compounds have been dis-
covered from marine species as described in a large number of scientific papers (e.g., [4–8]).
The huge chemical diversity of marine bio-products with biotechnological potential and
applications in the fine chemical, nutraceutical, cosmetic, pharmaceutical, and therapeu-
tic sectors and in the agrochemical industry [9] attracts scientific and economic interest
worldwide. However, currently, the number of marine bio-products on the market is small
(e.g., Prialt® and Yondelis®, [10]), whereas some novel bioactive metabolites are involved
in clinical steps and many others in medical trial development. Due to the complexity of
problems raised during the development of these compounds, only a few authorizations
for the marketing of drugs coming from the sea have been acquired, despite a consistent
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number in discoveries of new marine bioactive compounds [11]. Although species be-
longing to the phylum Porifera are the predominant source of bioactive metabolites [1,12],
the biotechnological potential of other taxonomic groups of marine organisms has also
attracted the interest of researchers and especially cnidarians, molluscs, sea squirts, and
algae are being studied with promising results, due to the increasing efforts in bioprospects
and screening unexplored marine habitats. Different from vertebrates, invertebrates cannot
rely on the acquired immunity; however, their effective defensive systems include an array
of cellular and humoral factors of innate immunity along with particular integuments, such
as cuticles, encapsulation, mucus, or shells [13]. Cnidarians are a large taxonomic group
including over 11,000 marine organisms [14]. Lacking adaptive immunity, the phylum
Cnidaria is equipped with a large range of first-line defence mechanisms designed to recog-
nize and neutralize environmental threats [15]. Among cnidarian species, some organisms
exhibit peculiar features and have been recognized as venomous animals, top predators
within food webs, and monopolisers of trophic inputs, and available space, particularly
when wide outbreaks occur [16–19]. Over the last decades, some researchers have investi-
gated the potential properties of several cnidarian extracts in order to isolate compounds
with relevant therapeutic features. Antimicrobial peptides (AMPs) represent the innate
invertebrate immunity, the evolutionarily ancient weapon against a variety of pathogen
species, including viruses, bacteria, micetes, and protozoa [20,21]. Marine invertebrates
live in environments generally crowded with these pathogens; however, although they are
continuously exposed, they do not show particular sensitivity to pathogenic species [22];
therefore, a set of AMPs must have evolved to counteract these microbes [1,13]. As regards
to Anthozoa already in the early 1990s, to identify potential new resources against marine
microbes and human pathogens, screenings of soft corals extracts have been performed
and allowed to identify important antimicrobial activity in Plexaura homomalla and Pseu-
doplexaura flagellosa extracts [23]. Recently, a purification of thermically stable proteases
and AMPs from different body compartments of the sea anemones Actinia equina and
Anemonia sulcata has paved the way for antimycotic treatments and applications for bio-
cleaning [24]. Among the recognized antimicrobial enzymes, a lysozyme is a lytic agent
capable of damaging the integrity of bacterial cells by breaking the bacterial cell walls
by hydrolysing the beta-1,4- glycosidic bond between N-acetylmuramic acid (NAM) and
N-acetylglucosamine (NAG) [25,26]. In cnidarians, lysozyme-like activity was assessed
in the anthozoan Actinia equina [27] in the scyphozoan Rhizostoma pulmo [28] and Aurelia
coerulea [2], presumably used by marine organisms as a defence against the environmental
pathogens [28–30]. Cnidarians belonging to the class Anthozoa have highly specialized
mechano-sensory cells (cnidocytes), which contain a biological structure called a cnidocyst,
the “explosive” organelle that gives the poisonous protein mixtures used both for defence
against predators and prey capture [15]. In this framework, we explored the antimicrobial
potential of cnidocyst extracts from the Mediterranean zoanthid coral Parazoanthus axinellae
(Schmidt, 1862) commonly known as the yellow cluster anemone. Within Zoantharia, this
North Eastern Atlantic and Mediterranean species is among the well-known invertebrates.
This zoanthid lacks a skeleton and crusting colonies made up of soft polyps. It is a common
species in sublittoral rocky communities, preferring environments with low light irradiance.
For this reason, it is frequently found on shaded cliffs and at cave entrances [31]. In the
1970s, the secondary metabolome of P. axinellae was first investigated through the isolation
and structure revelation of zoanthoxanthins and parazoanthoxanthins, two polyaromatic
alkaloids [32–34]. Recently, other alkaloids, named parazoanthines, were identified from
this species [35]. Despite cnidocysts being morphologically complex organelles and their
explosive discharge being one among the rapidest bio-mechanical processes [36,37], no
data are available up to now on the presence of antimicrobial compounds in these sen-
sory cells in the investigated species. Thus, the present paper represents a contribution
to this topic and the obtained results are discussed in light of both the ecological aspects
and the bioprospecting of natural products with biotechnological value in the nutritional,
nutraceutical, and pharmaceutical fields.
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2. Materials and Methods
2.1. Sampling

