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Abstract: Neural radiance fields and neural reflectance fields are novel deep learning methods for
generating novel views of 3D scenes from 2D images. To extend the neural scene representation
techniques to complex underwater environments, beyond neural reflectance fields underwater
(BNU) was proposed, which considers the relighting conditions of on-aboard light sources by using
neural reflectance fields, and approximates the attenuation and backscatter effects of water with
an additional constant. Because the quality of the neural representation of underwater scenes is
critical to downstream tasks such as marine surveying and mapping, the model reliability should be
considered and evaluated. However, current neural reflectance models lack the ability of quantifying
the uncertainty of underwater scenes that are not directly observed during training, which hinders
their widespread use in the field of underwater unmanned autonomous navigation. To address
this issue, we introduce an ensemble strategy to BNU that quantifies cognitive uncertainty in color
space and unobserved regions with the expectation and variance of RGB values and termination
probabilities along the ray. We also employ a regularization method to smooth the density of the
underwater neural reflectance model. The effectiveness of the present method is demonstrated in
numerical experiments.

Keywords: neural reflectance fields; underwater scenes; uncertainty quantification

1. Introduction

A 3D reconstruction of underwater scenes is central to marine environmental studies.
Neural radiance fields (NeRFs) [1] is a recently emerging method for synthesizing novel
views from 2D images based on volume rendering and deep learning. Since its inception, it
has drawn tremendous attention in 3D reconstruction area due to its flexibility of processing
complex scenes. Nonetheless, the original version of NeRFs was proposed in natural and
ambient light in clear air conditions. For underwater environment conditions, which
is where the images were acquired by autonomous underwater vehicles (AUVs), two
intractable problems arose when using the conventional NeRFs method: (i) the scattering
media in the ocean led to attenuation and backscatter effects in the light and distorted
the true color; (ii) illumination of on-board light sources resulted in relighting on the
scene’s appearance. To tackle these challenges, beyond neural reflectance fields underwater
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(BNU) [2] was proposed to model the effects of water as a combination of attenuation
and inverse scattering. Additionally, it employs neural reflectance fields [3] in place of
neural radiance fields to learn the scene’s reflection properties and simulate the impact of
lighting variations on the scene’s appearance. BNU has made a great contribution to neural
volume rendering and has paved the way for its application in novel view synthesis from
underwater imagery.

Due to the complexity of the underwater environment, as well as due to the limitation
of lacking cognitive knowledge about unobserved parts of the scene, there is inherent
uncertainty when modeling underwater optical effects. Such cognitive uncertainty existing
in underwater neural scene representation directly influences the downstream tasks of AUV
navigation, such as the automatic identification of damage in underwater infrastructure,
target detection and tracking, mapping and motion planning, etc. [4–6]. By quantifying
uncertainty, we can assess the reliability of the model and thus reduce the risks of failures
in the aforementioned downstream tasks in real-world underwater exploration conditions
that are subject to probabilistic constraints [7].

Uncertainty quantification is a highly active research area in machine learning [8].
Numerous techniques have been proposed such as Bayesian neural networks [9,10], Gaus-
sian procedure, neural processes, Monte-Carlo dropout [11], and ensemble networks [12].
Inspired by the aforementioned research, some scholars have begun to analyze the uncer-
tainties of neural radiance fields [13]. However, to the authors’ best knowledge, quantifying
the uncertainty associated with neural reflectance fields, particularly for underwater scenes,
has not been reported in the existing literature.

To fill the aforementioned research gap, the present study attempted to extend the
uncertainty quantification of neural radiance fields [13] to neural reflectance fields [2]
based on BNU. We took an ensemble learning approach, which not only averages rendered
RGB images, but also introduces an additional cognitive uncertainty term consisting of
the termination probability of each ray in order to infer the cognitive uncertainty arising
from the absence of cognitive knowledge about the unobserved part of the scene during
training [13]. In addition, we employ a regularization method that smooths the density
amplitude to test the model’s inference uncertainty capability [14].

In this work, we demonstrated that our model can explicitly infer uncertainty in
both synthetic and real-world underwater scenes. Besides, the model exhibits superior
performance in key metrics related to image quality and reconstruction error. In summary,
our research makes the following contributions:

• For the first time, uncertainty quantification has been introduced to neural reflectance
fields of underwater scenes, thus enabling us to analyse the reliability and enhance
the robustness of the model.

• The regularization proposed in Ref. [14] is incorporated to BNU.
• Our uncertainty quantification framework strictly follows a volume rendering proce-

dure and does not require changes to underlying architectures of the codes.

