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Abstract: In the realm of maritime target detection, infrared imaging technology has become the
predominant modality. Detecting infrared small ships on the sea surface is crucial for national
defense and maritime security. However, the challenge of detecting infrared small targets persists,
especially in the complex scenes of the sea surface. As a response to this challenge, we propose
MAPC-Net, an enhanced algorithm based on an existing network. Unlike conventional approaches,
our method focuses on addressing the intricacies of sea surface scenes and the sparse pixel occupancy
of small ships. MAPC-Net incorporates a scale attention mechanism into the original network’s
multi-scale feature pyramid, enabling the learning of more effective scale feature maps. Additionally,
a channel attention mechanism is introduced during the upsampling process to capture relationships
between different channels, resulting in superior feature representations. Notably, our proposed
Maritime-SIRST dataset, meticulously annotated for infrared small ship detection, is introduced to
stimulate advancements in this research domain. Experimental evaluations on the Maritime-SIRST
dataset demonstrate the superiority of our algorithm over existing methods. Compared to the
original network, our approach achieves a 6.14% increase in mIOU and a 4.41% increase in F1, while
maintaining nearly unchanged runtime.

Keywords: infrared small target; maritime; small ship detection; attention; deep learning

1. Introduction

Infrared imaging technology has found widespread applications in both military and
civilian domains due to its high imaging accuracy, superior concealment, extensive detec-
tion range, and resistance to electromagnetic interference. Particularly in the field of mar-
itime target detection, infrared imaging technology has become a primary imaging modality
and a key direction for overcoming existing guidance technology bottlenecks [1–3]. In com-
parison to visible light imaging, infrared imaging demonstrates significant advantages in
penetrating smoke, working in all weather conditions, and being unaffected by adverse
weather [4,5]. Compared to radar imaging, infrared imaging systems have a simpler struc-
ture, high resolution, excellent electromagnetic concealment, and resistance to echo and
noise interference [6].

Despite the notable technical advantages of infrared imaging technology in acquiring
images in maritime scenarios, the performance of maritime target detection is still con-
strained by the complexity of sea surface scenes [7]. Due to the long imaging distances, sea
surface small ships lack effective features, resulting in targets often containing very few pix-
els, sometimes even appearing as patchy or point-like features. The complex background
of sea surface scenes, including clouds, islands, and waves, poses significant challenges to
small ship detection [8].

J. Mar. Sci. Eng. 2024, 12, 345. https://doi.org/10.3390/jmse12020345 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse12020345
https://doi.org/10.3390/jmse12020345
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-1785-4024
https://orcid.org/0000-0001-7354-7494
https://doi.org/10.3390/jmse12020345
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12020345?type=check_update&version=1


J. Mar. Sci. Eng. 2024, 12, 345 2 of 16

Currently, infrared small target detection algorithms can be broadly categorized into
model-driven algorithms and data-driven algorithms. Model-driven algorithms can be
further classified into the following: 1. Filter-Based Detection Algorithms: These algorithms
rely on filtering techniques to highlight small targets based on pixel intensity differences
and eliminate surrounding background noise interference. Examples include Top-hat [9],
TDLMS [10], TTLDM [11], and others. 2. Human-Visual-System-Based Detection Algo-
rithms: These algorithms are inspired by the human visual system, leveraging the ability
of the human eye to rapidly locate regions of interest and identify target objects within
them. This behavior is primarily based on the eye’s ability to distinguish targets from
the background using contrast rather than brightness, thus obtaining visually salient re-
gions. Examples include LCM [12], DLCM [13], MPCM [14], DECM [15], and others.
3. Image-Data-Structure-Based Detection Algorithms: These algorithms integrate image
data structures into infrared small target detection, utilizing the non-local self-similarity
of the background and the sparse characteristics of the target in infrared images. In this
context, background blocks belong to the same low-rank subspace, while the target is
relatively small in the overall image size. Examples include IPI [16], RIPT [17], RPCA [18],
SRWS [19], and others.