Two-hundred polyps from some P. axinellae (Cnidaria: Anthozoa) colonies were
collected by SCUBA diving along the Ionian coasts of Apulia, Italy Otranto Channel
(40◦08′39.8′′ N, 18◦30′23.3′′ E) at about 15 m of depth; they were transported in the lab-
oratory under controlled temperature and immediately processed for the isolation of
cnidocysts.

2.2. Isolation of Cnidocyst

In the laboratory, cnidocysts (about 5000) isolated from the colonies of P. axinellae.
Polyps were washed with sterile saline, placed on sterile Petri dishes, and employed for
the isolation of the cnidocysts by employing the protocol of M. Avian et al. [38]. In detail,
the dissected tentacles were placed in 50–100 mL of 1 M glycerol solution in cold distilled
water (GLI-DW) and stirred at 4 ◦C. After 3–4 h, the sample was filtered through a filter
with a mesh size of at least 100 µm and the degree of cnidocyst isolation was checked by
observing a drop of the liquid under the microscope. When large tissue fragments were no
longer present, the sample was cold centrifuged for 10–15 min at a low speed, less than
1000 rpm, to avoid excessive compaction of the cnidocysts. The supernatant was discarded
and the pellet was resuspended in the 1 M glycerol solution in cold distilled water. The
centrifugation and resuspension operations were repeated 4–5 times. The last suspension
was carried out in filtered sea water and then the degree of isolation of the cnidocysts in
the pellet was verified by observing a drop of it under a microscope. The cnidocysts are
generally devoid of staining and a stratification was initially observed in the pellet of which
the upper whitish part reported the greatest concentration of isolated cnidocysts. All the
operations were carried out cold and in a maximum time of 2–3 h. The pellet, containing the
cnidocysts, was then sonicated at 50 duty cycles for 3 min in order to obtain the cnidocyst
extract. The sonicate operation was repeated two times to ensure the rupture of as many
cnidocysts as possible. The sonicate was then cold centrifuged for 10 min at low speed
and the supernatant, represented by the pure cnidocyst extract, was used for antibacterial
activity tests.

2.3. Lysozyme-like Activity

The presence of lysozyme activity was assessed by using the standard assay on Petri
dishes, as already recently performed in other studies on cnidarians [2,27,39,40]. Dishes
were prepared according to the following procedure: 700 µL of 5 mg/mL of peptidoglycan
from Micrococcus luteus (Sigma, Saint Louis, MO, USA) were suspended in 7 mL of 0.05 M
(Phosphate Buffer) PB-agarose (1.2%, pH 5.0), and then spread on Petri dishes. Wells with
6.3 mm diameters were sunk in the agarose gel, and each well was filled with 30 µL of
cnidocyst extract. The plates were then incubated overnight at 37 ◦C and the enzymatic
activity was evaluated by measuring the cleared diameter, due to the lysis of bacterial
cell walls (at least five replicates). The diameter of the cleared zone was then compared
with those of a reference sample represented by hen egg-white lysozyme (Merck, Rahway,
NJ, USA).