2. Related Works
2.1. Underwater Neural Scene Representation

Neural scene representation is a method for encoding and reconstructing 3D scenes
based on neural networks. Among them, NeRFs has gained increasing popularity due to
its high-quality and realistic image rendering results. Numerous works have followed the
steps of NeRFs, and they have expanded the original framework of NeRFs from different
perspectives. However, NeRFs and its variants overlook the strong influence of the medium
on object appearance in underwater conditions. WaterNeRF [15] takes this as a starting
point and utilizes mip-NeRF 360 [16] to simulate underwater scenes, where absorption
and backscatter coefficients are learnt by optimizing the Sinkhorn loss between rendered
images and histogram-equalized images. Unlike WaterNeRF, SeaThru-NeRF [17] introduces
a scattering image formation model to capture the impact of the underwater medium on
imaging by respectively assigning color and density parameters to objects and the medium,
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to model the effects of shallow water natural ambient light. Additionally, a typical physical-
based reconstruction of the optical scene in shallow underwater environment conditions is
discussed in [18,19]. They predicted the impact of optical effects on underwater images
by inputting the underwater images into an underwater wave propagation model. It
is noteworthy that underwater scenes are largely dependent on the depth of the water.
Shallow water scenes are influenced by sunlight, while deeper water layers prevent the
penetration of sunlight. For deep-sea environments, illumination primarily relies on
searchlight beams that are attached to the underwater vehicle, and the influence of natural
ambient light can be negligible. Therefore, as the underwater vehicle moves, the scene’s
appearance will change with different lighting conditions. To adapt to these changes, it is
necessary to model the reflection properties of the scene using neural reflectance fields [3].
For example, BNU has utilized neural reflectance field model to learn the albedo, surface
normal, and volume density of underwater environments [2]. By jointly learning the
medium effects and neural scene representation, it recovers the true colors of underwater
images and achieves high-quality rendering under new lighting conditions.

2.2. Uncertainty Estimation in Deep Learning

Uncertainty estimation is an research topic of theoretical and practical importance
across many domains [20,21]. Characterizing the uncertainty of neural networks not only
enhances the interpretability of model outputs, but also reduces the risk of severe failures
occurring. Early research proposed using Bayesian neural networks (BNNs) [22] to intro-
duce probability distributions and estimate the uncertainty of network weights and outputs
by probabilistic modeling. However, training BNNs typically require significant modifica-
tions to the network architecture and training process, which is computationally expensive.
As such, several more low-complexity and practical strategies have been proposed to incor-
porate uncertainty estimation into deep neural networks, such as Monte-Carlo dropout and
deep ensembles. MC-dropout-based methods [23–25] introduce randomness on the inter-
mediate neurons of the network. Such methods perform multiple forward propagations of
the model during testing and randomly discard some neurons in each forward propagation
to obtain different predictions, which are then aggregated to obtain an uncertainty estimate
for a given input. However, the need to perform multiple forward propagations increases
the computational cost during the inference process. In deep ensemble strategies [26],
by training a finite ensemble of independent deep-learning models, introducing differ-
ences such as different initializations, different training data sampling, or different model
structures, this kind of method can provide more comprehensive and reliable uncertainty
estimation, especially in the case of complex noisy data with better robustness than other
methods. Refs. [27–29] adopted model order reduction methods combined with deep
learning to accelerate the sampling procedure in uncertainty quantification.

2.3. Uncertainty Estimation in Neural Radiance Fields

Recently, several works have explored the possibility of applying uncertainty esti-
mation to NeRFs. The pioneering work on NeRF-W [30] used an auxiliary volumetric
radiance field and a data-dependent uncertainty field to model the transient elements and
reduce the impact of transient objects on static scene representations. S-NeRF [31] uses a
Bayesian model approach to the probability distribution of all possible radiance fields in
the scene and quantifies the information uncertainty provided by the model through this
distribution. CF-NeRF [32] combines latent variable modeling and conditional normalizing
flows to flexibly learn the distribution of radiance fields in a data-driven manner, thereby
obtaining reliable uncertainty estimation and maintaining the expressive power of the
model. ActiveNeRF [33] proposes an approach based on an active learning scheme, which
selects samples that yield the maximum information gain by evaluating the reduction in
uncertainty for the entire scene. In this way, the quality of a novel view synthesis can be
improved with minimal additional resource investment. However, the aforementioned
NeRF-based methods cannot make inferences explicitly in the absence of knowledge about
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unknown scene regions, thus leading to high degree of uncertainty [7]. To address this
issue, we introduced an additional measure of uncertainty in the unknown space, i.e., we
quantified the epistemic uncertainty of unknown scene regions by learning the probability
of ray termination in the geometric domain.

3. Scientific Background
3.1. Neural Reflectance Fields

Neural reflectance fields (Figure 1) is a method for representing the reflection properties
of object surfaces, and it uses MLP to approximate the albedo α =

(
αr, αg, αb

)
, surface

normal n =
(
nx, ny, nz

)
, and volume density σ at a given 3D position x = (x, y, z) that

maps with the hash encoding γ. It implicitly represents the interaction of rays with the
object’s surface. By combining it with a physically based differentiable ray marching
framework, it can accurately model the appearance of real scenes with complex geometry
and reflection characteristics. The neural reflectance field is oriented toward arbitrary
illumination conditions, improving the MLP’s ability to learn high-frequency information
and compensating for the shortcomings of the NeRF that only synthesizes novel views
under fixed illumination and does not allow for relighting tasks.

The modeling process of the neural reflectance field is expressed in Equation (1) as:

(σ, α, n) = MLP(γ(x)). (1)

In the following, we use the function fθ implemented to denote a deep neural network
MLP with parameters θ:

(σθ, αθ, nθ) = fθ(γ(x)) (2)

Figure 1. Neural reflectance fields model.

