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Abstract: In order to solve the problem of the dynamic positioning control of large ships in rough sea
and to meet the need for fixed-point operations, this paper proposes a dynamic positioning controller
that can effectively achieve large ships’ fixed-point control during Level 9 sea states (wind force Beaufort
No. 10). To achieve a better control effect, a large ship’s forward motion is decoupled to establish
a mathematical model of the headwind stationary state. Meanwhile, the closed-loop gain shaping
algorithm is combined with the exact feedback linearization algorithm to design the speed controller
and the course-keeping controller. This effectively solves the problem of strong external interferences
impacting the control system in rough seas and guarantees the comprehensive index of robustness
performance. In this paper, three large ships—the “Mariner”, “Taian kou”, and “Galaxy”—are selected
as the research objects for simulation research and the final fixing error is less than 10 m. It is proven
that the method is safe, feasible, practical, and effective, and provides technical support for the design
and development of intelligent marine equipment for use in rough seas.

Keywords: dynamic positioning control; rough sea; exact feedback linearization algorithm; closed-loop
gain shaping algorithm; large ship

1. Introduction

Dynamic positioning (DP) is an indispensable key technology in the field of ship
automation. This function enables a ship to use its own propulsion device to resist the
influence of wind, waves, currents, and other external disturbances, as well as maintain
a certain attitude at a target position or follow a given trajectory accurately, to complete
various operations at sea. The advantages of DP are good maneuverability, easy operation,
high positioning accuracy, no damage to the seabed, etc. [1].

Compared with a traditional mooring positioning system, dynamic positioning control
uses a network control system (NCS), reducing the design complexity. It is low-cost and
easy to expand [2]. However, due to the bandwidth limitation of the network control
system, a dynamic positioning task will have a large impact on the control performance
of the ship [3]. To address the above problems, scholars have proposed many methods to
compensate for errors or suppress interference, aiming to improve the control performance
of dynamically positioned ships. Tutturen [4] designed a dynamic positioning controller
based on the proportional integral derivative (PID) algorithm, applying conventional PID
regulation when close to the desired value and extensive numerical parameter regulation
for the remaining operating states. Zhou [5] applied PID control algorithms to design a
dynamic positioning system suitable for fully driven autonomous underwater vehicles
(AUVs) with predictive compensation for disturbances, thus improving the system stability.
Nevertheless, a traditional PID algorithm cannot meet the requirements of ship modeling
if external high- and low-frequency interferences are considered. To solve this problem,
Jayasiri [6] proposed a wavelet multiresolution-based PID control algorithm to decompose
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external errors into different frequency bands and then designed PID controllers to solve
them separately.

However, the above PID control strategy can only be applied to linear systems and
requires that the model is accurately understood. Large ships require nonlinear systems
with high control accuracy, so this method is not applicable. To achieve the dynamic
positioning of large ships, scholars have conducted further studies into solutions to the
model uncertainty problem of complex systems, opening up new avenues in dynamic
positioning control. Li [7] determined the model’s parameters by designing a nonlinear
observer, and constructed a mathematical model with the particle swarm optimization
algorithm, verifying the accuracy of the designed controller’s positioning in the system
through a simulation. Tong [8] combined a ship’s high-frequency and low-frequency
motion models, as well as mathematical models of wind, waves, currents, thrusters, etc.,
and designed a comprehensive motion model. With an in-depth study of Kalman filtering
technology, the control system solves the problems of phase lag, poor filtering performance
and poor control performance due to the existence of low-pass filters. Yu [9] designed a
dynamic positioning control system with a linear quadratic Gaussian (LQG) controller to
observe a ship’s motion under external wind and wave disturbances using Kalman filtering,
proving the feasibility of the method. Cho [10] separated low-frequency motions of ship
models using an extended Kalman filter. Moreover, a dynamic positioning sliding mode
controller was designed using the Lyapunov theory, and its effectiveness was verified by
numerically evaluating the performance of the control algorithm.