2.4. Tested Microorganisms

The antimicrobial activity was evaluated against several microbial strains. In partic-
ular, we tested human pathogenic microbial strains capable of developing resistance to
conventional antibiotics such as Streptococcus agalactiae (SA237), Salmonella spp. (SA005),
Pseudomonas aeruginosa (PA016), Candida albicans (CA347), and Candida glabrata (CG975),
furnished by Vito Fazzi Hospital of Lecce, along with several Vibrio strains such as Vibrio
anguillarum (VA011), Vibrio alginolyticus (VA001), Vibrio harveyi (MT1), Vibrio fischeri (AT1),
Vibrio vulnificus (VV937), including some pathogens for farmed fish isolated and identified
from seawater and algal samples [41–43], and stored in the microbial collection (BioForIU)
of the University of Salento.
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2.5. Antimicrobial Activity

To test the antimicrobial activity, an aliquot of each bacterial or yeast suspension
(108 cells/mL) was incubated with 50 µL of cnidocyst extract for 30 min at room temper-
ature with stirring (100 rpm). Starting from this suspension, a series of dilutions were
made in Marine broth (for marine bacteria), Nutrient broth (for pathogenic bacteria), and
Sabouraud broth (for yeasts), and the various dilutions were plated in triplicate between
two layers of nutrient agar (Marine Agar 2216E, Difco-Laboratories) for marine bacteria,
PCA (Plate Count Agar) for pathogenic bacteria, and Sabouraud Agar for yeasts in order to
obtain pinpoint colonies that are easily countable [44]. Colony-forming units (CFUs) were
counted after 24 h of incubation at 30 ◦C for vibrios and at 37 ◦C for pathogenic bacteria
and yeasts. The positive control, which allowed normal bacterial growth to be assessed,
was represented by an aliquot of bacterial or yeast suspension (108 cells/mL) incubated
with 50 µL of Marine broth, Nutrient broth, or Sabouraud broth. Also, in this case the
various dilutions were plated in triplicate. The difference between the number of colonies
observed in the control plates and in the test plates allowed to calculate the percentage of
bacteria inhibited in the growth.

2.6. Scanning Electron Microscopy

The cnidocyst extract treated with Vibrio alginolyticus and the control (nutrient broth + bacterial
suspension) were fixed overnight in gluteraldehyde in 0.1 M cacodylate buffer pH 7.5 (CB),
then washed 3 times in CB, and post-fixed for 1 h in osmium tetroxide 2% in CB. After
washing, the samples were dehydrated in a stepwise series of acetone, dried in a CPD
(critical point desiccant), overlaid with gold, and then observed and recorded by using a
Philips 515 scanning electron microscope at 20 KV.

2.7. Statistical Analysis

To test the effects of P. axinellae cnidocyst extract on microbial growth inhibition,
permutational analyses of variance (PERMANOVA) were performed based on Euclidean
distances on untransformed data (9999 random permutations) [45,46]. Pairwise tests were
performed to assess the consistency of the differences among investigated levels. The
p values were obtained from Monte Carlo samplings in case of a restricted number of
unique permutations in the pairwise tests. The analyses were performed using the software
PRIMER v. 6 [47].

3. Results
3.1. Cnidarian Sample Characterization

As shown Figure 1, high concentration of cnidocysts were isolated from P. axinellae by
employing glycerol solution 1 M and the protocol of M. Avian et al. [38].

3.2. Lysozyme-like Activity

In order to evaluate the lysozyme-like activity, a standard assay on Petri dishes inocu-
lated with Micrococcus luteus cell walls was used. The diameters of the potential cleared
zone due to cnidocyst extract of P. axinellae were compared with those of a reference sample
represented by hen egg-white lysozyme used at a concentration ranging from 0.2 mg/mL
to 1.5 mg/mL and producing diameters of lysis comprised between 1.5 and 10.5 mm. The
cnidocyst extract of P. axinellae did not record a noteworthy lysozyme-like activity and
no appreciable diameter of lysis was observed. The cnidocyst extract of P. axinellae did
not record a noteworthy lysozyme-like activity since no appreciable diameter of lysis was
observed (Figure 2).
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Figure 2. Standard assay on Petri dish inoculated with Micrococcus luteus cell walls to detect the
lysozyme-like activity of cnidocyst extract from P. axinellae (A). Standard hen egg-white lysozyme
(HEWL) was used as positive control (B).