3.2. Beyond NeRFs Underwater (BNU)

As illustrated in Figure 2, BNU considers the effects of optical properties such as
attenuation and backscatter on underwater imaging. The radiation Lλ captured by the
camera ray x = o − tω, which is mapped to the position o in the direction ω, can be
expressed as follows:

Lλ(x) = Sλ + Tn
λ

∫ d f

dn
Tλ(x)σ(x)lλ(x)dt, (3)

where the integration along the ray is restricted to the near boundary dn and the far
boundary d f ; λ denotes the wavelength; Sλ is the backscatter; σ(x) is the volume density
predicted by the MLP at the point x; and Tn

λ is the transmittance between the camera plane
and dn, which is written as

Tn
λ = exp(−βλdn), (4)
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where βλ and Sλ stand for the attenuation coefficient and backscatter (which are indepen-
dent of spatial position throughout the scene reconstruction process), respectively.

Figure 2. BNU model.

The scattered radiance lλ along the ray from x to o is expressed as part of the integrand
as follows:

lλ(x) =
∫

S2
Iλ(x, ωi)αλ(x)cos(n(x), ωi)dωi, (5)

where S2 represents the spherical domain around point x and Iλ is the incident radiance to
x from direction ωi. The albedo αλ(x) and normal n(x) are the reflection properties at x
obtained from the neural network prediction.

Tλ(x) represents the cumulative transmittance of the ray from x to dn:

Tλ(x) = exp
(
−
∫ t

dn
σλds

)
, (6)

where σλ(x) = σ(x) + βλ denotes the attenuation coefficient.
We used numerical methods to estimate this continuous integral of Equation (3). First,

[dn, d f ] was divided into N uniformly distributed intervals through stratified sampling,
and then one sample was randomly drawn from each interval as follows:

di ∼ u
[

dn +
i − 1

N

(
d f − dn

)
, dn +

i
N

(
d f − dn

)]
. (7)

Although we use a set of discrete samples to estimate integration, stratified sampling
ensures a continuous scene representation. This is because stratified sampling divides the
input space into multiple levels or subregions to comprehensively capture the characteristics
of the input space, thus enabling us to evaluate MLP at continuous positions.

We utilized this set of discrete samples to estimate Lλ by using the integration rule
discussed in [34] for volume rendering:

L̂λ(x) = Sλ +
N

∑
i=0

Tn
λ Tλi (1 − exp(−σiδi))li, (8)

Tλi = exp

(
−

i

∑
j=0

σλj δj

)
. (9)
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Upon substitution of Equation (9) into Equation (8), we have the following:

L̂λ(x) = Sλ +
N

∑
i=0

termination probability︷ ︸︸ ︷
i−1

∏
j=0

Tn
λ exp

(
−σλj δj

)
︸ ︷︷ ︸

transmittance

(1 − exp(−σiδi))︸ ︷︷ ︸
occupancy

color︷︸︸︷
li . (10)

Equation (3) allows us to compute Lλ for all rays x passing through the camera center
and the image plane to render an image. Next, we will use the symbol Lθk to denote the
estimated radiance of the MLP network fθk along the light ray x.

Also, in a similar manner to the neural radiance fields, the above was primarily
divided into coarse rendering and refined rendering. The final rendering came from refined
rendering, while the coarse rendering was mainly used for loss calculation. The main
difference between them was that coarse rendering utilizes the coarse volume density σ(x)
predicted directly by the neural network, while refined rendering uses the exact volume
density mo(x)σ(x), where mo(x) = sigmoid(3(σ(x)− 3)).

4. Uncertainty Estimation
4.1. Ensembles for Predictive RGB Uncertainty

We fed the same training data into the neural network model { fθk}k=1...M in which the
radiance was predicted as follows:

Lθk = Sλ + Tn
λ

∫ d f

dn
Tθk (x)σθk lθk (x)dt, (11)

where

Tθk (x) = exp
(
−
∫ t

dn

(
σθk + βλ

)
ds
)

, (12)

lθk =
∫

S2
Iλ(x, ωi)αθk (x) cos

(
nθk (x), ωi

)
dωi. (13)

As can be seen through Equation (2), our ensemble model is divided into three main
parts: the albedo field, the surface normal field, and the volume density field.(

σθk , αθk , nθk

)
= fθk (γ(x)), (14)

where k = 1 . . . M denotes the number of ensemble model.
By averaging the color of each pixel during the rendering process, the expected radia-

tion of the camera ray x is

µRGB(x) =
1
M

M

∑
k=1

L
θk
(x). (15)

We denote the prediction uncertainty in RGB space as the variance of individual
network predictions:

σ2
RGB(x) =

1
M

M

∑
k=1

(
µ(x)− Lθk (x)

)2. (16)

µRGB or σRGB has three components on the RGB color channels. To simplify the calcula-
tions, we assumed that the three color channels R, G, and B are independent of each other,
and this was achieved by disregarding their inter-channel relationships and only retaining
the primary information. In addition, for the convenience of subsequently combining color
variance with other uncertainty terms such as σ2

epi(x) into a unified uncertainty metric
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ψ2(x), we merged the variances of the three color channels and used a single value to
represent the overall RGB uncertainty.

