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Abstract: As a key component connecting a floating wind turbine with static sea cables, dynamic
cables undergo significant tensile and bending loads caused by hydrostatic pressure, self-weight,
waves, and ocean currents during service, which can lead to fatigue failure. Thus, dynamic and
fatigue analyses are necessary for the design and operation of dynamic cables. In this study, a fatigue
analysis of the three-core four-layer armored dynamic cable used in a semisubmersible floating wind
turbine was carried out at a water depth of 25 m. The Miner linear cumulative damage method, based
on material S-N curves, was used to predict fatigue life. The results indicate that, at 10 times the
safety factor, the dynamic cables meet the design requirement of a 30-year service life in the studied
marine environment. The maximal curvature of the dynamic cable always appears at the exit of the
bend stiffener, even beyond the allowed point. Adding weights to the section where the cable exits
the bend stiffener and adjusting the bend stiffener’s hanging angle can both reduce the curvature
at the bend stiffener exit. The scheme of adjusting the bend stiffener’s hanging angle is preferred,
for it is easier for simultaneous adjusting and inducing much smaller extra stress in the cable. As
the hanging angle increases, the curvature at the bend stiffener exit decreases, while the maximal
effective tension and maximal von Mises stress gradually increase. For certain operating conditions,
especially with higher waves, it is better to adjust the hanging angle to avoid excessive curvature
and, meanwhile, ensure the increase in the stress within a reasonable range.

Keywords: floating wind power platform; dynamic cable; fatigue analysis; cable curvature;
hanging angle

1. Introduction

Against the backdrop of carbon peaking and carbon neutrality goals, the development
of power energy is gradually transitioning towards low-carbon directions. As a form
of renewable energy, wind power plays a crucial role in the route toward low-carbon
transformation of power energy. Offshore wind power, characterized by high utilization
hours, zero greenhouse gas emissions, and suitability for large-scale development, is
considered a significant pathway for China to achieve its dual carbon goals. In recent years,
the development of nearshore fixed wind power platforms has approached saturation [1],
while approximately 80% of offshore wind energy resources are distributed in areas with
water depths exceeding 60 m [2]. Wind power development is gradually shifting towards
deep-sea regions [3,4]. As a system for obtaining wind energy in remote offshore areas,
floating offshore wind power platforms are expected to become an inevitable trend in
the future development of offshore wind power. The future market scale for dynamic
cable systems in the context of floating offshore wind power is projected to reach the
hundred-billion level [5–8].

The cable system serves as the conduit for transmitting electrical energy from the
floating platform to the onshore location. Based on its operational conditions, the cable
system can be categorized into the static cable end and dynamic cable end [9]. The former
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primarily refers to conventional submarine cables laid on the seafloor, while the latter is a
crucial component of floating offshore wind power platforms, consisting of dynamic cables
and their associated accessories [10]. Dynamic cables, serving as the key equipment linking
the floating turbine to the static seabed cable, experience significant tensile and bending
loads during service due to factors such as water depth pressure, self-weight, waves, and
ocean currents. These loads can lead to fatigue failure. Therefore, it is necessary to conduct
fatigue performance analyses on the pre-service dynamic cables of floating turbines and
predict whether their fatigue life meets the operational requirements.

