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Abstract: In recent years, a steady increase in maritime business and annual container throughput
has been recorded. To meet this growing demand, terminal operators worldwide are turning to
automated container handling. For the automated operation of a crane, a reliable capture of the
environment is required. In current state-of-the-art applications this is mostly achieved with light
detection and ranging (LiDAR) sensors. These sensors enable precise three-dimensional sampling
of the surroundings, even at great distances. However, the use of LiDAR sensors has a number
of disadvantages, such as high acquisition costs and limited mounting positions. This raises the
question of whether the LiDAR systems of automated container terminals (ACT) can be replaced
with cameras. However, this transformation is not easy to accomplish and is explored in more depth
in this paper. The field of camera-based container automation presented in this publication is largely
unexplored. To the best of our knowledge, there is currently no automated container terminal in
real-world operation that exclusively uses cameras. This publication aims to create a basis for further
scientific research towards the goal of a fully camera-based container automation. Therefore, the
authors present a narrative review providing a broad overview of the mentioned transformation,
identifying research gaps, and suggesting areas for future research. In order to achieve this, this
publication examines the fundamentals of an automated container terminal, the existing automation
solutions and sensor technologies, as well as the opportunities and challenges of a transformation
from LiDAR to camera.

Keywords: container handling; harbor; machine learning; deep learning; camera

1. Introduction

In recent years, the annual container throughput has steadily increased. According to
the United Nations’ annual review of maritime transport, 80% of the volume of global trade
worldwide is shipped by sea [1]. Therefore, a central element of global container transport
is the handling of containers at the port. First, the containers are unloaded from the ship
using a ship-to-shore (STS) crane. Subsequently, with the help of a yard crane, they are
temporarily stored in the container stacks so that they can finally be transported further by
ship or overland [2]. In order to manage the above-mentioned processes, terminal operators
all over the world rely on automated container handling [3].

In order to improve safety and increase the handling speed, automation is the key
approach that terminal operators are focusing on, with the goal of full automation. In this
context, it is of central importance that the environment of the crane can be almost com-
pletely detected and observed with sensors. The sensor signals are used to validate process
steps, derive control signals, and improve safety. Nowadays, the necessary capturing of the
environment is carried out partly with cameras and mostly with LiDAR sensors, because
this sensor type enables a precise three-dimensional measurement even at long distances
and without additional illumination.
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However, laser systems are much more expensive than cameras and their use is
therefore only worthwhile at large terminals with a high container throughput. In addition,
the sensitive laser systems can only be mounted at mechanically less-stressed mounting
positions, which leads to process-related disadvantages, like strong occlusion and large
distances to the relevant objects.

The continuous development of deep learning methods for processing image in-
formation has led to the fact that many automation tasks such as people detection can
be controlled with cameras [4–6]. This paper, therefore, discusses the question of what
opportunities and risks arise from the transformation from a laser- to a camera-based
container-handling process. Hereby, special attention is paid to the necessary process steps
for locating objects. This publication is structured as follows: First, the typical structure of a
container terminal is outlined, followed by a presentation of the typical container-handling
process. Then, the currently used sensors are presented and finally, the mentioned chances
and challenges are discussed. A central advantage in this regard is the reduced hardware
costs (see Section 6.1.1), which could enable cost-effective localisation of containers and
make further expansion stages possible—for example, the energy-optimised travel path of
the crane. On the other hand, a central disadvantage is that camera systems do not provide
intrinsic depth information.

2. Application Field: Automated Container Terminal

In this section, we describe the typical structure of a modern container terminal and
the individual container-handling steps, in order to understand the overall container flow
and the current degree of automation. This analysis begins at the moment when the
container ship has entered the port and is securely anchored at the quay wall. The focus
of this work is on the container flow, which is realised with the help of container cranes.
In addition to container handling, LiDAR systems are also successfully used in the port
environment for other tasks such as ship berthing [7,8] or on autonomous vehicles [9] in
the terminal. However, these LiDAR systems are not directly related to the container flow
and are therefore not the subject of this work.