σ̄2
RGB(x) =

1
3
· ∑

L∈{RGB}
σ2

RGB,(L)(x). (17)

4.2. Ensembles for Epistemic Uncertainty in Unseen Areas

Using the expectation and variance of RGB values in color space to quantify prediction
uncertainty is a simple and partially effective approach. However, these values only reflect
the uncertainty of color predictions. They cannot measure cognitive uncertainty about
unobserved scenes during training.

From our observations, it was found that since the prediction model lacks relevant data
to learn features of unobserved regions during the training process, it does not know the
exact shape and color of those regions; thus, it is not able to provide meaningful termination
probability predictions. As a result, the model assigns very low termination probabilities
to each sample point on ray x, and the cumulative sum qθk (x) of termination probabilities
along the ray approaches zero [13]. Hence, we can consider the termination probabilities
along the ray x as a way for the model to express cognitive uncertainty about the unknown
regions of the scene.

qθk (x) =
N

∑
i=0

termination probability at sample i︷ ︸︸ ︷
i−1

∏
j=0

Tn
λ exp

(
−σλj δj

)
︸ ︷︷ ︸

transmittance

(1 − exp(−σiδi))︸ ︷︷ ︸
occupancy

≈ 0. (18)

We averaged the termination probabilities along ray x across the entire ensemble model
as follows:

q(x) =
1
M

M

∑
k=1

qθk (x), (19)

where q(x) ≈ 1 indicates that the ray intersects with the observed scene structure during
training, and q(x) ≈ 0 is such if it did not.

In order to capture the prediction uncertainty along ray x as comprehensively as
possible, we expressed the total uncertainty as a combination of the RGB variance σ̄RGB and
a cognitive uncertainty term σepi as follows:

ψ2(x) = σ̄2
RGB(x) + σ2

epi(x), (20)

where
σ2

epi(x) = (1 − q(x))2. (21)

Moreover, the predicted colors of the ensemble along ray x were modeled as Gaussian
distributions with diagonal covariance matrices:

L̃(x) ∼ N
(

µRGB(x), I3×3 · ψ2(x)
)

. (22)

Simply using the expectation and variance of RGB values in color space would over-
look the cognitive knowledge about unobserved scenes during training. However, the
termination probability precisely reflects the uncertainty of this process. Therefore, the
uncertainty terms σ̄2

RGB(x) and σ2
epi(x) were found to be complementary in that they capture

the arbitrary and cognitive uncertainty in different aspects of the model.
Additionally, as indicated in this section, volume density was identified as a significant

factor influencing uncertainty in our research. Rendering with coarse volume density
σ(x) and exact volume density mo(x)σ(x) yields different σ̄2

RGB(x) and σ2
epi(x) results,
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respectively. Therefore, it is necessary to conduct separate experiments for both coarse
rendering and refined rendering in a systematic study.

5. Numerical Experiment
5.1. Experimental Setup
5.1.1. Dataset

We performed experiments on the scenes introduced in [2]. This process included the
synthetic dataset and real dataset. The synthetic images with underwater optical effects
were simulated based on the Jaffe–McGlamery model [35]. Ref. [2] used a Sony ILCE-7M3
camera with a 40 mm prime lens and LED lights to collect the real images in a tank at a
water depth of 1.3 m. Additionally, the camera poses were simultaneously acquired via
COLMAP [36], and the JPEG images were post-processed to ensure high feature quality.

5.1.2. Framework

Our ensemble model primarily consists of three components: the normal field, the
density field, and the albedo field (Figure 3). For the choice of M, we empirically selected
M = 3. The ensemble model sampled 100 rays from an image and 100 points on each ray
at each training iteration. The model was trained for 5000 epochs for each scene.

Figure 3. Ensemble model.

5.1.3. Metrics

Herein, we use two main types of metrics: quality metrics and uncertainty quantifica-
tion. For the quality metrics, we computed the mean absolute error (MAE), mean-square
error (MSE), and root-mean-square error (RMSE) to evaluate the reconstruction error,
and the peak signal-to-noise ratio (PSNR) was used to characterize the quality of the
rendered views.

• The MAE directly calculates the average absolute error between the predicted value
of the model and the ground truth. The smaller the MAE value, the more accurate
the prediction.

MAE(Yi, f (xi)) =
1
n

n−1

∑
i=0

|Yi − f (xi)|. (23)

• The MSE is calculated by squaring the differences between the ground truth and
predicted values, summing them up, and then taking the average.

MSE =
1
n

n

∑
i=1

(Yi − f (xi))
2. (24)
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• The RMSE measures the deviation between the predicted values and ground truth,
and it is sensitive to outliers in the data.

RMSE =

√
1
n

n

∑
i=1

(Yi − f (xi))2. (25)

• The PSNR is a metric used to measure image quality. Here, MAXx represents the
maximum pixel value of image x.

PSNR = 10log10

(
MAX2

x
MSE

)
. (26)

We used the predicted values obtained through experiments to evaluate the quality
of reconstruction. It was evident that the evaluation results of the quality metrics were
correlated with the accuracy of the predicted values.

For uncertainty quantification, to assess the reliability of the model prediction uncer-
tainty, we reported two widely used metrics. First, we used the negative log likelihood
(NLL) as an evaluation criterion [37]. The using NLL was chosen because our ensemble
model provides a Gaussian distribution for predicting rendered colors along rays, where
the expectation is equivalent to the estimated color and the variance is a combination of
uncertainty measures based on RGB variances and cognitive metrics. In addition, to assess
the correlation between prediction error and uncertainty estimates, we reported the area
under the sparsification error (AUSE) curve [38–40].