Current research on fatigue damage of dynamic cables is relatively limited. Relevant
studies on flexible risers and umbilical cables with structural and hydrodynamic character-
istics similar to dynamic cables can be consulted. Larsen and Passano et al. [11] introduced
the principles of frequency domain and time domain methods in fatigue analysis. They
conducted fatigue analysis on tensioned risers in the typical North Sea environment, sug-
gesting that the frequency domain method has sufficient accuracy. They also emphasized
the importance of considering the combined effects of waves and ocean currents when
calculating fatigue life. Hoffman et al. [12,13] proposed a fatigue analysis method based on
the Miner fatigue accumulation method, which is applicable to dynamic cables/flexible
risers. They considered this method the only feasible approach for handling random stress
cycles. Ruan et al. [14] proposed a deepwater-compliant wave-type riser structure based
on the arrangement of multiple waveforms in series. They constructed three different
riser structures and conducted a dynamic response analysis as well as a fatigue analysis.
Guo and Nie et al. [15] proposed a nonlinear contact load calculation method for risers
based on elastic–plastic contact collision theory. They established a fatigue life prediction
method for experimental risers using the cumulative damage theory. The study analyzed
the impact of significant wave height and top tension coefficient on the fatigue life of experi-
mental risers. Lu and Vaz et al. [16] established a nonlinear finite element model for flexible
risers with bend stiffeners. They conducted case studies on typical limit and fatigue load
scenarios to assess the influence of curvature changes and bend stiffener contact pressure
on the stress in the riser armor layer.

Shen G et al. [17] proposed an analytical bending fatigue model for estimating the
fatigue life of low-sag cables under harmonic loads and analyzed the effect of the ratio of
cable weight to tension on fatigue life. It is found that the curvature and tension of the cable
are the main factors affecting the fatigue life of the cable, and the curvature has a greater
influence than the tension. Wokem C et al. [18] used finite element modeling techniques to
study the stress states of several cables, and the fatigue life of these cables was obtained by
combining the stress-based method with the results of finite element modeling. The paper
points out that the tension and bending stress of the cable are important factors affecting
the fatigue life of the cable, and the fatigue life of the cable is related to the structure and
material of the cable. Young et al. [19,20], based on offshore wind power, established a
model for dynamic cables to analyze the local stress distribution of the dynamic cable cross-
section. They conducted a fatigue damage assessment of the armor wires and insulation
materials of dynamic cables through stress time history. The results indicated that bending
stress is the primary load causing fatigue damage to dynamic cables. However, the paper
did not further investigate how to reduce the curvature of dynamic cables. Excessive local
curvature of the cable is one of the main causes of fatigue damage. The curvature at the
exit of the bend stiffener is often one of the maximum values. If it exceeds the allowable
limit, it will directly exacerbate the fatigue damage to the dynamic sea cable. Currently, the
main methods for reducing curvature involve referencing dynamic cables and increasing
the weight block [21]. However, there is a lack of research on the influence of the bend
stiffener hanging angle on cable curvature and fatigue performance.

This study calculates the stress coefficients of dynamic cables using ABAQUS 2020
software. Based on the professional hydrodynamic analysis software, combined with on-
site hydrological data conditions, a time-domain analysis method is employed to conduct
fatigue analysis on dynamic cables associated with floating turbines. The Miner linear
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cumulative damage method based on material S-N curves is used to predict their fatigue
life. This study also investigates the impact of the bend stiffener hanging angle on the
fatigue performance of dynamic cables. Based on this, a method to reduce cable curvature
by changing the hanging angle is proposed, providing guidance for engineering practice.

2. Fatigue Analysis Method for Dynamic Cables

This paper employs a time-domain analysis method to analyze the fatigue charac-
teristics of dynamic cables. This method takes into account the effects of multiple cyclic
loads that dynamic cables experience in actual operational conditions, enhancing the ac-
curacy of the predictive results. It can also be used to assess the fatigue performance of
dynamic cables under complex conditions, such as predicting fatigue life under random
load conditions. The basic process of time-domain fatigue analysis is illustrated in Figure 1.
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Figure 1. Basic flowchart of time-domain fatigue analysis.

(1) Firstly, it is necessary to clarify the load history experienced by dynamic cables,
including external environmental factors (such as wind, waves, and currents) and
the loads generated by the cable’s vibration. Since dynamic cables are flexible cables
with high damping characteristics and are less prone to vortex-induced vibrations,
the impact of vortex-induced vibration on the fatigue damage of dynamic cables
can be neglected in the line design [22]. When dealing with sea conditions, relevant
standards such as IEC 61400-3 [23] and DNV-OS-F201 [24] should be referenced. By
referring to measured data, determine the operating conditions the wind turbine
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undergoes during its service life. Based on the joint probability distribution table of
measured data, a fatigue operating conditions table can be established for different
characteristic wave heights, spectral peak periods, directions, and other factors.