The motion equations of a ship at sea are a series of nonlinearly coupled equations.
Thus, the above method still has some computational biases, and its positioning accuracy
can be further improved. Many scholars have conducted research to solve the problem
of using highly linearized equations for ships. Guan [11] designed a controller using
the sliding mode variable structure control method, and a stability analysis based on the
Lyapunov function exhibited good control performance. Mu [12] considered unknown
time-varying disturbances and restricted operating areas, using a fixed-time extended state
observer (FDESO) to observe the total perturbation and incorporating the thruster system’s
dynamics equations into the controller. The above control methods are robust for nonlinear
systems with uncertain perturbations, but, at the same time, they introduce a tremor—a
problem that can increase mechanical losses in a propulsion system. Guo [13] utilized
an adaptive triggering mechanism to study the DP problem in relation to autonomous
surface vehicles (ASVs). A time-varying drift-angle-based heading guidance law using a
position error dynamics model and a reduced-order extended state observer was proposed,
which performs path-tracking control for ASVs in shallow water environments. Zhang [14]
proposed a robust neural event-triggered control algorithm that incorporates dynamic
surface control techniques to solve the model’s uncertainty and “complexity explosion”
problems, verifying the feasibility of the algorithm with simulation experiments. Bidikli [15]
applies adaptive control theory to solve the parameter uncertainty problem, backstepping
algorithms to design controllers for the dynamic positioning control of USVs, and the
Lyapunov function to verify the system’s stability.

The above research improves the accuracy of dynamic positioning control and solves
the problem of highly linearized equations for the motion of ships. However, the results of
dynamic positioning studies in rough sea disturbances have not been given. Nowadays,
the requirements for marine equipment are strict, so the motion control of ships in rough
sea has become a further research direction for scholars. Wei [16] considered external wave
force disturbances and other disturbances using control theory and proposed a composite
hierarchical anti-disturbance control strategy to realize dynamic positioning control under
external environmental disturbances. Su [17] considered complex external disturbances, and
constructed an exponential convergence disturbance observer to approximate the external
disturbance. Combined with the auxiliary control law of the hyperbolic tangent function, the
dynamic positioning control law was designed and proved its effectiveness via simulations.
Tomera [18] considered unknown time-varying environmental disturbances and applied



J. Mar. Sci. Eng. 2024, 12, 351 3 of 14

the backstepping technique to design a dynamic positioning system; the simulation proved
that the proposed controller is effective against external environmental disturbances.

Motivated by the above discussion, this paper focuses on emphasizing the problem
of dynamic positioning fixation control for large ships in rough sea conditions. Unlike
existing research, the authors introduce rough sea states and consider wind and wave
disturbances in Level 9 sea states. Three large ships are selected for simulation experiments
to verify the feasibility and generalization of the designed system. Furthermore, large ships
are more sensitive to external wind and wave disturbances, thus requiring more accurate
controllers to meet their positioning control needs. The main contributions of this research
are reflected in the following aspects:

(1) Introduced the equivalent ship speed model and analyzed the conversion relationship
between relative wind and absolute wind, based on which, the ship’s headwind sta-
tionary motion model was established. This model effectively showed that large ships
remain stationary at sea under the interference of external wind and waves. The model
plays an important role in the research of dynamic positioning fixed-point control.

(2) The forward speed controller was designed by using the closed-loop gain shaping
algorithm, and the nonlinear course-keeping robust controller was designed by com-
bining the closed-loop gain shaping algorithm and the exact feedback linearization
algorithm. To overcome the influence of strong external interference on the stability of
the system, and thus to meet the demand for fixed-point control, the author decoupled
the ship motion and designed the dynamic positioning system using the forward
speed controller with the nonlinear course-keeping robust controller. This effectively
solved issues with the large-ship control effect in rough seas not being ideal and the
result being easy to disperse, and accomplished large-ship fixed-point control at sea.

The remainder of this work was organized as follows: In Section 2, the mathematical
modeling of the ship dynamic positioning control system is introduced. The absolute and
relative wind conversion model, the equivalent ship speed model, and the ship kinematics
model are established. Section 3 shows the design of a speed controller and a nonlinear
course-keeping robust controller based on an improved closed-loop gain-shaping algorithm,
to realize dynamic positioning control for large vessels. Section 4 presents the basic
parameters of three different types of large ships and the overall design of the dynamic
positioning task. Section 5 carries out simulation validation in rough sea interference
conditions. Section 6 concludes the entire work.