Model-driven algorithms rely on human-made prior assumptions [20], leading to the
common issue of high false alarm rates, especially in complex backgrounds. In recent years,
with the development of data-driven deep learning algorithms, deep learning has gradually
been applied to small target detection. In recent years, researchers have been treating small
object detection tasks as pixel segmentation tasks. MDvsFA cGan addresses the small
target segmentation problem by dividing it into two sub-tasks: suppressing false positives
and suppressing false alarms. It jointly solves these two sub-tasks through adversarial
learning [21]. ACM adopts FPN [22] and U-Net [23] as backbone networks. In the encoder–
decoder structure, it designs feature fusion modules for low and high semantics, obtaining
more effective feature representations [24]. ALC-Net simulates local contrast through
shift operations on semantic tensors to extract local information of the target [25]. IAA-
Net generates rough potential target regions using RPN to suppress background and
filter false alarm targets. It then models internal relationships between pixels through
attention encoders, outputting attention-aware features. Finally, predictions are obtained
by inputting attention-aware features into the classification head [26]. MTU-Net proposes a
multi-level Trans-U-Net-based multi-level feature extraction module to adaptively extract
multi-level remote features [27]. AGPC-Net designs attention-guided contextual blocks,
perceptually capturing pixel correlations within and between blocks at different scales
through local semantic association and global context attention. Subsequently, it fuses
multi-scale contextual information to generate a context pyramid module for better feature
representation [28].

We contribute to the research on infrared small ship detection at sea based on deep
learning with the following key contributions:

1. Scale attention mechanisms in AGPC-Net for small target detection. Addressing the
characteristics of small targets, we enhance the foundational network, AGPC-Net, by
incorporating a scale attention mechanism after the feature pyramid, adjusting the
weights of different scale feature maps.

2. Additionally, we add a channel attention mechanism during the upsampling process
of AGPC-Net, facilitating the learning of relationships between channels and obtaining
more effective feature representations.

3. Proposal of the Maritime-SIRST infrared small ship dataset in complex sea surface
scenes based on satellite infrared band images. We present the Maritime-SIRST dataset,
a comprehensive infrared small ship dataset derived from satellite infrared band
images, designed to meet the requirements of our research and foster advancements
in related fields.

The structure of this paper is as follows: In Section 2, we provide a brief review of
related work. Section 3 provides a detailed description of the network architecture of
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MAPC-Net, and introduces the Maritime-SIRST dataset proposed for infrared small ship
detection on the sea surface. In Section 4, we present the results of comparative experiments
and ablation studies, followed by discussions. Finally, in Section 5, we summarize the
findings of this study.

2. Related Work
2.1. Infrared Small Target Detection Networks

Infrared images, compared to visible light images, generally contain less useful in-
formation [29,30]. In the early stages, the field predominantly relied on model-based
algorithms [31], which exhibited poor performance. In recent years, with the advancement
of deep learning and the successive release of public infrared small target datasets, deep
learning-based infrared small target detection algorithms have made significant progress.
However, most existing algorithms are developed based on datasets with relatively sim-
ple backgrounds. The application of infrared small ship detection on the sea surface is
widespread, and the sea surface background is highly complex. Small ships often get sub-
merged in strong noise and complex background clutter. This poses a significant challenge
to stable detection, as separating small ships from complex background noise in infrared
noisy images without generating false alarms is a challenge [32].

Current research on deep learning-based algorithms typically focuses on feature fusion,
local information, feature pyramids, contextual information, etc. [33]. However, when
dealing with complex sea surface backgrounds, the issue of high false alarm rates persists.
To address this challenge, there is a need for a further exploration and development of
more precise and robust infrared small target detection algorithms to meet the demands of
sea surface small ship detection in complex backgrounds.

2.2. Attention Mechanism

The attention mechanism in deep learning is an approach that mimics the human
visual and cognitive system, enabling neural networks to focus attention on relevant parts
of input data. By incorporating attention mechanisms, neural networks can automatically
learn and selectively attend to crucial information in the input, enhancing the model’s
performance and generalization capabilities [34]. With the development of attention mech-
anisms, various types have emerged, including self-attention [35], channel attention [36],
spatial attention [37], scale attention [38], and more. Additionally, each attention mecha-
nism has different implementation versions. There are also hybrid attention mechanisms
that combine multiple types of attention, such as CBAM [39], BAM [40], and scSE [41], effec-
tively integrating channel and spatial attention mechanisms. The diverse range of attention
mechanisms yields varying improvements in model performance. Attention mechanisms
prove to be helpful for computer vision tasks, making them a simple and effective strategy
to enhance network performance by integrating suitable attention mechanisms into the
network architecture.