(2) Establish a numerical model for the dynamic cable system based on the parameters
of the dynamic cable. The model includes the float to which the dynamic cable is
connected, the dynamic cable itself, and the necessary accessories for the dynamic
cable. The time domain analysis of the dynamic cable is carried out to obtain the
stress time history of the dynamic cable at different time points.

(3) Fatigue life prediction for dynamic cables can utilize the stress coefficient method. The
dynamic cable is a multi-layer wound structure, and each layer has different material
mechanical properties, leading to varying stress coefficients. The main structures
include the conductor, insulation, filling, armor wires, and sheath. Among them, the
insulation, filling, and sheath are made of polyethylene polymer materials, which
generally have a low elastic modulus and high Poisson’s ratio, making them less
prone to fatigue failure. The focus is primarily on the fatigue damage of the metallic
materials in the dynamic cable, such as the conductor and armor wires. Therefore,
the stress distribution calculation for the main force-bearing structures, the conductor,
and the armor wires in the dynamic cable is carried out through Formula (1) [25].

σ = KtT + Kc
(
Cx sin θ − Cy cos θ

)
(1)

where Kt is the effective tension–stress coefficient for the corresponding structure,
Kc is the curvature–stress coefficient for the corresponding structure, Cx is the curva-
ture component in the x direction, Cy is the curvature component in the y direction,
T is the tension applied to the cable, and θ is the azimuth angle of the fatigue point on
the circumference.

(4) The stress time history response obtained above is irregular, and this irregular response
can be considered to be composed of a large number of full cycles and half cycles. To
further conduct a fatigue life analysis and fatigue load spectrum analysis, the widely
used Rain flow counting method in the engineering field is applied to convert the
load time response into several load cycles [26]. Through the statistical analysis of the
Rain flow counting method, a series of data for full cycles and half cycles are obtained,
preparing for the subsequent fatigue analysis.

(5) The several cyclic loads obtained from the Rain flow counting method cannot be
directly used for fatigue calculation. During the operation of the dynamic cable, due
to the self-weight and motion of the upper floating body, the cable will experience
significant tensile loads, resulting in a nonzero average stress. However, the commonly
used S-N curve is obtained under conditions of zero-symmetric cyclic loads. Therefore,
before using the S-N curve, it is necessary to correct the average stress. Various
scholars have proposed different correction methods, such as Goodman, Gerber,
Smith–Watson–Topper, etc. Among them, the Goodman correction method [12] is
widely applied in engineering practice due to its simplicity. The expression for the
corrected stress amplitude is as follows:

σa =

{
∆σ/(1 − σm/σb), 0 < σm < σb

∆σ, σb < σm < 0
(2)

where σa is the stress amplitude, ∆σ is the actual stress amplitude, σm is the mean
stress, and σb is the material’s ultimate strength limit.

(6) To calculate the fatigue damage value, it is necessary to reference the correspond-
ing material S-N curve. The S-N curve is plotted by subjecting standard material
specimens to cyclic loading at different stress amplitudes until failure under a given
mean stress condition. The logarithmic form of the S-N curve formula is shown in
Equation (3) [25].

log10(N) = log10(a)− m log10(∆σ) (3)
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where log10(a) and m are empirical values, which can be determined through relevant
standards.