2. Establishment of Mathematical Model for Ship Dynamic Positioning System
2.1. Wind Disturbance Force Model in Rough Sea

Rough sea environments are a specific environmental condition used in this paper to
research the task of large ship dynamic positioning control, which in the field of ship control
science, mainly refers to class 8–10 sea states [19]. Constructing an accurate disturbance
model of the marine environment is one of the necessary tasks for conducting simulation
tests of ship control systems. This paper simulates the fixed-point control of a large ship
under a level-9 sea state, and set the external wind force to Beaufort No. 10, and the sea
wave disturbance to wind-driven wave. The research object is the large ship, and focuses
only on wind characteristics in a two-dimensional horizontal plane, i.e., wind speed and
wind direction. Due to the influence of ship speed during navigation, the wind speed and
wind direction felt on the ship are different from the actual situation. In this paper, the
winds under actual conditions are called absolute winds, and the winds to which the ship
is subjected during its voyage are called relative winds. The representation of the absolute
and relative winds is shown in Figure 1. To establish an absolute wind and relative wind
conversion model to represent the ship’s external wind interference more accurately, this
model was used to find the relative wind speed and relative wind direction.
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Figure 1. Representation of absolute and relative winds.

The absolute wind speed is UT, the absolute wind angle is ψT , and the range of ψT is
0◦–360◦, taking the north wind as 0◦ and the south wind as 180◦. The relative air velocity is
UT , the relative wind angle is αR, and the range of αR is −180◦–180◦ (αR > 0◦ when the
wind is blowing from the port side, and αR < 0◦ when it is blowing from the starboard
side). The ship’s speed is V, and the relationship between the absolute wind speed, ship
speed, and relative wind speed is shown in Equation (1) [20]:{

uR = u + UT cos(ψT − ψ)
vR = −v + UT sin(ψT − ψ)

(1)

where uR, vR are two components of the relative wind speed, and the conversion relation-
ship between the relative wind speed and absolute wind speed can be further expressed as
Equation (2): {

UR cos αR = UT cos(ψT − ψ)− V cos β
UR sin αR = UT sin(ψT − ψ) + V sin β

(2)

where β is the drift angle of a ship, which through trigonometry gives Equation (3):

UR
2 = UT

2 + 2UTV cos(ψT − β) + V2 (3)

2.2. Equivalent Ship Speed Model

The equivalent ship speed refers to the normal sailing speed with the same rudder
effect when the ship reaches the headwind stationary state under the condition of external
wind interference. Considering that an equivalent ship speed model can reflect the rudder
efficiency in the simulation, the equivalent ship speed model can be obtained by equating
the effective velocity of the inflow rudder at the equivalent ship speed with the effective
velocity of the inflow rudder at the ship headwind stationary state [20].

First, calculate the effective velocity of the inflow rudder in the headwind stationary state
of the ship [20]; according to the momentum theorem, the fluid momentum change rate of the
front and rear of the propeller is equal to the sum of the external forces acting on the fluid. In
this paper, the external force acting on the fluid is only the thrust Tt of the propeller:

Tt = ρA0
(
up + ∆u

)
∆u∞ (4)

where up is the incoming velocity at the propeller, expressed by Equation (5). ∆u and ∆u∞
are the axially induced velocities at the paddle disk and at infinity behind the paddle. ρ is



J. Mar. Sci. Eng. 2024, 12, 351 5 of 14

the sea water density and the area of the propeller is A0. The axial induced velocity of the
propeller is shown in Equation (6):

up =
(
1 − ωp

)
u (5)

∆uZ = kx∆u∞
∆u∞ = nP − up

(6)

where the propeller speed is n and the propeller pitch is P. u is the forward speed of the
ship and

(
1 − ωp

)
is the wake coefficient at the propeller. The growth coefficient kx is

shown in Equation (7); it is a function reflecting the distance x from the propeller to the
rudder.

kx = 0.5 +

(
x/Dp

)√
1 +

(
2x/Dp

)2
(7)

where Dp is the propeller diameter, when the ship is in a headwind stationary state, the
incoming velocity at the propeller is up = 0. From Equation (4) to Equation (7), the
headwind stationary state into the rudder of the water flow velocity ul can be obtained as:

ul = kx

√
2Tt

ρA0
(8)

Next, assuming that the ship’s equivalent ship speed is Vc, the effective velocity into
the rudder [20] can be calculated as shown in Equation (9):

ul = up + ∆uR (9)

Substituting the equivalent ship speed Vc from Equations (5), (6), and (9), the effective
velocity of the inflow rudder at this time can be obtained as:

ul = Vc
(
1 − ωp

)
+ kx

[
np − Vc

(
1 − ωp

)]
(10)

The mathematical model for the equivalent ship speed V can be found by combining
Equations (8) and (10) into Equation (11):

V =
kx

(√
2Tt/(ρA0)− np

)
(1 − kx)

(
1 − ωp

) (11)

2.3. Ship Kinematics Model

Since the conditions studied in this paper require the inclusion of nonlinear forces as
well as wind and wave disturbances in the mathematical model, a third-order Nomoto
model before order reduction is adopted:

G(s) =
K0(T3s + 1)

s(T2s + 1)(T1s + 1)
(12)

where K0 is the gain coefficient of the ship model and T1, T2, T3 are the ship model time
constants. Converting this transfer function to a state space expression, in order to facilitate
the inclusion of wind and wave disturbances, matrix transformations according to the
Hankel norm and equilibrium realization definitions [21,22] can derive the standard form
mathematical model in Equation (13):

.
X =

−1/T3 1 0
A21 A22 0
0 1 0

X +

 0
K0T3/(T1T2)

0

δ (13)
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where δ is the rudder, X = [u, v, r]T , u is the forward speed, v is the surging speed, and r is
the yaw speed of the ship, A21, A22 is in Equation (14):

A21 =
−[−K0T3(T1+T2)/(T1

2T2
2)+K0/(T1T2)]T1T2

K0T3
2−1/(T1T2)

A22 =
[−K0T3(T1+T2)/(T1

2T2
2)+K0/(T1T2)]T1T2

K0T3

(14)

In order to facilitate the design of the ship’s speed controller, the mathematical model
of the ship’s forward motion needs to be considered separately. The forward motion model
can be derived from the linear mathematical model of the plane motion [23]:

m
.
u = Xu∆u + X .

u
.
u (15)

where ∆u is a first order minor preserved in the hydrodynamic expansion into a Taylor
series, m is mass of the ship, and Xu, X .

u are fluid dynamic derivatives. In the headwind
stationary state of the ship, the inertial force term of the fluid is neglected, and the viscous
force term of the fluid represents the speed change. The propeller thrust generated is
not balanced with the ship’s drag, so the forward motion model can be expressed by the
difference between the propeller thrust and the wind force:

m
.
u = Tt − fw − fx (16)

where Tt is the thrust of propeller, fx is the wind force, and fw is the wave force.

3. Dynamic Positioning Controller Based on Closed-Loop Gain Shaping Algorithm
3.1. Design of Speed Controller

The core of the closed-loop gain shaping algorithm is the direct construction of the
closed-loop transfer function matrix S and T for the design of the controller, where S is the
sensitivity function and T is the penalty-sensitivity function. As shown in Figure 2, this can
be expressed by Equation (17):
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In Figure 2, d is the low frequency interference, Pd is a low pass transfer function, n
is the measurement noise, r is the reference input, y is the actual output, and ym is the
measured output. The sensitivity curve of S and T is shown in Figure 3. In order to make
the system stable, the closed-loop spectrum must be low-pass. The control performance
of the system depends on the selection of the crossover frequency, and the closing slope
(high frequency asymptote slope) is generally −20dB/dec, −40dB/dec, and −60dB/dec.
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Then taking the singular value curve of T, it is approximated as the spectrum curve of a
first-order, second-order, or third-order inertial systems. Furthermore, the controller K is
deduced inversely [21]:
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In this paper, the speed controller is designed by setting the closing slope of the closed-
loop transfer function spectrum at −60dB/dec. Furthermore, the singular value curve of
the closed-loop transfer function can be expressed as the spectrum curve of the third-order
inertial system. The speed controller Kv is in Equation (18):

Kv =
1

G1T1s
(

T1
2s2 + 3T1s + 3

) (18)

where G1 is the mathematical modeling of the ship forward motion, and the design time
constant T1 = 0.12 is based on the bandwidth frequency. Let fx in Equation (16) be
the disturbance force, propeller thrust Tt = n2Dp

4ρkT , and kT is the propeller thrust
factor. From the open-water characteristic curve of the propeller, it can be obtained that
kT = 0.5 [20]. Substituting the propeller thrust into Equation (16), the forward motion
model of the ship can be obtained as follows:

G1 =
ρDp

4kT

ms
(19)

substitute Equation (19) into Equation (18) to obtain the speed controller Equation (20):

Kv =
m

ρDp
4kTT1

(
T1

2s2 + 3T1s + 3
) (20)

3.2. Design of the Nonlinear Course-Keeping Robust Controller

Since the influence of rough seas is considered in this paper, conventional course-
keeping controllers based on closed-loop gain shaping algorithms are not able to effectively
eliminate strong external disturbances, which in turn cannot guarantee the robust perfor-
mance and robust stability of the system [24,25]. Considering this problem, the author
combines a closed-loop gain shaping algorithm with an exact feedback linearization algo-
rithm for a dynamic positioning controller design. Firstly, the closed-loop gain shaping
algorithm is used to complete the design of the course-keeping control law, and then the
precise feedback linearization algorithm is used to complete the design of the nonlinear
course-keeping robust control law to ensure the robust stability of the dynamic positioning
systems in rough sea disturbances.