• The log likelihood function was defined as follows:

ln L(θ|x) = ln P(x|θ), (27)

where θ is the unknown parameters, x is the observed sample, and P(x|θ) is the
probability distribution of x given θ. The negative log likelihood (NLL) is defined as
the negative of the log likelihood function as follows:

NLL(θ|x) = − ln L(θ|x) = − ln P(x|θ). (28)

From Section 4.2, the sample of observations x follows a Gaussian distribution as follows:

P
(

x
∣∣µ, σ2) = N

(
µ, σ2), (29)

with the probability density function as

p
(
x
∣∣∣µ, σ2 ) = (2πσ2)−1/2 ∗ exp

[
−(x − µ)2/

(
2σ2)]. (30)

Then, the NLL of this Gaussian distribution is the following:

NLL
(
µ, σ2|x

)
= − ln P

(
x
∣∣µ, σ2)

= 0.5 ln
(
2πσ2)+ 0.5(x − µ)2/σ2.

(31)

• For the AUSE, the prediction error (e.g., RMSE) for each pixel was firstly computed
based on the predicted values and ground truth. The uncertainty values obtained
from training and the prediction errors for all pixels were merged and sorted. The
top 1% of data were removed from the sorted list, and the average error and average
uncertainty of the remaining data were treated as the point at 1%. Similarly, the top
2% of data were removed; then, the point at 2% was calculated, and this was so on
performed until it reached 100%. This process generates two curves: the prediction
error curve and the uncertainty curve. The area enclosed by the two curves is the
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AUSE value. A lower AUSE value indicates a higher correlation between uncertainty
estimation and true error, thus implying a more reliable uncertainty estimation.

We quantified the uncertainty by means of experimentally obtained predicted values,
as well as with σ̄2

RGB(x) and σ2
epi(x). Based on the above discussion, we could infer that the

uncertainty quantification results of the numerical experiments were closely related to the
accuracy of these values.

5.2. Results

We show the main results of our experiments in Table 1. Our ensemble strategy
achieved excellent NLL and AUSE on both synthetic and real datasets. Moreover, it exhib-
ited outstanding performance in terms of image reconstruction error and rendering quality.

Table 1. The results of our ensemble model.

MSE RMSE MAE PSNR AUSE
RMSE

AUSE
MAE NLL

Ours

Synthetic
Coarse 0.0004 0.019 0.0127 35.1 0.0015 0.0015 −0.0116 ± 0.0628

Refined 0.0004 0.019 0.0127 35.1 0.0014 0.0013 0.1125 ± 0.0923

Real
Coarse 0.0006 0.021 0.0161 34.1 0.0051 0.0043 0.5255 ± 0.103

Refined 0.0006 0.021 0.0162 34.1 0.0028 0.0026 0.5615 ± 0.0995

5.3. Ablation Study
5.3.1. Influence of the Ensemble

Entire Ensemble Model: As can be seen from Table 2, we outperformed previous works
in terms of image reconstruction error and rendering quality.

Table 2. Influence of the entire ensemble model.

MSE RMSE MAE PSNR

BNU

Synthetic
Coarse 0.0005 0.02 0.0133 34.6

Refined 0.0005 0.02 0.0133 34.6

Real
Coarse 0.0006 0.022 0.0167 33.8

Refined 0.0006 0.022 0.0167 33.8

Ours

Synthetic
Coarse 0.0004 0.019 0.0127 35.1

Refined 0.0004 0.019 0.0127 35.1

Real
Coarse 0.0006 0.021 0.0161 34.1

Refined 0.0006 0.021 0.0162 34.1

An individually trained network can only learn the information contained in a limited
number of training samples, whereas the ensemble model learns features from the expres-
sion of features learned through multiple networks with different initialization; as such, it
can express richer information.

On the other hand, the ensemble model obtains the final prediction result by averaging
the multiple networks (Figure 4), which is equivalent to sampling the dataset several times
and then averaging the data. Statistically, after averaging multiple quantification errors, the
average error will be smaller or equal to the single quantification error, which means that
this horizontal averaging can offset the effect of the larger prediction errors of individual
networks to a certain extent.

In short, by using multiple networks to predict the results, the overall prediction error
can be reduced to a certain degree, and this improves the quality of image reconstruction
so that the PSNR and other metrics can obtain better results than a single model.
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Figure 4. Ensemble prediction framework. The physical interpretation represented by each color is
the same as in Figure 2.

Individual Ensemble Component: As shown in Table 3, we experimented with the results
of implementing the ensemble strategy for individual ensemble components (Figure 5).

Table 3. Influence of individual ensemble components.