(7) Due to the randomness of the loads, the structure will endure a significant number
of corrected stress amplitudes and corresponding stress cycle counts. To obtain the
overall fatigue damage of the structure, it is necessary to accumulate damage for each
stress state. Currently, the most widely used fatigue accumulation theory in the field
of marine engineering is the linear fatigue accumulation method based on the Miner
criterion [12]. This method neglects the influence of unordered loading caused by the
randomness of the load. Specifically, by comparing the cycle count ni for each stress
state obtained by the Rain flow counting method with the material failure cycle count
Ni determined by the S-N curve for that stress amplitude state, the fatigue damage
Di for that stress amplitude can be obtained. The total fatigue damage is then given
by DL:

DL =
s

∑
i=1

ni
Ni

(4)

where DL is the cumulative fatigue damage for all operating conditions, s is the
number of fatigue conditions, ni is the cycle count of the structural stress in the i-th
condition, Ni is the number of failures corresponding to the stress amplitude obtained
from the S-N curve, and ni/Ni is the cumulative fatigue damage for the i-th condition.
The ultimate fatigue life F = 1/DL is the reciprocal of the total fatigue damage.

3. Conditions and Characteristics of the Dynamic Cable

Based on a Science and Technology Project of POWERCHINA Hainan Electric Power
Engineering Co. Ltd. (Haikou, China), a fatigue analysis was conducted on dynamic cables
of the 26/35 kV voltage level. A numerical simulation model of the dynamic cable was
established, including the floating platform and dynamic cable. The top end of the dynamic
cable was connected to the floating platform with bend stiffeners added at the connection
point. The bottom end of the dynamic cable was connected to the static seabed cable laid on
the seafloor. The linear shape of the dynamic cable was set as a catenary, and its working
water depth was specified as 25 m. To ensure computational accuracy, the grids for the
bend stiffener section and float section of the dynamic cable were refined, and the grid
accuracy of the section was 0.5 m. The floats are arranged at intervals of 1.5 m from 27 m to
34.5 m of dynamic cable, with a mass of 0.1 t and a volume of 0.23 m3. The velocity of the
flow is in the same direction as the direction of the wave [27]. The hanging angle is 5◦. The
arrangement of the dynamic cable is illustrated in Figure 2.
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Figure 2. Arrangement of the dynamic cable configuration. 1. Floating platform, 2. sea surface,
3. bend stiffener, 4. dynamic cable, 5. float, 6. seabed.

3.1. Hydrological Conditions

Based on the measured hydrological data in a certain sea area of Hainan Province,
tables were established for the probability distribution of significant wave heights in
different directions with various characteristic wave heights and directions (Table 1), the
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wave conditions (Table 2), and the flow velocity conditions (Table 3). The floating platform
adopts a semisubmersible platform; the main scale parameters are shown in Table 4, the
geometric parameters are shown in Table 5, and the geometric shape is shown in Figure 3.

Table 1. Probability distribution of significant wave heights in different directions.

Hs(m)\
Direction N NE E SE S SW W NW Subtotal

0.0–0.5 2.49 6.10 13.60 4.84 4.04 6.78 1.78 1.20 40.83
0.5–1.0 4.28 8.98 10.33 0.83 1.13 11.32 0.80 0.10 37.79
1.0–1.5 5.05 2.31 1.07 0.14 0.08 5.06 0.37 0.05 14.14
1.5–2.0 3.46 0.42 0.07 0 0 0.49 0.06 0 4.50
2.0–2.5 1.23 0.10 0.03 0 0 0 0.01 0.046 1.43
2.5–3.0 0.51 0.01 0.02 0 0 0 0 0.046 0.59
3.0–3.5 0.29 0.03 0 0 0 0 0 0.023 0.34
3.5–4.0 0.18 0.01 0 0 0 0 0 0 0.19
4.0–4.5 0.07 0 0 0 0 0 0 0 0.07
4.5–5.0 0.02 0 0 0 0 0 0 0 0.02
5.0–5.5 0.05 0 0 0 0 0 0 0 0.05
5.5–6.0 0.03 0 0 0 0 0 0 0 0.03

>6.0 0.02 0 0 0 0 0 0 0 0.02
Subtotal 17.72 17.97 25.13 5.81 5.25 23.65 3.01 1.46 100

Maximum Value 6.15 3.59 2.71 1.46 1.18 1.82 2.12 3.16

Table 2. Wave conditions.