The course-keeping controller is designed by the closing slope of the closed-loop
transfer function spectrum being set at −40dB/dec, and the singular value curve of the
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closed-loop transfer function can be expressed as the spectrum curve of the second-order
inertial system. The course-keeping controller Kc can be obtained as:

Kc =
1

2G2T2s(T2s/2 + 1)
(21)

where G2 is the ship Nomoto motion model and the design time constant T2 = 0.6, based
on the bandwidth frequency. It can be seen from reference [26] that the essence of exact
feedback linearization control is to eliminate the nonlinear part first, and then to add the
linearized control rate. Considering the reduced-order Nomoto model, since the research
object is a static unstable ship, the second term

.
ψ/T at the left end of the reduced-order

Nomoto model needs to be replaced by the nonlinear (K/T)H
( .

ψ
)

[27]. By introducing
the third-order term, the nonlinear situation of the system response can be better fitted.
Currently, the designed nonlinear function H

( .
ψ
)

is as shown in Equation (22):

H
( .

ψ
)
= α

.
ψ + β

.
ψ

3
(22)

Combining Equations (21) and (22), the nonlinear course-keeping robust controller Kr
can be derived as:

Kr = α
.
ψ + β

.
ψ

3
+ (T/K)Kv (23)

where α, β are nonlinear parameters and K, T are ship maneuverability indices.

4. General System Design

In order to verify the fixed-point control effect of the designed ship dynamic position-
ing controller for large ships in rough sea conditions, in this paper, three large ships—the
“Taian kou”, “Mariner”, and “Galaxy”—were selected for simulation research. Their ship
parameters are shown in Table 1. The mathematical model of the controlled object is
the ship’s headwind stationary motion model derived from computational analysis. The
specific model construction was elaborated in Chapter 1 of this paper.

Table 1. Basic parameters of the ship.

Quantity Symbol
Value

“Taian kou” Ship “Mariner” Ship “Galaxy” Ship

Length between
perpendiculars L(m) 145.00 160.93 160.00

Breadth B(m) 36.00 23.17 28.00
Draft T(m) 7.40 8.23 9.50
Displacement ∆(t) 30,881.2 19,004.5 28,848.6
Rudder area Aδ

(
m2) 20.4 30.1 38.9

Paddle diameter ∆(t) 4.0 6.7 6.3
Block coefficient Cb 0.787 0.558 0.652

The system simulation block diagram based on the designed nonlinear course-keeping
robust controller and speed controller, as shown in Figure 4.

Where negative feedback function is the designed nonlinearization function, the
saturation and integral terms are the ship’s host characteristics. The input wind direction
in the simulation block diagram is the set target wind chord angle, and the input speed is
the wave speed under wind-driven wave conditions. The overall technical roadmap of the
system is shown in Figure 5.
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Separate rotary tests on three large ships, taking the yaw angular velocity after reaching
steady state as r =

.
ψ, were performed. By fitting the relationship r → δ by the least squares

method, the maneuverability indices of the three ships as well as the nonlinear parameters
were obtained, as shown in Table 2.

Table 2. Ship maneuverability index and nonlinear parameters.

Ship
Maneuverability Index Nonlinear Parameter

K T α β

“Taian kou” ship −0.20 −212.96 8.94 33,624.80
“Mariner” ship 0.10 48.85 16.75 20,887.82
“Galaxy” ship 0.48 186.82 8.87 8911.21

5. Simulation Verification and Results Analysis

In this paper, the simulation research of the initial state of the ship is static, the
ship’s heading is 0◦ and the initial position of the ship is (0, 0). In view of the rough
sea environment, wind and wave interference were added to the system. The specific
parameters were wind force Beaufort No. 10 (wind speed 27 m/s) and wind direction 40◦.
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The wave was a wind-driven wave, and its three-dimensional model simulation diagram is
shown in Figure 6. Applying the designed dynamic positioning controller, the controlled
ship adjusted its heading, and finally kept the headwind stationary. Firstly, the curves of
the heading change and forward speed of the “Taian kou” ship with time are shown in
Figure 7.
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Figure 7. (a) Heading of “Taian kou” ship; (b) Forward speed of “Taian kou” ship.