2.3. Datasets for Infrared Small Targets

Currently, the lack of public datasets remains a significant constraint in the develop-
ment of deep learning-based infrared small target detection technologies. In recent years,
several public infrared small target datasets have been gradually proposed. According
to our survey, Dai first released the SIRST dataset in 2021 [25], which was later supple-
mented with the SIRST-V2 dataset [42]. Subsequently, others proposed datasets such as
IRSTD-1K [43], NUDT-SIRST [44], and SIRST-AUG [28]. However, these datasets primarily
focus on land and sky scenes. In 2023, Wu proposed the NUDT-SIRST-SEA dataset, the first
dataset specifically designed for infrared small ship detection in satellite-based maritime
scenes [27]. This dataset was annotated using remote sensing satellite infrared band images.
However, the majority of images in NUDT-SIRST-SEA have relatively simple backgrounds,
with over 50% of the images containing no targets. Additionally, the dataset includes a mix
of infrared images from coastal land scenes, contributing to an overall lower dataset quality.
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3. Materials and Methods
3.1. MAPC-Net

We propose a new network architecture, MAPC-Net, based on AGPC-Net, as illus-
trated in Figure 1. The input is an image processed through the Res-Net, generating a spatial
feature map X with dimensions H × W × C. Subsequently, the feature map X is input into
the context pyramid module (CPM). CPM transmits the feature map X to multiple scales,
S ∈ {S1. . . . . . Sn}, of the Attention-Guided Context Block (AGCB). For each scale Si, AGCB
integrates contextual information, preserving key details for small targets, resulting in the
feature map ASi . The ASi obtained from AGCB at multiple scales is then passed to the scale
attention (LA) module, which automatically learns image-specific weights for each scale
to calibrate features across different scales. Finally, the resulting feature map is connected
with the original feature map X and convolved to produce the feature map C. During the
upsampling process, two bilinear interpolations are conducted. In the asymmetric fusion
module (AFM) following linear interpolation, semantic information of 1/4 and 1/2 sizes
from lower layers is fused with deep semantic information. Additionally, the Squeeze-and-
Excitation block (SE) is incorporated at each upsampling layer. The SE block adaptively
adjusts channel weights in the feature map through squeeze and excitation operations to
enhance the network’s representational capacity at different depths, ultimately yielding the
predicted feature map. Each module is detailed in the following sections:
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3.1.1. Attention-Guided Context Block

As depicted in Figure 2, AGCB comprises the local semantic association (LSA) and the
global context attention (GCA). For a given feature map X and scale S, the lower branch
LSA divides the feature map into S × S blocks, each of size H

S × W
S × C, denoted as Xi,

i ∈ {1, 2, . . ., S2}. For each block Xi, a new block, Pi, is obtained after NL block processing,
as shown in Equations (1) and (2):

Pi
k = β

HW/S2

∑
j=1

ωi
kjΨ(Xi

k)+Xi
k (1)

ωi
kj =

exp (θ(Xi
k)

T
Φ(Xi

j))

∑HW/S2

j=1 exp (θ(Xi
k)

T
Φ(Xi

j))
(2)
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where Pi
k represents the kth element, β is a learnable parameter, ωi

kj denotes the element

at the kth row and jth column of ωi, and Ψ(·), θ(·), and Φ(·) all represent 1 × 1 convo-
lutional layers. Finally, each block is reassembled into a feature map, Pi, according to a
pre-defined order.
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GCA serves as the upper branch of AGCB, aiming to estimate the dependencies
between each Pi block. For each scale S, the feature map X undergoes adaptive pooling to
obtain a feature map D of size S × S × C, where each point corresponds to the features of
each block in LSA. Subsequently, NL blocks are applied to estimate the correlations at each
position in the feature map D. To enhance pixel-level representation, the features are then
passed to the pixel attention module (PA) for integrating channel information at each pixel.
Finally, as shown in Equations (3)–(5), a guided map, Gi, is obtained through a sigmoid
transformation. Here, Gi represents the ith element of G, PA denotes pixel attention, and δ
is the sigmoid function.