Operating Condition Wave
Height (m)

Wave
Period (s)

Wave
Direction

Wind Speed
(m/s)

Wind
Direction

100-Year Return Period Wave
under 100-Year Return Period

High Tide Level
11.8 9.4 NW 40 NW

100-Year Return Period Wave
under 100-Year Return Period

Low Tide Level
10.62 9.1 NW 40 NW

Multi-Year Average Wave 1.0 3 NE 6 NE

Table 3. Current velocity conditions.

Type One-Year Return Period
Current Velocity (m/s)

Ten-Year Return Period
Current Velocity (m/s)

Fifty-Year Return Period
Current Velocity (m/s)

Surface Current 1.0 2.0 2.5
Midlayer Current 0.8 1.6 2.0

Near-Bottom Current 0.4 0.7 1.0

Table 4. Floating platform parameters.

Parameters Values Parameters
Values

X Y Z

Length (m) 103 Centre of gravity (m) 2.53 0 −1.97Width (m) 15.95
Molded depth (m) 13.32

Moment of inertia tensor (t·m2) 254.9 × 103 5.980 × 106 5.980 × 106Platform draft (m) 6.66
Mass (t) 9017.95
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Table 5. Floating platform geometry parameters.

Vertices X (m) Y (m) Z (m)

1 53 0 6.66
2 35 8 6.66
3 −50 8 6.66
4 −50 −8 6.66
5 35 −8 6.66
6 40 0 −6.66
7 35 8 −6.66
8 −50 8 −6.66
9 −50 −8 −6.66
10 35 −8 −6.66
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3.2. Cable Cross-Sectional Structure

The three-core dynamic cable studied in this paper adopts a four-layer armor design.
The cross-sectional structure of the cable is shown in Figure 4, and the cable cross-sectional
parameters are presented in Table 6.
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Table 6. Cable cross-sectional parameters.

Parameters Values Parameters Values

Outer Diameter (mm) 147.3 Torsional Stiffness (kN·m2) 209.8
Dry Weight (kg/m) 45.90 (in air) Minimum Bending Radius (m) 1.80
Wet Weight (kg/m) 28.43 (underwater) Minimum Breaking Force (kN) 1351.5
Axial Stiffness (MN) 631.7 Maximum Operating Force (kN) 330.5

Bending Stiffness (kN·m2) 10.3 Design Lifetime (years) 30

3.3. Selection of S-N Curves

In accordance with the DNV-RP-C203 Fatigue Design of Offshore Steel Structures [28]
standard, the values of the empirical constants log(a) and m for the S-N curves of armoring
steel wires and copper conductors are provided in Table 7.

Table 7. S-N curve parameters for armoring steel wires and copper conductors.

Structure log(a) m

Armoring Steel Wires 14.917 4
Copper Conductors 12.75 3.75

4. Results and Discussion
4.1. Calculation of Local Stress Coefficients

In ABAQUS software, a local model of the dynamic cable was established. Various
tensions and moments were applied to obtain the stress distribution of armoring steel wires
and copper conductors under different tensions and curvatures. This information was then
used to calculate the stress coefficients for the armoring steel wires and copper conductors
in the dynamic cable, based on Equation (1). To calculate the stress in specific components
of the dynamic cable, it is essential to determine the tension–stress and curvature–stress
coefficients for each component.