MSE RMSE MAE PSNR MSE RMSE MAE PSNR

BNU

Synthetic
Coarse 0.000491529 0.0200459 0.013337525 34.63339233

Albedo

Synthetic
Coarse 0.000502874 0.020200016 0.013464036 34.58008575

Refined 0.000492371 0.020073349 0.013330285 34.61220551 Refined 0.000503786 0.020222723 0.013453723 34.56002045

Real
Coarse 0.000599609 0.022026947 0.01668788 33.81985092

Real
Coarse 0.000589828 0.02165741 0.016421406 33.97740173

Refined 0.000602939 0.022051068 0.016739015 33.80893326 Refined 0.000590084 0.02164993 0.01644345 33.97847366

Norm

Synthetic
Coarse 0.000459542 0.019584062 0.012990904 34.78876877

Density

Synthetic
Coarse 0.000518398 0.020231744 0.01353504 34.62197495

Refined 0.000460262 0.019598676 0.012975736 34.77446747 Refined 0.000519 0.020276753 0.013544992 34.58899689

Real
Coarse 0.000566563 0.021291357 0.016084474 34.09726334

Real
Coarse 0.000555657 0.02125203 0.016046988 34.08520126

Refined 0.000567068 0.021277852 0.016084943 34.100914 Refined 0.000556773 0.021272138 0.016073255 34.07310486

Firstly, normals are crucial for capturing the surface details and geometric structure of
objects. By ensembling multiple norm fields, it is possible to better reproduce the details
and shapes of objects in scenes. This allows it to outperform the BNU model in terms
of performance on both synthetic and real datasets as it can more accurately capture the
appearance characteristics of objects.

Furthermore, by ensembling multiple albedo fields, it is possible to enhance the
model’s ability to capture lighting and material variations. However, due to the charac-
teristics of the synthetic data, the contribution of the albedo may be relatively small, thus
resulting in a less significant impact from the ensemble of the albedo field, as well as a
slightly lower performance when compared to BNU. On the other hand, the contribution of
albedo was found to be greater on the real dataset, which captured the appearance features
of the object more accurately and therefore outperformed BNU on the real dataset.

Then, the density field plays a key role in the propagation of light within a scene.
By ensembling multiple density fields, the effect of light propagation in a scene can be
better simulated, thereby providing more accurate rendering results. Since synthetic
datasets usually have more idealized lighting conditions, geometric structures, and material
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properties than real scenes, they can lead to the overfitting of the specific features of
the synthetic dataset during the training process, which do not generalize well to other
synthetic scenes and result in a poorer performance on synthetic datasets. However, in the
real dataset, the ensemble strategy can better simulate the propagation of light in different
media, thus making it able to provide better rendering results and performance than BNU.

Finally, Table 3 lists the quality metrics for refined rendering and coarse rendering in
different models. It was found that the values between them were very close. Therefore, we
chose to retain more decimal places to investigate the effect of the coarse volume density
σ(x) and exact volume density mo(x)σ(x) on the results because more of an accurate
volume density mo(x)σ(x) will always provide better results.

(a)

(b) (c)

Figure 5. Ensemble model of the individual ensemble components. (a) Ensemble albedo field.
(b) Ensemble normal field. (c) Ensemble density field. Arrows point to different initialization
parameters and the physical interpretation of each color is the same as in Figure 2.

5.3.2. Influence of Uncertainty Terms

Our uncertainty measure consists of two terms. To better understand their respective
impacts, we reported the results when using only one term, as well as those obtained by
combining the two terms on both synthetic and real datasets.

Additionally, from Tables 4 and 5, we can observe that, aside from the NLL corre-
sponding to σ̄2

RGB(x), various data metrics between the coarse and refined rendering were
very close. To make the differences between them more apparent, we chose to retain more
decimal places. In the case of the NLL data corresponding to σ̄2

RGB(x), the differences
between them were already obvious enough; as such, we did not choose to expand the
number of decimal places for that particular metric. All of the displayed decimal places
hold physical significance as they represent a higher precision in quantifying uncertainty.
This helps us observe the differences in uncertainty quantification between coarse and
refined rendering.
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Table 4. The uncertainty terms’ influence on the entire ensemble framework.

σ̄2
RGB(x) σ2

epi(x) ψ2(x) = σ̄2
RGB(x) + σ2

epi(x)

NLL AUSE
RMSE

AUSE
MAE NLL AUSE

RMSE
AUSE
MAE NLL AUSE

RMSE
AUSE
MAE

Synthetic
Coarse 475.5226 ± 15068.98 0.002254584 0.001743699 −0.34395203 ± 0.17283306 0.001247811 0.00123583 −0.011556505 ± 0.062817425 0.001504149 0.001509211

Refined 474.00775 ± 15063.435 0.002261687 0.001751348 −0.21837942 ± 0.217421 0.002945993 0.002841848 0.11246947 ± 0.09231803 0.001368612 0.001328661

Real
Coarse 1207.923 ± 8092 0.002890238 0.002550809 0.32225832 ± 0.12907358 0.002272962 0.001563942 0.52552766 ± 0.10300194 0.005134132 0.00426048

Refined 482.2294 ± 4909.587 0.002837191 0.002513715 0.35704166 ± 0.14970568 0.000311964 0.000618934 0.5615406 ± 0.099535696 0.002829015 0.0026005

Table 5. The uncertainty terms’ influence on the individual ensemble components.