Gi = δ

(
PA

(
β

S2

∑
j=1

ωmjΨ(Dm) + Dm

))
(3)

ωmj =
1

Zm
exp
(

θ(Dm)
T∅
(

Dj
))

(4)

Zm = ∑S2

j=1 exp
(

θ(Dm)
T∅
(

Dj
))

(5)

In AGCB, Pi and Gi describe the semantic correlations at the local level and the
associations between blocks, respectively. LSA computes the correlations between the
current pixel and the rest of the pixels, estimating the probability that each pixel is part of
the target at the local scale. Within a block, the target locations are highlighted accordingly.
Subsequently, each pixel in GCA aggregates information contained in each block and
estimates the probability of the target occurring therein. The resulting AS, as shown in
Equation (6), is a fusion of Pi and Gi, considering both the localized targets in Pi and the
contextual background information in Gi.

AS
P = Pi

k × Gi (6)
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3.1.2. Scale Attention Module

After generating feature maps at different scales, the AGPC-Net is combined by simple
stacking to form a feature pyramid. However, this straightforward stacking approach fails
to fully exploit the characteristic of small-sized ships. To overcome this limitation, we
add the Scale Attention Module behind the generated feature pyramid. This enables
us to adaptively adjust the weights of feature maps at different scales, emphasizing the
focus on effective scale feature maps while reducing attention to ineffective scale feature
maps, thereby obtaining superior feature representation. By adding the Scale Attention
Module, our network can more effectively utilize information from feature maps at different
scales, enhancing the detection capability for targets of various sizes. This adaptive scale
adjustment helps the network better adapt to the common small size of ships, thereby
improving the performance of the network in infrared small ship detection tasks.

Figure 3 illustrates the LA [38], which can automatically learn specific weights for the
feature maps at each scale to calibrate features at different scales. Firstly, a 1 × 1 convolution
compresses feature maps at different scales into 4 channels, and the compression results
from different scales are concatenated into a mixed feature map, F. Next, the combined
features Pavg, Pmax, and MLP are used to obtain coefficients for each channel. The scale
attention coefficients are represented as γ ∈ [0, 1]4×1×1. To allocate multi-scale attention
weights at each pixel, an additional spatial attention block, LA*, is employed using F×γ

as input, generating spatial attention coefficients γ∗ ∈ [0, 1]1×H×W. This makes γ × γ∗

represent scale attention in the pixel direction. The final output of LA is as shown in
Equation (7).

yLA = F × γ× γ∗ + F × γ+ F (7)

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 6 of 16 
 

 

Subsequently, each pixel in GCA aggregates information contained in each block and es-

timates the probability of the target occurring therein. The resulting 𝐴𝑆, as shown in Equa-

tion (6), is a fusion of 𝑃𝑖  and 𝐺𝑖, considering both the localized targets in 𝑃𝑖  and the con-

textual background information in 𝐺𝑖. 

𝐴𝑃
𝑆 = 𝑃𝑘

𝑖 × 𝐺𝑖  (6) 

3.1.2. Scale Attention Module 

After generating feature maps at different scales, the AGPC-Net is combined by sim-

ple stacking to form a feature pyramid. However, this straightforward stacking approach 

fails to fully exploit the characteristic of small-sized ships. To overcome this limitation, we 

add the Scale Attention Module behind the generated feature pyramid. This enables us to 

adaptively adjust the weights of feature maps at different scales, emphasizing the focus 

on effective scale feature maps while reducing attention to ineffective scale feature maps, 

thereby obtaining superior feature representation. By adding the Scale Attention Module, 

our network can more effectively utilize information from feature maps at different scales, 

enhancing the detection capability for targets of various sizes. This adaptive scale adjust-

ment helps the network better adapt to the common small size of ships, thereby improving 

the performance of the network in infrared small ship detection tasks. 