3.3. Antibacterial Activity

Parazoanthus axinellae cnidocyst extract exerted significant antibacterial activity against
several tested microorganisms (Table 1).

In particular, the highest growth inhibition percentage (75.00 ± 0.90%) occurred against
Streptococcus agalactiae, soon followed by inhibition of Vibrio alginolyticus (73.00 ± 1.30%). Al-
though with lower percentages, a significant sensitivity to the P. axinellae cnydocyst extract
was also highlighted in Vibrio fischeri (43.36 ± 5.00%), Vibrio anguillarum (40.15 ± 1.50%),
Coccus sp. (37.84 ± 2.30%), Vibrio vulnificus (34.32 ± 8.00%), and Vibrio harveyi (28.00 ± 4.10%).
Pseudomonas aeruginosa and Salmonella sp. were not significantly affected by treatment
with P. axinellae extract. The two human pathogenic yeasts Candida albicans and C. glabrata
showed no sensitivity to the tested extract. In Table 2, the Permanova analyses concerning
the sensitivity of the considered microorganisms to the action of P. axinallae cnidocyst
extract are reported.
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Table 1. Results of an in-vitro test showing the antibacterial activity of P. axinellae cnidocyst extract.
Each value represents the average of three replications ± SE. Concentration of microbial strains =
1 × 108 cells/mL.

Bacterial Strain % Growth Inhibition

Candida albicans 0.00 ± 0.00
Candida glabrata 0.00 ± 0.00
Coccus sp. 37.84 ± 2.30
Pseudomonas aeruginosa 0.00 ± 0.00
Salmonella sp. 0.00 ± 0.00
Streptococcus agalactiae 75.00 ± 0.90
Vibrio alginolyticus 73.00 ± 1.30
Vibrio anguillarum 40.15 ± 1.50
Vibrio fischeri 43.36 ± 5.00
Vibrio harveyi 28.00 ± 4.10
Vibrio vulnificus 34.32 ± 8.00

Table 2. Results of the PERMANOVA tests on percentages of microbial growth inhibition produced
by P. axinellae cnidocyst extract. Abbreviations used: df—degrees of freedom; MS—mean squares;
Pseudo-F—Pseudo-F statistic; P(MC)—probability level after Monte Carlo simulations; ** p ≤ 0.01;
*** p ≤ 0.001; ns—not significant.

Source df MS Pseudo-F P(MC) MS Pseudo-F P(MC)

Candida albicans Candida glabrata
Factor 1 1.67 × 10−5 1 ns 1.67 × 10−5 1 ns

Residual 4 1.67 × 10−5 1.67 × 10−5

Total 5

Coccus sp. Pseudomonas aeruginosa
An 1 2147.80 271.18 *** 1.67 × 10−5 1 ns
Res 4 7.92 1.67 × 10−5

Total 5

Salmonella sp. Streptococcus agalactiae
Factor 1 1.67 × 10−5 1.00 ns 8437.50 6934.20 ***

Residual 4 1.67 × 10−5 1.22
Total 5

Vibrio alginolyticus Vibrio anguillarum
Factor 1 7993.50 3157.90 *** 2418 715.39 ***