σ̄2
RGB(x) σ2

epi(x) ψ2(x) = σ̄2
RGB(x) + σ2

epi(x)

NLL AUSE
RMSE

AUSE
MAE NLL AUSE

RMSE
AUSE
MAE NLL AUSE

RMSE
AUSE
MAE

Normal

Synthetic
Coarse 450.82037 ± 4871.639 0.000249919 0.000233828 −0.6259125 ± 0.20818105 0.000698834 0.000657816 −0.39603126 ± 0.11323436 0.00241437 0.002293217

Refined 289.39508 ± 3605.0972 0.00025749 0.000241996 −0.6097659 ± 0.20786819 0.000721777 0.000680518 −0.3866958 ± 0.11498752 0.002479377 0.002356168

Real
Coarse 1610.0344 ± 8977.543 0.000125807 0.000121349 −0.5150174 ± 0.25648573 0.000450089 0.000362964 −0.38426322 ± 0.14627357 0.000507562 0.000392292

Refined 968.5724 ± 7319.2705 0.000117436 0.000112676 −0.4824918 ± 0.25163838 0.000414992 0.00030181 −0.35871175 ± 0.1483912 0.000457031 0.000314412

Albedo

Synthetic
Coarse 1070.254 ± 6610.523 0.000510919 0.000523254 −0.6515078 ± 0.18188678 0.000651663 0.000609364 −0.27608374 ± 0.062299836 0.002779543 0.002610347

Refined 1282.3138 ± 7401.9 0.000609278 0.000620129 −0.6313605 ± 0.18285266 0.000746449 0.000704222 −0.2656904 ± 0.06084825 0.002868676 0.002695229

Real
Coarse 1639.0918 ± 9054.044 0.000348316 0.000300185 −0.37690923 ± 0.24971825 0.000946304 0.00065761 0.01580802 ± 0.09670887 0.000669593 0.000235055

Refined 693.6819 ± 5697.16 0.000376567 0.000328893 −0.3352108 ± 0.24189745 0.001014562 0.000690136 0.03544719 ± 0.09218908 0.000787288 0.000305379

Density

Synthetic
Coarse 2052.7996 ± 9721.339 0.002614084 0.002074688 −0.5209125 ± 0.12687543 0.000790859 0.000755849 −0.18053763 ± 0.076944746 0.002355352 0.00182316

Refined 1352.4849 ± 7712.8203 0.002602652 0.002061267 −0.47604796 ± 0.13382044 0.001606671 0.001540226 −0.13651294 ± 0.076657325 0.001342092 0.001227694

Real
Coarse 1652.699 ± 8296.807 1.37 × 10−5 9.67 × 10−6 −0.09061173 ± 0.21988438 0.000879356 0.00048239 0.052660644 ± 0.10419571 0.000483531 0.000182983

Refined 1821.3926 ± 8670.74 2.85 × 10−5 5.22 × 10−6 −0.04039674 ± 0.2547284 0.002096198 0.001341577 0.106006674 ± 0.1293263 0.000180225 0.000390491
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Entire Ensemble Model: From Table 4, we can observe that using only σ̄2
RGB(x) as an

uncertainty measure results in significantly higher NLL, as well as that metrics such as
AUSE are inferior to other cases. This is because color variance in high-frequency regions is
strongly influenced by individual pixel outliers. A high deviation in a single pixel can lead
to high variance across the entire image, especially in unobserved scenes during training. In
contrast, the cognitive uncertainty term σ2

epi(x) achieves excellent results in most scenarios.
This is attributed to the fluctuations in individual qθk (x), where the ensemble model assigns
slightly lower qθk (x) to rays with higher uncertainty.

Using σ2
epi(x) allows us to differentiate the model’s understanding level between

known and unknown regions, effectively capturing cognitive uncertainty in unobserved
areas. By comparison with the color variance, termination probability can directly reflect
the model’s judgment on the entire ray entering the scene. Hence, it is less affected by
individual outliers and more stable reflecting the model’s knowledge level.

The reason for considering the combination of both components, rather than relying
on a single one, is that color variance σ̄2

RGB(x) can effectively capture noise uncertainty
that is difficult to model caused by factors like sampling and occlusion in known regions.
Additionally, in simple scenes with homogeneous color distributions, color variance can
better express uncertainty in known regions and can be directly computed in the image
pixel space. On the other hand, for unknown regions, utilizing the uncertainty term σ2

epi(x)
can supplement the cognitive uncertainty information that cannot be expressed by the
color variance well. By combining these two uncertainty terms, a more comprehensive and
accurate uncertainty judgment is provided.

Individual Ensemble Component Frameworks: We experimented with individual
ensemble component frameworks (Figure 6). According to Table 5, we can observe that the
inferring ability of the uncertainty measure ψ2(x) exhibits different performances on the
synthetic and real datasets when we focus on a specific ensemble component. Intuitively,
performance degradation was observed on the synthetic dataset while the performance
enhancement was observed on the real dataset.

(a)

(b) (c)

Figure 6. Uncertainty estimation framework of the individual ensemble components: (a) Ensemble
albedo field. (b) Ensemble normal field. (c) Ensemble density field.

This difference stems from the complexity of the data itself. Synthetic data scenes are
relatively simple with fewer lighting variations. The multi-component ensemble uses mul-
tiple sources of information for greater expressiveness, thus leading to more pronounced
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advantages. In contrast, in a real dataset, due to the complexity of the data such as in
large light variations, the inference capability of uncertainty makes it more dependent on
individual components. To provide further illustration, we present the impact of lighting
variations on the appearance at the same location in both synthetic and real data in Figure 7.
From Figure 7, we can observe that the lighting variations have a significant impact on ap-
pearance in the real dataset, while the effect is relatively smaller in the synthetic dataset. A
multi-component ensemble approach requires learning resources to be spread evenly across
multiple tasks, thus making it difficult to optimize for a particular component in more
depth. Therefore, focusing on a specific ensemble component allows for better adaptation
to the complex distribution of real data.