Figure 3 illustrates the LA [38], which can automatically learn specific weights for the 

feature maps at each scale to calibrate features at different scales. Firstly, a 1 × 1 convolu-

tion compresses feature maps at different scales into 4 channels, and the compression re-

sults from different scales are concatenated into a mixed feature map, F. Next, the com-

bined features 𝑃𝑎𝑣𝑔, 𝑃𝑚𝑎𝑥 , and MLP are used to obtain coefficients for each channel. The 

scale attention coefficients are represented as γ∈[0,1]4×1×1. To allocate multi-scale attention 

weights at each pixel, an additional spatial attention block, LA*, is employed using F×γ as 

input, generating spatial attention coefficients 𝛾∗∈[0,1]1×H×W. This makes γ×𝛾∗ represent 

scale attention in the pixel direction. The final output of LA is as shown in Equation (7). 

𝑦𝐿𝐴 = 𝐹 × γ × 𝛾∗ + 𝐹 × γ + 𝐹 (7) 

 

Figure 3. Structure of scale attention. 

3.1.3. Squeeze-and-Excitation Block 

We incorporated the Squeeze-and-Excitation Block [36] during the upsampling pro-

cess, which is a channel attention mechanism capable of learning weights between differ-

ent channels. Figure 4 illustrates the SE block. The SE block enhances the model’s perfor-

mance by adaptively adjusting channel weights in the feature map. The SE block initially 

compresses the input feature map of size H × W × C in terms of spatial features, achieving 

global average pooling in the spatial dimension, resulting in a feature map of size 1 × 1 × 

C. Through a fully connected (FC) layer, it learns and produces a feature map with chan-

nel attention, still possessing dimensions of 1 × 1 × C. The channel attention feature map 

of size 1 × 1 × C is then multiplied channel-wise by the weight coefficients with the original 

Figure 3. Structure of scale attention.

3.1.3. Squeeze-and-Excitation Block

We incorporated the Squeeze-and-Excitation Block [36] during the upsampling pro-
cess, which is a channel attention mechanism capable of learning weights between different
channels. Figure 4 illustrates the SE block. The SE block enhances the model’s perfor-
mance by adaptively adjusting channel weights in the feature map. The SE block initially
compresses the input feature map of size H × W × C in terms of spatial features, achiev-
ing global average pooling in the spatial dimension, resulting in a feature map of size
1 × 1 × C. Through a fully connected (FC) layer, it learns and produces a feature map with
channel attention, still possessing dimensions of 1 × 1 × C. The channel attention feature
map of size 1 × 1 × C is then multiplied channel-wise by the weight coefficients with the
original input feature map of size H × W × C, ultimately yielding a feature map with
channel attention.
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3.2. Maritime-SIRST

The quality of a dataset significantly influences the performance of deep learning
algorithms. While there are existing infrared small target datasets, they are primarily
based on land and sky backgrounds, failing to accurately represent real scenarios in a sea
surface environment. Consequently, they are unsuitable for training and evaluating models
for sea surface small ship detection. Additionally, some datasets employ simulation or
synthetic techniques, making it challenging to assess the differences between simulated or
synthetic images and real images. Discrepancies between simulated or synthetic targets and
backgrounds may lead to overly optimistic detection rates, resulting in training outcomes
that are overly optimistic.

Therefore, proposing a realistic infrared dataset for sea surface small ship detection is
crucial for this research. Such a dataset would provide authentic sea surface backgrounds,
encompassing various complex maritime conditions, including waves, islands, clouds,
and more, closely mimicking real-world applications. This type of dataset not only holds
paramount importance for this study but also contributes to advancing the field of infrared
sea surface small ship detection. By utilizing a dataset based on real scenes, it becomes
possible to more accurately evaluate algorithm performance in sea surface small ship
detection tasks, enhancing algorithm robustness and reliability.