Residual 4 2.53 3.38
Total 5

Vibrio fischeri Vibrio harveyi
Factor 1 2820.10 75.21 ** 1176.00 46.657 **

Residual 4 37.50 25.20
Total 5

Vibrio vulnificus
Factor 1 1766.80 18.39 **

Residual 4 96.05
Total 5

3.4. Characterization of Antibacterial Activity in P. axinellae Extract

Since Vibrio alginolyticus was one of the strains most inhibited by P. axinellae cnidocyst
extract, it was chosen in order to better characterize the observed activity. Antibacterial
activity was tested using the bactericidal assay described above. In particular, a dose-
response curve was plotted by employing increasing volumes of cnidocyst extract and
maintaining the bacterial suspension at 1 × 108 cells/mL (by using a spectrophotometer,
optical density at 600 nm). The antibacterial activity was further characterized by increasing
the bacterial concentration (from 1 × 108 to 8 × 108 cells/mL) of V. alginolyticus and
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maintaining constant the volume of P. axinellae extract (50 µL) and recording the obtained
dose–response curve. Moreover, in order to determine the effect of temperature on the
investigated antibacterial activity, the cnidocyst extract was held for 1 hr at 22, 37, or 56 ◦C.
Finally, a time course of activity was also obtained by incubating 50 µL of cnidocyst extract
with 10 µL of bacterial suspension (10 8 cells/mL) at 30 ◦C for 1, 4, 6, and 24 h.

Dose–Response Curves

Since V. alginolyticus was found to be the most sensitive microbial species, it was se-
lected as a standard test strain for the characterization of the antibacterial activity produced
by the P. axinellae cnidocyst extract.

As shown in Figure 3 a dose–response curve was obtained by increasing the volumes of
the P. axinellae extract. In particular, Vibrio alginolyticus growth inhibition was 62.70 ± 0.80%
when the concentration of the bacterial suspension was maintained at 1 × 108 cells/mL
and 20 µL of extract were employed. Increasing the extract volume at 50 and 100 µL only
highlighted a small additional inhibition (73.10 ± 1.10 and 88.90 ± 0.90%, respectively). The
percentage of antibacterial activity was positively correlated (R = 0.99) with the employed
extract volumes.
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A dose–response curve was obtained by increasing the bacterial concentration (from
1 × 108 to 8 × 108 cells/mL) of Vibrio alginolyticus exposed to 50 µL (constant volume)
of P. axinellae extract (Figure 4). Variation in bacterial concentration strongly affected the
antibacterial power of the P. axinellae extract employed at a constant volume. In particular,
when the concentration of the bacterial suspension was 1 × 108 cells/mL, the bacterial
growth inhibition percentage was 77.80 ± 2.10%. When 50 µL of P. axinellae extract were
incubated with V. alginolyticus at 4 × 108 and 6 × 108 cells/mL, the growth inhibition
decreased markedly to 44.20 ± 1.30 and 19.1 ± 0.70%, respectively. Antimicrobial activity
of the P. axinellae extract was not present with a bacterial concentration of 8 × 108 cells/mL.
The percentage of antibacterial activity was positively correlated (R = 0.99) with the em-
ployed bacterial concentration.
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Figure 4. Dose–response curve of antibacterial activity against different bacterial concentration of
Vibrio alginolyticus exposed to a constant volumes of P. axinellae cnidocyst extract (50 µL). Values are
given as means ± standard error.

The anti-V. alginolyticus activity of the tested extract significantly depended on both
the employed volume of the P. axinellae cnidocyst extract (Table 3) and the concentration of
the bacterial suspension (Table 4) as evidenced by the Permanova analyses.

Table 3. Results of the PERMANOVA tests on percentages of bacterial growth inhibition exhibited
by several cnidocyst extract volumes of P. axinellae against Vibrio alginolyticus. Abbreviations used:
df—degrees of freedom; MS—mean squares; Pseudo-F—Pseudo-F statistic; P(MC)—probability level
after Monte Carlo simulations; t—pairwise tests; *** p ≤ 0.001; V20 = 20 µL of cnidocyst extract of
P. axinellae; V50 = 50 µL of cnidocyst extract of P. axinellae; V100 = 100 µL of cnidocyst extract of
P. axinellae; vs. = versus.