2.1. General Port Structure

The layout of the terminal is based on the four major process steps that are required
for container handling: the loading from the ship to the landside, the internal transport
of containers, the intermediate storage of containers in the stack, and further transport
on the landside [2]. The first area is called the sea side and is typically covered by so-
called ship-to-shore cranes. The intermediate storage of containers takes place in the
yard area, where stacking cranes are used for container handling. The area of internal
horizontal transport is located in between. Straddle carriers, trucks, or automated guided
vehicles (AGVs) transport the containers between the individual cranes. If the container is
further transported by land, the freight is loaded onto trucks or train wagons in the last
area (see Figure 1).

2.2. General Container Movement

The process of general container movement starts when the ship docks at the quay
wall and is secured for the further loading and unloading process. Subsequently, STS cranes
are placed over the corresponding container bays and the crane boom is lowered. The exact
position of the individual cranes is determined with the help of the terminal operating
system (TOS). This is a central logistics system that knows the current and future position
of each individual container. With the help of this system, it is determined when and where
each container is loaded. This information is used to generate jobs, which the crane driver
or the automation system receives. A job describes which container has to be grabbed next,
where it is currently located, and where it is ultimately placed [10]. The combination of
all jobs describes the entire loading and unloading process starting on the ship, through
horizontal transport, up to storage in the stack (yard area).
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Figure 1. Typical terminal structure: sea side, horizontal transport, and container stacks with yard
cranes. The container is picked up on the ship using an STS crane and horizontal transport vehicles
like trucks, straddle carriers, or AGVs bring them to the stack area.

In the first process step, the containers are transported from the ship to the landside with
the help of STS cranes. This step is performed manually by crane operators, who pick the
containers in the vessel and bring them to the horizontal transport vehicles. These vehicles
are trucks, straddle carriers, or AGVs, which transport the containers to the yard area.

After the vehicles have arrived at the corresponding stack, the yard crane automatically
localises the load on the vehicle, grabs the container, and places it in the stack. The container
remains there until it is transported further either by another ship or by land. To enable
this onward transport, the container is either brought back to the STS crane or taken to the
landside, where it is further transported by train or road.

2.3. Mechanical Components

In the previous section, we introduced the general loading and unloading process on
a terminal. As described, the container is lifted and set down by a crane at several points.
In order to accomplish this, a number of mechanical components are required on the crane
and container. Thereby, the outlined mechanical properties represent a distinctive feature
of automated cranes compared to other robots. In addition, the mechanical structure of the
crane imposes requirements on the measurement precision that must be achieved through
sensor systems.

Figure 2 shows the most important mechanical components of a container crane. The
first one is the gantry drive. This drive allows the crane to move parallel to the container
ship or stack [11]. Due to the high mass that must be moved in the gantry direction, this is
the slowest available travel direction. A movement perpendicular to the gantry movement
is made possible by the trolley drive. The trolley is a carriage mounted on rollers, which
is used together with the gantry drive for the exact positioning of the gripping tool (the
spreader) above the desired container. The hoist is used to lift or lower the spreader. In
order to lift a container, a mechanical connection between the container and spreader is
required. Therefore, the spreader as well as trucks and other mounting elements on the ship
are equipped with so-called twistlocks [12]. A twistlock is a rotating cone that engages with
the corresponding counterparts on the container (corner casts). By turning the cone, a firm
mechanical connection is established. The twistlocks and corner casts have a standardised
size so that the containers can be loaded using uniform equipment worldwide. Figure 2
also visualises the mechanical components and the dimensions of the slotted hole of a
corner cast, which are specified in ISO-1161 [13]. These dimensions determine the required
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positioning accuracies of an automated container crane. Only when the crane is positioned
with an accuracy of roughly ±2 cm can the twistlocks slide into the corresponding slots of
the corner casts and thus, the crane is able to pick up the container.

63.5

1
2
4

Figure 2. Important mechanical components on a container crane. Gantry, trolley, and hoist drives
are used to position the spreader. On the containers, corner casts and twistlocks are needed to
build up a mechanical connection to the spreader. The corner cast’s slotted hole has a size of
124 mm × 63.5 mm, which is defined in ISO-1161 [13].

2.4. Supporting Automation Systems

In the complete loading chain, there are various points where the crane operator
is either supported by an automation system or where the loading is even carried out
automatically. In order to better understand which areas are already being automated
today and what potential this holds for the future, the existing automation solutions are
briefly presented below and summarised in Table 1.