In this study, we leverage publicly available images from the Landsat-8 remote sensing
satellite’s near-infrared band to propose a high-quality infrared small ship detection dataset
tailored for complex sea surface scenes, named Maritime-SIRST. In Landsat-8 remote
sensing images, we selected infrared band images from different regions such as Asia,
Africa, and North America, near ports and canals. The selected images cover the time
span from 2013 to 2021. To enhance representativeness, we processed remote sensing
images from different months and varying cloud cover ratios. We utilized the annotation
tool LabelBee, an open-source product from SenseTime, to annotate the original images,
generating labeled files in mask format. This dataset, dedicated to infrared sea surface
small ships, utilizes authentic remote sensing satellite infrared images, resulting in a
more diverse and complex background compared to other datasets. The Maritime-SIRST
dataset comprises 566 images, featuring a total of 796 targets, with each image sized at
256 × 256 pixels. Table 1 provides a detailed distribution of the dataset. The sea surface
backgrounds encompass various elements such as waves, complex clouds, islands, and
ports, effectively covering a broad spectrum of maritime scenarios, with complex scenes
accounting for 64.1% of the dataset. Additionally, over 90% of the targets are smaller than
0.35% of the image area. The dataset includes images with both targets and no targets,
and approximately 27.7% of the images depict multiple targets, aligning with real-world
scenarios where sea vessels often appear in groups. Figure 5 showcases selected images
from the Maritime-SIRST dataset. The waves in the images are typically stripe-shaped,
exhibiting a consistent direction and regular distribution. Cloud clusters, on the other
hand, appear as block-shaped formations with a more chaotic distribution and fuzzy edges.
Islands also manifest as block-shaped structures with clear and well-defined edges.
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Table 1. The statistical data of Maritime-SIRST.

Features Number Ratio/%

Background

simple 203 35.9
waves 62 11.0
clouds 272 48.2

islands, ports 28 4.9

Target size/pixel

<25 55 9.7
25–81 319 56.4
81–225 174 30.7
>225 18 3.2

Target number
0 21 3.7
1 388 68.6

1–8 157 27.7
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4. Experiment and Discussion
4.1. Experimental Setting

To evaluate the performance of our model, we conducted comparative experiments
with four traditional algorithms, including Top-hat [9], IPI [16], MPCM [14], and TTLDM [11],
and four deep learning algorithms, including ACM-U-Net [24], ACM-FPN [24], IAA-
Net [26], MTU-Net [27], and AGPC-Net [28]. All models were run using Python 3.8 on a
computer with a 15vCPU AMD EPYC 7543 32-core Processor CPU and NVIDIA GeForce
RTX 3090 GPU. Our model was trained with a batch size of 8, 60 epochs, an initial learning
rate of 0.05, and the SoftIouLoss as the loss function. Other model training parameters
followed the settings in the original papers.

The experiment utilized our self-proposed Maritime-SIRST dataset, which consists of
real-world infrared small ship images in maritime scenarios, all with a size of 256 × 256 pixels.
To enhance training stability, the training set was augmented with operations such as rotation
and scaling, resulting in 752 images. The ratio of the training set, testing set, and validation set
was approximately 7:1.5:1.5. The “rotation” operation refers to randomly rotating the image by
an angle between 0 and 90 degrees, while the “scaling” operation involves randomly cropping
a portion of the image and then resizing that cropped portion to the original image size.

4.2. Evaluation Metrics

We adopt the Precision (Prec.) [3], Recall (Rec.) [3], mIOU (mean Intersection over
Union) [28], F1 score [28], AUC (Area Under the Curve) [28], and average algorithm
execution time as evaluation metrics. The calculation formulas for Precision and Recall are
provided in Equations (8) and (9):

Prec. =
TP

TP + FP
(8)
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Rec. =
TP

TP + FN
(9)

In the formulas, TP represents the number of matched pixels detected as target pix-
els with true target pixels, FP represents the number of background pixels mistakenly
detected as true target pixels, and FN represents the number of target pixels detected as
background pixels.

mIOU stands for mean Intersection over Union, and the calculation formula is given
by Equation (10):

mIOU =
1
n
∗ ∑n

i=1
TPi

TPi + FPi + FNi
(10)

where n represents the total number of classes, TPi denotes the true positives for the ith
class (the number of correctly predicted positive pixels), FPi represents the false positives
for the ith class (the number of incorrectly predicted positive pixels), and FNi represents the
false negatives for the ith class (the number of incorrectly predicted negative pixels). For
each class, the Intersection over Union (IoU) is calculated, and then the IoUs for all classes
are summed and divided by the total number of classes to obtain the mean IoU value.

Precision and Recall are two performance metrics that are inversely related; usually,
when Precision is high, Recall tends to be low, and vice versa. F1 is a metric that simultane-
ously considers both Precision and Recall, providing a balanced evaluation. The calculation
formula is given in Equation (11):

F1 =
2 ∗ Prec. ∗ Rec.