A finite element local model is established for the dynamic cable to ensure numer-
ical calculation accuracy. The entire model adopts C3D8R elements, which are reduced-
integration solid elements. This type of element enhances calculation accuracy while
ensuring computational efficiency. The mesh division of the finite element model is shown
in Figure 5. During the stretching, bending, and twisting processes of the cable, deforma-
tion occurs in each layer, leading to phenomena such as penetration between layers in
contact. This can result in a decrease in the accuracy of the calculated results. To prevent
these issues, contact between layers needs to be defined. A general contact is applied to
the entire model, with normal contact being rigid and tangential contact being free sliding,
neglecting the influence of friction. Two reference points are established at both ends of the
finite element model, coupled with the corresponding nodes on the cross-section endpoints.
The coupling is achieved through continuous distribution coupling at the coupling nodes,
where boundary conditions for the finite element model are set. At one end of the model,
full constraints are applied to the displacements in all three directions and the rotations in
three directions. Additionally, tension loads are applied in the Z-direction at different levels.
The stress magnitudes of the armored steel wires and copper conductors under different
tensions are obtained. Scatter plots are created based on the tension–stress relationship,
and fitting curves are generated, as shown in Figures 6 and 7.
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Different moments were applied to the dynamic cable to obtain the stress levels in
armoring steel wires and copper conductors under various curvatures. Scatter plots were
generated based on the curvature–stress relationship, and fitting curves were derived, as
shown in Figures 8 and 9.
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The scatter plots shown in Figures 6 and 7 can be fitted with lines represented by
parameters y = 0.71119x + 22.057 and y = 0.43634x + 10.95, showing a high degree of
alignment. Therefore, the stress generated by the tension in armoring steel wires and
copper conductors can be calculated based on these two lines, respectively. Similarly, the
scatter plots shown in Figures 8 and 9 can be fitted with lines represented by parameters
y = 454.249x − 2.268 and y = 226.784x − 4.349. When subjected to bending, the stress
generated in armoring steel wires and copper conductors can also be calculated based on
these two lines. Therefore, the slope of the fitting curves in Figures 6 and 7 represents the
tensile stress coefficient Kt of the armored steel wire and the copper conductor, and the
slope of the fitting curve in Figures 8 and 9 represents the curvature stress coefficient Kc of
the armored steel wire and the copper conductor.

4.2. Results

By processing the long-term sea conditions, the probability of each wave condition
was obtained. Combining the probabilities of wave direction and current speed, the
probability of wave–current combination conditions was determined. Subsequently, a
3-h time domain analysis was conducted for each combination condition. The fatigue
damage values generated by each condition were multiplied by the probability of condition
occurrence to obtain the probability of damage for each condition. Finally, these probability
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damage values were accumulated to determine the fatigue damage for the long-term sea
conditions. The results are shown in Figure 10. According to the DNV-ST-F201 specification,
the safety factor is 10, and the dynamic cable meets the design life of 30 years.
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4.3. Discussion

In the same wave height conditions, the cable curvature is maximum under the
north-direction waves. This is mainly because the static cable in this study is arranged
in the north–south direction. The cable is laid in the sea area with a wave height range
of 0–6 m throughout the year. When the wave height is greater than 2 m, the maximum
curvature of the cable occurs at the exit of the bend stiffener. Therefore, starting from a
wave height of 2 m, with a 1 m interval for wave height values and a wave direction of
north, five typical working conditions are defined, namely, Condition 1 to Condition 5.
Condition 6 represents an extreme condition that occurs once in a hundred years. Although
the frequency of its occurrence is very low, the cable must meet the requirements of extreme
conditions. The characteristic parameters of these six typical conditions are shown in
Table 8. Fatigue analysis is conducted for the dynamic cable under these conditions, and
the curvature, effective tension, and von Mises stress distributions along the cable length
are calculated and presented in Figures 11–13, respectively. It can be observed that under
the six conditions, the effective tension and von Mises stress of the dynamic cable all satisfy
the allowable conditions. However, under Conditions 3 to 6, the curvature of the dynamic
cable exceeds the allowable curvature at the bend stiffener exit (4.25 m).

Table 8. Characteristic parameters of typical working conditions.

Working Conditions Wave Height (m) Wave Direction

Condition 1 2 N
Condition 2 3 N
Condition 3 4 N
Condition 4 5 N
Condition 5 6 N
Condition 6 11.8 NW
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In order to prevent the curvature of the dynamic cable from exceeding the allowable
limit at the exit of the bend stiffener, this study adopts the following preventive measures:



J. Mar. Sci. Eng. 2024, 12, 334 13 of 19

(1) Method I: Drawing inspiration from similar measures used in flexible cables [21],
add weight blocks to the section of the dynamic cable exiting the bend stiffener (as
shown in Figure 14). The parameters of the weight block are listed in Table 9. The
results, depicted in Figure 15, reveal a significant reduction in the curvature of the
submarine cable at the exit of the bend stiffener compared to Figure 11. However,
under Condition 6, the curvature at the root of the bend stiffener exceeds the allowable
limit. The literature [21] suggests that this occurrence may be due to insufficient
strength of the bend stiffener. It can be inferred that the addition of the weight
block increases the load on the dynamic cable, causing the bend stiffener to lack the
necessary strength. To ensure that the curvature of the entire cable is within the
allowable range under this condition, further adjustments to the parameters of the
weight block are required. Under Condition 5, the curvature in the arched area behind
the dynamic cable’s float block exceeds the allowable limit. When no weight block
is added, the curvature in this area is close to the allowable limit. This indicates that
adding the weight block has some influence on the curvature in this area. However,
the main factor causing excessive curvature in this area is the float block.

(2) Method II: Changing the hanging angle of the dynamic cable’s bend stiffener (as
shown in Figure 16), studying the influence of the bend stiffener hanging angle on the
maximum curvature, effective tension, and von Mises stress of the dynamic cable un-
der different conditions. Figure 17 shows the distribution of the maximum curvature
along the length of the dynamic cable with a hanging angle of 45◦. Compared with
Figure 11, the curvature of the cable at the bend stiffener outlet is significantly reduced.
Therefore, adjusting the hanging angle can effectively reduce the cable curvature. By
varying the hanging angle, further research on its impact on the dynamic cable’s
maximum curvature, effective tension, and von Mises stress is conducted, and the
results are shown in Figures 18–20. As the hanging angle of the dynamic cable’s bend
stiffener increases, the curvature at the bend stiffener outlet gradually decreases under
Condition 6, and at 40◦, it is lower than the allowable curvature, and in this condition,
the dynamic cable’s maximum curvature always occurs at the bend stiffener outlet.
For Conditions 1 to 5, the curvature at the bend stiffener outlet decreases with the
increase in the hanging angle. In working Conditions 1 to 5, when the hanging angle
is adjusted to 15◦, 20◦, 30◦, 30◦, and 30◦, the curvature of the dynamic cable bending
preventer is reduced to lower than the curvature of the rest of the dynamic cable,
respectively; the maximum curvature of the dynamic cable shifts from the exit of the
bend stiffener to the midpoint of the arch behind the buoyancy block. Therefore, there
is a maximum value for adjusting the overall maximum curvature of the cable with
the hanging angle. Beyond this value, the dynamic cable’s maximum curvature shifts
from the bend stiffener outlet to the midpoint of the arch after the floating block area,
and the effect of adjusting the hanging angle disappears. With the increase in the
hanging angle, the maximum effective tension and maximum von Mises stress for
each condition gradually increase, but the increase is relatively slow. As indicated
in Figures 19 and 20, with the increase in the hanging angle, the maximum effective
tension (i.e., the maximum pulling force experienced by the cable during operation)
and the maximum von Mises stress of the dynamic cable gradually increase for each
working condition, but the magnitude of the increase is relatively moderate. There-
fore, applying a certain hanging angle to the dynamic cable can ensure that the cable
curvature at the bend stiffener outlet meets the allowable requirements. However,
the hanging angle of the bend stiffener should not be too large to avoid ineffective
adjustment and unnecessary increases in cable tension and stress.
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Table 9. Parameters of the weight block.