Nowadays, the loading process at the ship is mostly performed manually, since on
the one hand the required measuring accuracies cannot be maintained due to the long
distances between spreader and trolley, and on the other hand because there are many
people in the vicinity of the container loading and thus, a high potential for injury exists [14].
Nevertheless, automation solutions support the crane operator in controlling the crane.
Active sway control prevents the load from swaying when the crane is moving. In order
to handle external sway disturbances—such as wind loads—the sway controller uses an
observer. This is mostly a camera that detects the sway, so that the sway controller can
counteract the imposed sway accordingly.

In order to enable a fast transition from the crane to other transport vehicles, these
vehicles are pre-positioned so that the loading area is precisely under the crane’s set-down
position and the vehicle does not need to be maneuvered during the loading process. For
this purpose, a laser system measures the position of the vehicle and transmits positioning
instructions either to a driver or to the control system of the crane. Such systems are
available on the ship-to-shore (STS) crane as well as on the stacking cranes.

Due to the smaller crane sizes in the yard area and the associated reduced measuring
distances, the degree of automation is much higher for stacking cranes. After the automatic
placement of the vehicles, the container is grabbed to be carried to the correct position
in the stack. The set-down position is measured with the help of a laser system and the
container is set down exactly at the desired position. In this way, accidental overturning of
container stacks can be prevented [15].

To ensure that no unwanted collisions occur during travel and when setting down the
load, the travel path of the crane is continuously monitored by the previously mentioned
laser system. If a collision is imminent, the speed is first reduced and the crane is stopped
completely if necessary. The main automation tasks and their corresponding challenges are
summarised in Table 1.
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Table 1. Main automation tasks and the corresponding challenges in an automatic container terminal.

Crane
Vehicle Task Current

Technology Main Challenges

Ship
Stack

STS Pick container on ship Manually re-
alised

• Long distances
• Mech. deformation
• Target (container on ship) is

moving

Horizontal trans-
port

Align vehicle under
crane

LiDAR-based • Different vehicle types

Yard crane Collision preven-
tion while moving
container

LiDAR-based • Low latency
• Exact 3D position required

Yard crane Automatic stacking LiDAR-based • Occlusion
• Limited field of view

All Remote Operation Camera-based • Low latency
• Remote operator requires a

good overview

Throughout the logistics chain, there are other automation solutions that monitor and
control the process. These include, for example, the validation of the container number,
monitoring for damaged containers, and the detection of dangerous goods symbols [16]. As
we focus on localising objects (vehicles, trucks) using cameras, these systems are important,
but nevertheless will be ignored in this publication, as long as they are not influencing the
positioning process.

3. Required Capabilities for Automated Container Handling

In the previous chapter, we generally introduced the crane environment and outlined
that the loading of containers is supported by automation systems in many places and
in specific situations occurs completely automatically. To achieve this, the system must
evaluate the current loading operation in various ways. In this section, we will present
the three main categories into which individual tasks can be assigned. This categorisation
illustrates the overarching task types that a future camera system has to master.

3.1. Scene Classification

In various process steps, the situation below the sensor must be assessed. For example,
it must be checked whether the right container is grabbed by the spreader, if there are
still twistlocks attached (see Figure 3a), and whether a vehicle is ready to load. In these
situations, the environment is recorded and the situation is assigned to one of several
predetermined categories.

3.2. Static Object Detection

Another central task in crane automation is to locate objects. Those objects can be
different containers, vehicles, or other obstacles in the area. If neither the objects nor
the sensor is moving, this is static object detection. A typical example of this is to locate
containers in the stack (see Figure 3b). The objects must first be recorded and then their
exact position must be localised in the sensor coordinate system. The recorded position
is subsequently transformed into a crane coordinate system so that the crane automation
software can work with the transmitted position values. To be able to use the determined
position for the automation chain, the position is defined by translation and rotation. In
total, the position of the object (container, vehicle, . . .) has six degrees of freedom.
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(a) Scene classification (b) Static object detection

(c) Dynamic tracking
Figure 3. There are various problem classes for automating a crane: (a) Classification—a label is
assigned to the entire detected area. (b) Static object detection—an object is localised in a static
environment. (c) Dynamic object detection—a moving object is detected and tracked in several
successive captures.