Prec. + Rec.
(11)

The ROC curve, short for Receiver Operating Characteristic curve, is a commonly
used tool to evaluate the performance of binary classification models. The ROC curve is
plotted with the true positive rate on the vertical axis and the false positive rate on the
horizontal axis. The ROC curve illustrates the model’s performance in classifying positives
and negatives at different thresholds. AUC is widely used as a metric to evaluate model
performance, with a higher AUC value indicating better performance.

4.3. Quantitative Results

Table 2 presents the comparative experimental results of our model with other models
and algorithms on the Maritime-SIRST dataset. From the table, it can be observed that
our model outperforms other models and algorithms, with a 5.79% increase in Precision,
a 2.16% increase in Recall, a 6.14% increase in mIOU, a 4.41% increase in F1, and a 0.92%
increase in AUC. The runtime is comparable to other deep learning algorithms. The
experimental results demonstrate that our improved algorithm has achieved significant
performance improvements.

Additionally, based on the Maritime-SIRST dataset, we plotted the ROC curves, as
shown in Figure 6. In order to illustrate the performance differences of each algorithm,
ROC curves with two different x-axis scales are presented separately. From the ROC curves,
it can be observed that the curve of our model is closer to the upper-left corner, indicating
that our model outperforms other models and algorithms.

In remote sensing images, small ships often have small sizes, and infrared images
contain less information compared to visible light images. Moreover, there is complex
background interference on the sea surface, causing many algorithms suitable for simple
background infrared small target detection to perform poorly, often resulting in high false
alarm rates. However, by adding attention mechanisms, the network can more effectively
focus on valid features in the image while attenuating irrelevant background features.
Therefore, in the task of infrared small ship detection, enhancing the network’s performance
can be achieved by introducing appropriate attention mechanisms. The introduction of
attention mechanisms allows the network to concentrate more on small ships, improving
detection accuracy. By adaptively learning weight assignments, attention mechanisms
can selectively amplify features helpful for target detection while suppressing attention to



J. Mar. Sci. Eng. 2024, 12, 345 10 of 16

background interference. This mechanism can effectively enhance the network’s capability
to detect small ships and reduce false alarm rates.

Table 2. Comparative analysis of segmentation accuracy of different algorithms.

Methods Prec./% Rec./% mIOU/% F1/% AUC/% Time/s

Top-hat 38.83 22.53 14.96 23.75 62.32 0.0019
IPI 39.65 38.26 18.32 26.89 67.78 7.780

MPCM 27.11 59.57 16.73 22.98 64.05 1.240
TTLDM 42.92 52.75 31.15 40.81 82.36 0.017

ACM-FPN 58.10 54.69 39.22 56.34 74.06 0.160
ACM-U-NET 58.15 47.87 35.60 52.51 78.29 0.160

IAA-NET 69.59 52.55 45.03 59.88 83.80 0.160
MTU-NET 70.46 85.62 63.01 77.31 93.91 0.125

AGPC-NET 71.60 85.29 63.73 77.85 93.63 0.130
Ours 77.39 87.78 69.87 82.26 94.83 0.135
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4.4. Visual Results

In order to visualize our segmentation results, we selected a subset of images, com-
pared the segmentation results of all algorithms with the ground truth, and manually
annotated them. Figure 7 displays the detection results of various algorithms compared
in this paper (red boxes represent correctly detected targets, blue boxes represent false
positives, and green boxes represent missed detections). From the detection results, it can
be observed that traditional algorithms generally suffer from high false alarm rates, mis-
takenly identifying cloud clusters and islands as small ships, and also exhibiting instances
of missed detections. Some deep learning algorithms also exhibit high false alarm rates,
and the segmented targets differ significantly from the actual targets. This is mainly at-
tributed to the complexity of the maritime scene, where clouds, waves, islands, and similar
elements are prone to misclassification as targets. Overall, our algorithm demonstrates
lower false alarm rates and missed detection rates, and in terms of segmentation results,
our algorithm’s outcomes are closer to the ground truth.
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Figure 7. Partial image visualization results of different methods on Maritime-SIRST datasets.
(a,b) showcase the image segmentation results with waves, figures (c,d) demonstrate the image
segmentation results with cloud clusters, and figures (e,f) illustrate the image segmentation results
with islands. The red box, the blue box, and the green box represent the correct detection box, the
false detection box, and the missed detection box, respectively. Some algorithms exhibit an excessive
number of false alarms; hence, annotations are omitted in the images.