(a) (b)

Figure 7. Real and synthetic images of lighting variations with the same locations being marked by
red boxes: (a) Real. (b) Synthetic.

In addition, through observation, we can notice that, when ensembling multiple
density fields, the uncertainty measure ψ2(x) exhibits a superior performance compared to
ensembling multiple norm fields or multiple albedo fields. This is because the termination
probability is used to determine whether the propagation of light in the scene is terminated
or not. And the termination probability is closely related to density as density reflects the
extent of the presence of objects in the scene. By considering the relationship between
termination probability and density, the model can better estimate the light propagation
within the scene and capture the degree of object presence, thereby effectively handling the
uncertainty of the unobserved parts of the scene and quantifying this uncertainty.

5.4. Discussion

From the above study, we can see that the fluctuation caused by a single qθk(x) can
make the cognitive uncertainty term σ2

epi(x) obtain very good results in most scenes, and the
fluctuation caused by a single qθk(x) can be traced back to the fluctuation caused by a single
density. In other words, σ2

epi(x) depends on a single density prediction along each ray x.
However, during the model training process, the density predictions tended to have

large oscillations or jumps for various reasons. It was also found that our uncertainty
estimation framework is highly sensitive to density, thus making it more likely to capture
uncertainty in regions with high oscillations. Considering our goal was to assess the
reliability of uncertainty quantification models, we experimented to artificially reduce the
density amplitude and fluctuations in the ray sampling region by smoothing the density
curve around the camera (Table 6).

We used a regularization method [14] that penalizes density fields in the vicinity of
the camera:

Locc =
σ⊤

K · nK

K
=

1
K ∑

K
σk · nk, (32)

where σK denotes the density value of the K points sampled along the ray x from the
origin and nK is the binary mask vector that determines whether a sampled point will be
penalized or not. We set the value of nK to 1 before the regularization range N, and we also
set the rest of the values to 0. In addition, we used a weight of 0.01 in all experiments.
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Table 6. Results for the density amplitude and fluctuation interference.

N = 5 N = 10 N = 15

NLL AUSE
RMSE

AUSE
MAE NLL AUSE

RMSE
AUSE
MAE NLL AUSE

RMSE
AUSE
MAE

Synthetic
Coarse −0.06423895 ± 0.077842504 0.012891437 0.011193172 −0.06423895 ± 0.077842504 0.012891437 0.011193172 −0.06081396 ± 0.07654448 0.01272295 0.011058994

Refined −0.06856838 ± 0.07776483 0.011792897 0.010343174 −0.06856838 ± 0.07776483 0.011792897 0.010343174 −0.0646455 ± 0.0769008 0.011601113 0.010205722

Real
Coarse 0.674563 ± 0.1071525 0.00481758 0.004217093 0.6660141 ± 0.11203171 0.005699564 0.004884685 0.674563 ± 0.1071525 0.00481758 0.004217093

Refined 0.6742599 ± 0.10600442 0.004616567 0.003919621 0.49425298 ± 0.10282664 0.004663244 0.00389921 0.6742599 ± 0.10600442 0.004616567 0.003919621
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We conducted the above experiment for 100 rays on the same image (Figure 8), and
it can be seen that our uncertainty estimation framework performed well even when
the density amplitude and fluctuations were artificially reduced (which is sufficient to
demonstrate its ability to infer uncertainty).

Figure 8. We experimented with 100 rays, which are represented as curves of different colors in the
figure, in addition to the vertical axis indicating the density values corresponding to the sampling
points, and the horizontal axis indicating the sampling points on the rays. By observation we can
find that without the regularization term, the maximum value reached more than 200, but, with the
regularization term, the maximum value did not exceed 16.

6. Conclusions

In this paper, we introduced an ensemble approach to quantify uncertainty in un-
derwater neural scene representation models with reflection properties. It can quantify
prediction uncertainty in RGB space by modeling ensemble rendering errors in the scene
and identifying the cognitive uncertainty caused by the lack of cognitive knowledge about
unknown scenes through an additional cognitive uncertainty term based on ray termina-
tion density. Furthermore, we used a method to artificially reduce its density amplitude
to test its ability to capture subtle uncertainties and validate the reliability of the model.
The numerical experiments demonstrated that our ensemble model can explicitly infer
uncertainty in the model on both synthetic and real scenes, thereby exhibiting superior per-
formance and outperforming previous works in key metrics related to reconstruction error
and rendering quality. The proposed algorithm will benefit the downstream tasks of ocean
exploration and navigation, such as the automatic identification of damage in underwater
infrastructure [18,19], target detection and tracking, mapping and motion planning, etc.
The present work is not without limitations. For example, our model assumes that the light
source is from onboard light, which is only valid for deep sea conditions. For shallow sea
conditions, however, natural light comes into play and should be considered in the model.
We will investigate this problem in depth in future work.
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