Source df MS Pseudo-F P(MC) Pairwise t P(MC)

Volume 2 522.12 195.46 *** V20 vs. V50 7.63 ***
Residual 6 2.67 V20 vs. V100 21.72 ***

Total 8 V50 vs. V100 11.10 ***

Table 4. Results of the PERMANOVA tests on percentages of bacterial growth inhibition exhib-
ited by the cnidocyst extract of P. axinellae against several bacterial concentrations of Vibrio algi-
nolyticus. Abbreviations used: df—degrees of freedom; MS—mean squares; Pseudo-F—Pseudo-F
statistic; P(MC)—probability level after Monte Carlo simulations; t—pairwise tests; *** p ≤ 0.001;
C1 = 1 × 108 cells/mL; C4 = 4 × 108 cells/mL; C6 = 6 × 108 cells/mL; C8 = 8 × 108 cells/mL;
vs. = versus.

Source df MS Pseudo-F P(MC) Pairwise t P(MC) Pairwise t P(MC)

Concentration 3 2980.70 602.58 *** C1 vs. C4 11.58 *** C4 vs. C6 17.02 ***
Residual 8 4.95 C1 vs. C6 24.25 *** C4 vs. C8 33.91 ***

Total 11 C1vs. C8 34.58 *** C6 vs. C8 27.10 ***

3.5. Effect of Temperature on Antibacterial Activity

The effect of temperature on the antibacterial activity was also evaluated. When
P. axinellae cnidocyst extract was maintained at 22 ◦C, V. alginolyticus growth inhibition
percentage was 73.10 ± 3.80%, while at 37 and 56 ◦C, the percentages decreased accounting
for 61.00 ± 1.50 and 66.70 ±1.70, respectively (Figure 5).
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Figure 5. Power of the P. axinellae extract to inhibit the growth of Vibrio alginolyticus under different
experimental temperatures, n = 3. Values are given as means ± standard error.

No significant differences in antibacterial activity were observed between the extract
at 22, 37, and 56 ◦C (Table 5).

Table 5. Results of the PERMANOVA tests on percentages of bacterial growth inhibition exhibited by
the cnidocyst extract of P. axinellae against Vibrio alginolyticus under several experimental temperatures.
Abbreviations used: df—degrees of freedom; MS—mean squares; Pseudo-F—Pseudo-F statistic;
P(MC)—probability level after Monte Carlo simulations; ns—not significant.

Source df MS Pseudo-F P(MC)

Temperature 2 109.93 3.90 ns
Residual 6 28.15

Total 8

3.6. Time Course of Antibacterial Activity

The effect of incubation time on the antibacterial activity was also determined. After
30 min of incubation of V. alginolyticus exposed to cnidocyst extract, the maximum growth
inhibition percentage was recorded, corresponding to 74.30 ± 2.70%, while, after 60 and
120 min of incubation, the percentages decreased to 43.50 ± 1.50% and 39.10 ± 1.20%,
respectively (Figure 6).
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Figure 6. Power of the P. axinellae extract to inhibit the growth of Vibrio alginolyticus under different
experimental incubation time. Values are given as means ± standard error.

Pairwise tests detected significant differences in antibacterial activity of the extract
after 30 and 60, and 30 and 120 min of incubation, while no significant differences were
showed in antibacterial activity of the extract after 60 and 120 min of incubation (Table 6).
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Table 6. Results of the PERMANOVA tests on percentages of bacterial growth inhibition exhibited by
the cnidocyst extract of P. axinellae against Vibrio alginolyticus under several experimental temperatures.
Abbreviations used: df—degrees of freedom; MS—mean squares; Pseudo-F—Pseudo-F statistic;
P(MC)—probability level after Monte Carlo simulations; *** p ≤ 0.001; ns—not significant.