It can be seen from Figure 7 that, because of the influence of strong external interference,
the speed of the simulation was larger at the beginning of the simulation. Then, the heading
quickly turned to 40◦ and the forward speed tended to 0 and oscillated slightly near 0 m/s.
Furthermore, the rapid fixed-point control was achieved in less than 100 s. The curves
of the heading change and forward speed of the “Mariner” ship with time are shown in
Figure 8.
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It can be seen from Figure 8 that the heading of the “Mariner” ship turned to 40◦ in
less than 160 s. The ship reached a headwind stationary state, which meets the demands of
fixed-point control. The curves of the heading change and forward speed of the “Galaxy”
ship with time are shown in Figure 9.
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Figure 9. (a) Heading of “Galaxy” ship; (b) Forward speed of “Galaxy” ship.

It can be seen from Figure 9 that the heading of the “Galaxy” ship turned to 40◦ in less
than 400 s. This proves that it can quickly reach a steady state with good control performance.

From the simulation results of the three large ships, the dynamic positioning control
system designed in this paper was able to effectively overcome strong external interferences
under a level-9 sea state, and all ships were able to quickly maintain the headwind stationary
state. In order to further verify the fixed-point control effect of the designed dynamic
positioning control system, simulation research on the center of gravity trajectories of the
three ships under wind force Beaufort No. 10 and wind direction 40◦ were carried out. The
center of gravity trajectories of the three large ships are shown in Figure 10.
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The initial heading of the ships was 0◦ and the initial position of ship was (0, 0).
From the simulation results in Figure 6 to Figure 9, the ship had a large forward speed
impulse under the influence of the strong wind at the beginning of the simulation. Then, it
decreased rapidly in a very short time and tended towards the normal traveling speed, and
the heading of the ship also changed drastically with the strong wind. As the simulation
proceeded, the ships’ rudder efficiency gradually became better under the action of the
designed dynamic positioning controller. The bow quickly turned towards the windward
state and stabilized at the headwind angle. Furthermore, the oscillation amplitude of
the ship’s forward speed curve gradually decreased and tended towards 0 within 100 s,
maintaining the headwind stationary state. The reference and actual values of the heading
angle and forward speed of the three large ships are shown in Table 3.

Table 3. The reference value and actual values of ship heading and forward speed.

Ship
Heading Forward Speed

Reference Value Actual Value Reference Value Actual Value

“Taian kou” ship 40◦ 40◦ 0 m/s 0 ± 0.3 m/s
“Mariner” ship 40◦ 40◦ 0 m/s 0 ± 0.65 m/s
“Galaxy” ship 40◦ 40◦ 0 m/s 0 ± 0.8 m/s
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The center of gravity trajectories of the three ships could also be more intuitively
seen from the ship’s fixed-point control effect under the designed dynamic positioning
control system; the same simulation time of the three ships finally completed the fixed-
point control task. The “Mariner” ship’s fixed-point distance from the initial position was
maintained within 10 m, the “Taian kou” ship’s fixed-point distance from the initial position
was maintained within 5 m, and the “Galaxy” ship’s fixed-point distance from the initial
position was maintained within 7 m. Finally, the three large ships’ fixed-point distance
from the initial position was maintained within 10 m, and the fixed-points were effective
and met the fixed-point control requirements.

6. Conclusions

This paper addresses the large-ship problem of fixed-point control for dynamic posi-
tioning in rough sea conditions. Through theoretical analysis and simulation experiments,
we made the following conclusions:

(1) We built a stationary motion model of ship headwind by introducing an equivalent
ship speed model and analyzing the conversion relationship between the relative wind
and absolute wind. The model effectively showed the large ship overcoming strong
external disturbances and remaining stationary at sea, providing good modeling
support for research into large ship fixed-point control in rough sea conditions.

(2) In order to overcome strong external disturbances at a level-9 sea state, the authors
decoupled the ship motions and built a mathematical model. Combining the closed-
loop gain shaping algorithm with an exact feedback linearization algorithm to design a
nonlinear course-keeping robust controller, the designed dynamic positioning control
system combined a ship speed controller with a nonlinear course-keeping robust
controller. The simulation results proved that the fixed-point control errors of the
three ships were all less than 10 m, which meets the fixed-point control requirements
of large ships in rough sea conditions.

The method proposed in this paper can provide technical support for the dynamic
positioning control of large ships in rough sea conditions. In the future, the authors will
continue to conduct research on dynamic positioning trajectory control or on-line control
for large ships under changing sea states or phenomenal sea states; this plays an auxiliary
role in the construction of marine-ship dynamic-positioning intelligent equipment.
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