3.3. Dynamic Object Detection (Tracking)

Following on from the static object detection, dynamic object detection follows. The
main task of a container terminal is to exchange containers. Accordingly, there are not only
static, but also dynamic objects that need to be recorded. The dynamic results either from
an external movement of the objects or an internal movement of the sensor if it is mounted
on a movable component of the crane. A dynamic capture of the position is required, for
example, when the vehicles are automatically positioned under the crane, as shown in
Figure 3c.

Another example of dynamic object tracking is collision protection. Here, the crane’s
movement is monitored and the distance to close objects is continuously tracked. In this
example, however, the objects themselves are static and the sensor moves.

4. Sensor Usage during Container Handling

In the previous sections, the automation tasks were first presented in general and
then divided into the three main categories (classification, static object recognition, and
dynamic object recognition). To deal with all these different tasks, it is necessary to capture
the environment. This is carried out using LiDAR and camera systems. In Section 2.4, the
existing automation systems were presented in general. In this section, the usage of camera
and LiDAR sensors will be presented in detail. Based on this, we subsequently define the
potential field of application for camera-based solutions. Additionally, we present which
process steps are currently already being solved with cameras. This opens up the potential
to use existing hardware for multiple tasks.

4.1. LiDAR Usage
4.1.1. Pick/Place Container on Vehicle

In order to be able to transport the containers between the cranes, they are loaded
onto horizontal transport vehicles (especially trucks). The loading point between the crane
and the truck takes place at a defined point. For this reason, the measuring system is
permanently installed near this loading point. This mounting position is selected so that the
laser system is as close as possible to the loading point. As a consequence of the reduced
distance between the sensor and the measured object, a dense point cloud is captured,
which helps precisely localise the loading area on the vehicle [17–19].
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4.1.2. Pick/Place Container in Stack

Most automation nowadays takes place in the area of the yard crane. Containers
are automatically stored in the stack and remain there until they are transported further.
For this purpose, the setting-down position on the ground or on another container roof
must be precisely measured. Similar steps are required to grab a container in the stack.
Therefore, the target container must be precisely measured. After gathering the exact 3D
pose, the crane position is slightly adjusted so that the spreader is exactly above the target
container. Finally, the spreader is lowered and the container is precisely picked or place at
the desired position [20–22]. The distances between the trolley (sensor mounting position)
and container are much smaller on yard cranes than on ship-to-shore cranes. Therefore, the
sensor setup is less affected by mechanical deformation that arises from lifting heavy loads
(see Section 6.1.5).

4.1.3. Crane Movement in Stack or Over Ship

A three-dimensional survey of the environment is not only required for grabbing
and setting down containers. Even while the crane is moving, the direction of travel is
continuously monitored for possible obstacles, so that the crane can be stopped in time to
prevent an impending collision. This surveillance is mainly carried out using a 2D-LiDAR
sensor facing in the traveling direction [23].

4.2. Camera Usage

Not only lasers, but also cameras, as already mentioned, are occasionally used in
automation solutions. This type of sensor is mostly implemented where there is interaction
with humans, the intended problem can be solved in a two-dimensional image, or color
information has an important meaning. Cameras are inexpensive and have a compact
design and no moving components inside. Therefore, they can withstand high mechanical
loads. For this reason, they are used in various places in the crane environment.

4.2.1. Remote Operation

Container automation continues to advance. Nevertheless, disruptions occur again
and again in the process flow, causing the automation to stop. In addition, there are laws
in certain regions of the world that prohibit the automation of certain processes. This is
often the case when human life would be in danger [24]. To deal with these difficulties,
automated cranes are equipped with cameras that allow them to be controlled remotely
by a human [25]. The camera positions are selected in such a way that the operator has
the best possible view of the situation and the further path of movement of the container
at hand. This is achieved by mounting the cameras on the spreader and thus, close to the
respective loading situation. Second, in addition to static cameras, pan–tilt–zoom (PTZ)
cameras are used whose field of view can be adjusted depending on the situation.

4.2.2. Container Number and Damage Check

Loading and unloading operations are optimised via the terminal operating system
(TOS) so that unnecessary movements of the crane and other vehicles are reduced. To
validate the actual database state of the TOS, cameras are used during the loading process
to check whether the numbers printed on the containers and transport vehicles correspond
to the numbers stored in the system. In addition, permanently installed cameras are used
to check whether any damage to the containers is present [26,27].