Weight Block Weight/t Position/m

Weight Block 1 0.3 6
Weight Block 2 0.3 8
Weight Block 3 0.3 10
Weight Block 4 0.3 12
Weight Block 5 0.3 14
Weight Block 6 0.3 16
Weight Block 7 0.3 18
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In comparison between using the method of adding a weight block (Method I) and
adjusting the hanging angle to 45◦ (Method II), the effective tension and von Mises stress
of the dynamic cable are shown in Figures 21 and 22. Both methods increase the effective
tension and von Mises stress of the dynamic cable from the bend stiffener to the floating
block section. However, Method II generates maximum effective tension and maximum
von Mises stress that are 45.87% and 45.86% lower, respectively, than those produced by
Method I. Therefore, adopting Method II can reduce the stress and tension of the dynamic
cable, which is beneficial for extending the cable’s lifespan. It can also be observed that
when the hanging angle changes, such as from 5 degrees to 45 degrees, the effective tension
and von Mises stress of the dynamic cable from the bend stiffener to the floating block
section increase, but the magnitude is limited. Therefore, adjusting the hanging angle to
reduce curvature while having a minimal impact on effective tension and von Mises stress
is feasible for different conditions.
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Figure 21. Effective tension of dynamic cable with added weight and hanging angle of 45◦.

Compared to the two methods mentioned above, both approaches can ensure that
the dynamic cable curvature at the out-of-bend section meets the allowable curvature
under different working conditions. In practical engineering, the gravity block is located
underwater, making it difficult to adjust according to working conditions. Additionally,
adding a gravity block increases the maximum effective tension and von Mises stress of
the dynamic cable, which is detrimental to the cable’s lifespan and imposes additional



J. Mar. Sci. Eng. 2024, 12, 334 17 of 19

loads on the connection components between the cable and the platform. On the other
hand, adjusting the hanging angle can be achieved by designing a bend stiffener with
an automatically adjustable angle. This device is smaller and closer to the sea surface,
making it more convenient to operate. Furthermore, adjusting the hanging angle does
not introduce additional stress loads on the cable, making it more suitable for practical
engineering applications.
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5. Conclusions

This paper starts from the actual working conditions of the marine area, conducts
a fatigue life assessment of dynamic cables based on the joint probability distribution of
multiple operating conditions, and studies methods to reduce the maximum curvature of
the cable and thus reduce fatigue damage. The main conclusions are as follows:

(1) The fatigue analysis of the cable indicates that, with a safety factor of 10, the dynamic
cable meets the design requirement of a 30-year service life in the studied marine
area. The fatigue analysis was conducted under six typical operating conditions
corresponding to different wave heights. It was observed that the dynamic cable
experiences maximum curvature at the bend stiffener exit. To reduce this curvature,
two methods were employed in this study: Method I, involving the addition of
a weight block, and Method II, adjusting the hanging angle of the bend stiffener.
Both methods effectively reduced the curvature at the bend stiffener exit, leading
to increased effective tension and von Mises stress from the bend stiffener to the
floating block section. However, the maximum effective tension and von Mises stress
generated by Method II were 45.87% and 45.86% lower than those produced by
Method I, respectively.

(2) Given the challenges associated with changing the weight block parameters of the
dynamic cable in response to different operating conditions, the method proposed in
this paper involves adjusting the bend stiffener’s hanging angle to reduce the curva-
ture of the dynamic cable. To address varying operating conditions, an automated
bend stiffener capable of adjusting its hanging angle according to different scenarios
can be designed based on the method proposed in this study. This bend stiffener can
be an extension of the existing structure, incorporating a hanging angle adjustment
mechanism and an intelligent control system. When facing different operating con-
ditions, especially unexpected extreme conditions, the control system can regulate
the hanging angle adjustment mechanism to ensure that the bend stiffener adapts
its angle. This ensures that the curvature of the dynamic cable remains within the
allowable range, preventing failure due to curvature exceeding permissible limits.
Designing such a bend stiffener with automatic hanging angle adjustment presents



J. Mar. Sci. Eng. 2024, 12, 334 18 of 19

several challenges. Firstly, current bend stiffener designs are still limited to traditional
fixed types, lacking designs for hanging angle adjustment mechanisms and control
systems. Secondly, addressing the energy supply for this bend stiffener is crucial.
It can be powered by the floating wind turbine’s self-generation capabilities, or an
integrated wave energy harvesting device can provide the necessary power. Finally,
the response speed of the bend stiffener in adjusting the hanging angle needs to be
considered when facing different operating conditions.
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