4.5. Ablation Study

To validate the effectiveness of the LA module and SE block in enhancing the perfor-
mance of the original network, ablation experiments were conducted on the Maritime-SIRST
dataset. Table 3 presents the results of the ablation experiments, demonstrating that adding
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the LA module to the base network increased Precision, Recall, mIOU, F1, and AUC by
0.43%, 1.12%, 0.97%, 0.72%, and 0.56%, respectively, compared to the base network. Sim-
ilarly, incorporating the SE block into the base network led to increases of 4.09%, 1.54%,
4.16%, 3.03%, and 0.85% in Precision, Recall, mIOU, F1, and AUC, respectively. For MAPC-
Net, the improvements were 5.79%, 2.16%, 6.14%, 4.41%, and 1.20% across the mentioned
metrics compared to the base network. The ablation experiments indicate that the LA
module, by learning the weights between different scales of the feature pyramid, and
the SE block, by learning the weights between different channels, obtained better feature
representations, resulting in a significant enhancement in network performance.

Table 3. Ablation study of the LA and SE block.

Module Prec./% Rec./% mIOU/% F1/% AUC/%

AGPC 71.60 85.29 63.73 77.85 93.63
AGPC + LA 72.03 86.41 64.70 78.57 94.19
AGPC + SE 75.69 86.83 67.89 80.88 94.48

AGPC + LA + SE 77.39 87.78 69.87 82.26 94.83

Different attention modules yield varying performance improvements for different
tasks and models. We explored several attention modules (GAM [45], CA [46], CBAM [39],
SE [36]) during the upsampling stage, and the experimental data in Table 4 reveal that
the SE block contributes the most to the comprehensive performance improvement in the
model. Therefore, the SE block was adopted during the upsampling stage of the model to
obtain better feature representations.

Table 4. Ablation study of different attention modules in upsampling.

Module Prec./% Rec./% mIOU/% F1/% AUC/%

AGPC + GAM 74.35 84.26 65.29 79.00 93.44
AGPC + CA 70.44 87.94 64.24 78.22 94.21

AGPC + CBAM 62.08 86.96 56.80 72.45 94.71
AGPC + SE 75.69 86.83 67.89 80.88 94.48

5. Conclusions

To tackle the intricate challenge of infrared small ship detection in complex maritime
scenes, we extend the existing AGPC-Net architecture, introducing multiple attention mech-
anisms to create the innovative network MAPC-Net. Experimental results affirm MAPC-
Net’s strong performance in infrared small ship detection on the sea surface. Specifically,
MAPC-Net integrates a scale attention mechanism after the feature pyramid, facilitating
adaptive learning of weights for diverse scale feature maps. This adaptive learning en-
hances the network’s ability to utilize information from varying scales, thereby improving
detection capabilities for targets of different sizes. In the upsampling stage, MAPC-Net
incorporates SE blocks between each layer, fostering the learning of relationships between
different channels and enhancing the network’s feature representation capabilities. We have
proposed Maritime-SIRST, a dataset tailored for infrared small ship detection on the sea
surface. This dataset encompasses diverse scenarios found in maritime backgrounds, such
as waves, clouds, and islands, rendering it more representative of real-world applications.
Experimental comparisons on the Maritime-SIRST dataset reveal that MAPC-Net surpasses
traditional algorithms and other deep learning methods. Through ablation experiments,
we validate the efficacy of adding attention modules, demonstrating that these mechanisms
enable the network to more accurately locate and identify infrared small ships on the
sea surface.

The infrared small ship detection algorithm is typically deployed on embedded de-
vices, imposing high demands on the algorithm’s complexity. Although the proposed
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network in this paper achieves high accuracy, it also comes with high complexity. There-
fore, to achieve widespread application in practical engineering, it is necessary to explore
lightweight techniques for the network. The next steps could involve model pruning, distil-
lation, and the use of depth-wise separable convolutions as alternatives to conventional
convolutions to conduct lightweight research on the model.
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