4.2.3. Measuring Spreader Position

The load lifted by the crane and the ropes between the spreader and trolley form a
mechanical pendulum that is oscillated by the movement of the crane. In addition, external
factors such as wind can exert a force on the pendulum. In order to be able to reduce and
compensate for the unwanted deflection of the load, the exact position of the spreader
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must be known. With the help of a camera, the current deflection and skew of the load is
calculated and, if necessary, compensated for [28,29].

4.3. Sensor Functionality

The previous chapter has shown that a wide range of automation solutions exist in the
port environment. These solutions are mainly based on LiDAR and camera sensors. In order
to better compare the individual sensor types and their advantages and disadvantages, we
will subsequently introduce their characteristics and functioning.

4.3.1. 3D-LiDAR Technology

In recent years, LiDAR technology has been continuously developed and improved
and today forms an important basis for the field of autonomous driving in order to record
the environment in three dimensions [30]. As described in Section 4.1, 3D-LiDAR sensors
are also used in the crane environment.

The basic measuring principle of a LiDAR sensor is based on the emission and recep-
tion of a light pulse. The acquired object distance is than computed with the help of the
known speed of light. In order to be able to measure an entire plane with this method, the
measuring beam is continuously deflected via a mirror or prism (see Figure 4). By simulta-
neously measuring the distance and the angular increment, the positions can be specified
in a polar coordinate system (2D-LiDAR). For many container-automation scenarios it is
not sufficient to just sample the world in a two-dimensional plane. Especially for complex
task such as the localisation of containers in 3D space, a 3D sampling of the environment
is required and therefore, 3D-LiDAR units are used. In the harbour, there are mainly two
types of 3D-LiDAR units: mechanical and solid 3D-LiDAR systems.

Figure 4. Working principle of a 2D-LiDAR sensor.

Mechanical 3D-LiDAR

A mechanical 3D-LiDAR sensor further extends the idea of a 2D-LiDAR sensor by
rotating the whole 2D-LiDAR along a second axis that is orthogonal to the rotation axis
of the mirror. As a consequence, two angles are measured continuously and are then
combined with the captured distance (see Figure 5). These polar coordinates (ϕ, θ, d)
can be transformed to a precise position in Cartesian coordinates (x, y, z) [31]. A major
advantage of this system is the variable point density depending on the application. The
slower the 2D-LiDAR sensor is swiveled, the denser the resulting point cloud in the swivel
direction. In addition, only individual segments can be measured precisely. However, this
measuring principle also has disadvantages. Due to the large size, mounting is not possible
everywhere. In addition, the high mass of the 2D-LiDAR sensor cannot be accelerated as
much as desired without negatively affecting the measurement quality due to overshoots.
Thus, only slow swiveling is possible, which leads to a low sampling rate.
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Figure 5. 3D-LiDAR sensor contains a 2D-LiDAR unit which is swiveled along an axis.

Solid LiDAR

To overcome the problems of mechanical sensors, so-called solid LiDAR has been
developed. In recent years, the development processes of LiDAR units has progressed
and so the dimensions of the individual measurement units can be reduced intensively.
As a consequence, it is nowadays possible to place multiple emitter–receiver units closely
packed on one chip. The individual units are arranged such that they span a fan of
measurements [31]. The most modern sensors of this type have a field of view (FOV) of
approx. 40◦. The measurement fan consists of up to 128 individual rays. Due to the small
design, this measuring fan can be accelerated, so that the fan can be rotated up to 100 times
per second [32]. Here, however, the point density is static and dependent on the constant
rotation speed of the unit. In addition, the number of fans is still very limited today. This
results in a high horizontal, but low vertical resolution. The units are significantly smaller
in design. However, the rotating components are sensitive to shocks and vibrations, which
means that not every mounting position on the crane is suitable.

4.3.2. Camera Technologies

A successful industrial camera application is dependent on certain conditions. The
relevant area must be visible within the camera’s field of view. Furthermore, the camera
must produce a sharp and adequately bright image so that all the relevant details are
discernible. These properties depend on the so-called camera parameters, which are
presented below.