Source df MS Pseudo-F P(MC) Pairwise t P(MC)

Incubation 2 1103.50 100.35 *** I30 vs. I60 9.96 ***
Residual 6 11.00 I30 vs. I120 11.90 ***

Total 8 I60 vs. I120 2.29 ns

3.7. Scanning Electron Microscope (SEM)

The scanning electron microscopy (SEM) revealed that the cnidocyst extract of P. ax-
inellae strongly affected the bacterial strain Vibrio alginolyticus (Figure 7) as shown by the
collapsed bacterial walls, when compared to the morphology of Vibrio alginolyticus not
exposed to the tested extract.
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4. Discussion

The marine environment is very complex and here animals equally fight for survival,
in a complex balance between predation and defence [48,49]. Sessile organisms remain
those most at risk, since they do not have the possibility to escape from the lurking
dangers, whether they are other animals or changes in environmental parameters. In this
framework, in the present paper, we investigated the antimicrobial activity of P. axinellae
cnidocyst extract, as defence mechanism against microorganisms that normally populate
the environment where this species lives. Despite the inability to move, most of the sessile
organisms, including P. axinellae, indeed, have evolutionarily developed defence systems
that provide for the immediate release of toxic substances. These molecules, which are
generally encapsulated in specialized structures called cnidocysts, are released following
an appropriate stimulus and provide a partial guarantee of survival [50]. The isolation of
P. axinellae cnidocyst extract was obtained by using the method of Avian et al. [38], thus
allowing us to reach a percentage of cnidocysts of about 90% used to test their antimicrobial
activity. The results obtained are encouraging since the cnidocyst extract of P. axinellae
shows a marked ability to inhibit the growth of some bacterial strains. The substances
in the P. axinellae cnidocyst extract, responsible for the antibacterial activity observed,
were thermostable and acted rapidly. In fact, only 30 min of contact with V. algynoliticus
was necessary for the bacterial growth “in vitro” to be inhibited. A low percentage of
bacteria (about 27%), however, survived the action of the P. axinellae cnidocyst extract and
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this phenomenon was most likely determined by the dose–response relationship existing
between effectors and target organism. This dose–response relationship could explain why,
prolonging the incubation period till 120 min, it was not possible to observe an increase in
the percentage of bacterial growth inhibition as evidenced in the time course. After 1 h,
indeed, the percentage of inhibition of bacterial growth was reduced to 43.50 ± 1.50%,
probably because the bacteria not destroyed by the extract continued to multiply, producing
a reduction in the estimated effect. The mechanism of action of P. axinellae cnidocyst
extract against V. alginolyticus presumably could be reflected also against the other tested
microorganisms such as Coccus sp., Streptococcus agalactiae, and vibrios. A similar trend of
the antibacterial activity was already observed also in the cnidarian Anemonia sulcata [51],
in the annelidan Eisenia andrei [52], in the sea urchin Paracentrotus lividus [53], and in several
molluscans [54].

The bacteria treated with the P. axinellae extract showed morphological changes, when
observed by scanning electron microscopy. In particular, significant lesions of the bacterial
wall were highlighted suggesting a lytic action of cnidocysts. Studies conducted on other
cnidarians have evidenced the ability of some molecules called “cytolysins” to lyse the
plasma membrane of other cells with which they come into contact [55]. In some cases,
the mechanism of action of cytolysins has been determined and appears to consist of two
phases. The first one involves the formation of a bond with the plasma membrane of the
target cell and the second one the oligomerization at the level of the plasma membrane
with the formation of the pore [55–59]. Cytolysins, therefore, could be responsible for the
inhibitory activity shown by P. axinellae cnidocyst extract on bacterial growth. However,
the defensive system used against microorganisms living in the surrounding environment
is complex. Thus, it cannot be excluded that other factors are responsible for the observed
antibacterial activity or that both cytolysins and other “defensive factors” act synergistically
in the antibacterial protection of P. axinellae. The presence of several defence mechanisms
to preserve the integrity of P. axinellae is also demonstrated by the work of Herndl and
Velimirov [60]. They indicated that the coelenteric fluid excellently controls the concen-
tration of bacteria inside the gastric cavity of P. axinellae, degrading bacteria when their
concentration rises to above a threshold value. As hypothesized by some authors, this
digestion would bring advantages to the anthozoans, as they would incorporate useful
carbonaceous compounds, vitamins, and essential trace elements, or antibiotic substances
coming from the tissues of microorganisms [15,60–63]. It is uncertain, however, whether it
is an enzymatic digestion, due to gastric processing of the same microorganisms, or whether
there are specific substances at the coelenteric level that determine this phenomenon. The
results obtained in the present work suggest that the survival of P. axinellae in an en-
vironment usually crowded by microorganisms is due to the relationship between the
substances here investigated, encapsulated within the cnidocysts, and those freely present
in an unpackaged form in the coelenteric fluid Parazoanthus axinellae, as observed in other
marine organisms [64–66], that has probably managed over the course of evolution to
develop a genetic pool capable of leading to the synthesis of specific defence molecules,
acting synergistically, fighting potential pathogens. The specific genetic makeup or the
mechanism of synthesis and storage of the aforementioned substances is not yet known
and further studies will be conducted to clarify these aspects. The existence of a common
synthesis route of molecules with antibacterial activity which are partly encapsulated in
the cnidocysts and partly secreted by the external cell layers cannot be excluded.

Another particularly interesting and noteworthy aspect obtained in this work is the
notable sensitivity of bacteria belonging to the genus Vibrio to the action of the cnidocyst
extract of P. axinellae. These bacteria, in fact, include halophilic species and are counted
among the most interesting bacterial strains present in the marine environment. Currently,
numerous of these species are considered pathogenic both for humans and for the several
marine organisms, including some invertebrates and fish [67–70]. The antibacterial activity
of P. axinellae cnidocyst extract against vibrios, particularly V. alginolyticus, is of particular
interest for the potential biotechnological applications since the extract could be used
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to fight vibriosis, representing one of the major problems in aquaculture with economic
relapsed [71–73]. Some bacterial strains (especially Pseudomonas aeruginosa and Salmonella
sp.) and the yeast fungi Candida albicans and Candida glabrata were not absolutely inhibited
in their growth. On the contrary, we found a high antibacterial activity of P. axinellae
cnidocyst extract against the bacterial strain Streptococcus agalactiae (GBS). It is a relatively
frequent bacterial strain in a female gastrointestinal and genitourinary tract. However, it can
be transmitted from mothers to infants at the time of birth, causing septicaemia, meningitis,
sepsis, and neonatal pneumonia [74–78]. Among the newborns, Schindler et al. [79] showed
a strong relationship between GBS infection and the risk of intrauterine foetal death. Thus,
finding antibacterial capable of combating GBS represents a challenge due to its high
incidence among parturients and their neonates worldwide and the development of its
antibiotic resistance [80]. Moreover, previous studies showed an antimicrobial activity
of P. axinellae extract incorporated nanostructures against the Gram-positive bacterial
strain Staphylococcus aureus and the Gram-negative bacterial strain Aeromonas hydrophila,
Aeromonas sobria, Escherichia coli, and Salmonella enterica as reported by Konuklugil et al. [81].
In this scenario, further investigations will be needed in order to isolate the potential
molecules responsible for the antibacterial activities and our results pave the way for the
identification of these interesting bio-compounds requiring further integrated analytical
approaches, such as metabolomic, HPLC, GC-MS, and LC-MS methods. In particular
metabolomic approach could be the pivotal topic of a further study in order to provide
further information insight the secondary metabolites present in the cnidocyst extract
elucidating also the chemical nature of the compounds involved in the here evidenced
antibacterial activity.

In conclusion, on account of the antimicrobial activity of P. axinellae cnidocyst extract
against vibrios and S. agalactiae, the present work encourages the potential exploitation
of P. axinellae as a novel and excellent source of antibacterial compounds with several
possible applications for the biotechnological and pharmacological sectors. This is crucial
considering the need to discover innovative antimicrobials for the treatment of infectious
diseases due to multidrug-resistant bacteria and to combine research and technological
advancements.
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