In container terminals, the lighting conditions change throughout the day (day to
night) and through changing weather conditions. Furthermore, there are also short-term
changes in exposure due to clouds and other weather effects. The camera sensitivity refers
to the ability of a camera to capture images in low-light conditions. The dynamic range
refers to the range of light levels that a camera can capture in a single image, from the
darkest shadows to the brightest highlights. A camera with a high dynamic range can
capture more detail in both the brightest and darkest areas of an image. This aspect is
important for industrial crane applications because there are dark, shadowed areas between
tall container stacks. However, there are also metal surfaces that reflect strongly and are
almost mirror-like.

As presented in Section 3, a possible application field is the detection of moving objects.
Therefore, the frame rate is a crucial factor in selecting an appropriate camera. The frame
rate defines how many images are captured per second. An appropriate frame rate depends
on the speed of the moving objects or the camera.

From a practical application perspective, the size and robustness of the camera are
also important factors. The camera size should be appropriate for the specific application
and installation requirements, and it should be able to withstand shocks and vibrations.

In addition to the parameters of a camera mentioned so far, the field of view (FOV)
plays a particularly important role for a successful industrial use. The FOV describes the
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area that the camera captures. The captured area depends on the extrinsic and intrinsic
parameters of the camera.

Extrinsic Camera Parameters

Extrinsic camera parameters describe the location and orientation of the camera in
3D space, with respect to a global coordinate system. For a concrete application in the
port environment, this means where the camera is mounted on the crane. The shorter the
distance between the camera and the object to be detected, the more detailed the object can
be captured. The greater the distance chosen, the more surrounding objects are visible in
each frame, providing a better overview of the overall situation. Therefore, a careful balance
must be struck between the two options and a suitable compromise must be found. The
chosen camera’s extrinsic properties are especially important for vision-based measurement
tasks, because this relation is an essential basis for mapping image coordinates to their
corresponding 3D world coordinates [33].

Intrinsic Camera Parameters

Intrinsic camera parameters refer to the internal characteristics of the camera that
affect how the camera captures and projects images. One of these internal parameters
is the focal length. The focal length describes the distance between the camera lens and
the image sensor. A smaller focal length results in a wider field of view, which means
that the camera can capture a larger area but with less detail. On the other hand, a larger
focal length results in a narrower field of view, which means that the camera can capture a
smaller area with more detail. The level of detail in the image depends not only on the focal
length but also on the size and resolution of the camera chip. The sensor size describes the
physical size of the chip, which digitizes the projected image. Depending on the resolution
(number of pixels in the x and y directions), the pixel size and thus the aspect ratio of the
pixels are determined. There are several types of chips used in cameras, including CCD
(charge-coupled device) and CMOS (complementary metal-oxide-semiconductor) sensors.
Both types of sensors convert light into electronic signals, but they differ in their internal
mechanisms and performance characteristics [34].

In order to obtain a sharp and well-illuminated image, additional lenses are required to
create the scene projection. However, adding lenses to the camera system causes distortion of
the image and blurred edges. These phenomena can be described by lens distortion coefficients.

Fixed Mounted and PTZ Cameras

In crane automation, two different types of cameras are utilised: fixed mounted and
PTZ cameras. For automation tasks where the evaluation area is fixed and does not change
over time, fixed-mount cameras are used. In these applications, the intrinsic and extrinsic
camera parameters do not change. Therefore, the mounting position and the field of
view are fixed. This has the great advantage that the system can be carefully measured
(calibrated) once at the beginning, and from then on, this static relationship between the
3D world and the sensor projection remains stable and can be used for converting image
points to world coordinates.

However, in the area of stacking cranes, the working area cannot always be clearly
defined beforehand. There may be high stacks of containers as well as low ones.

In both situations, the container must be clearly visible in the image so that, for
example, a remote operator can land the spreader precisely on the container. In such
situations, cameras with a variable field of view—such as PTZ cameras—are used. These
cameras have an optical zoom and are able to dynamically adjust the current FOV (intrinsic
camera parameters). In addition, these cameras can be rotated about two axes, thus
repositioning the optical axis (extrinsic camera parameters). This camera type can also
cover highly dynamic situations with a variable working area. However, since both internal
and external camera parameters change during operation, it is not sufficient to measure
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the relationship between the 3D world and the camera image once. Rather, the projection
matrix must be continuously adjusted during operation.

4.3.3. Sampling Density

In the preceding sections, the two sensor concepts and their properties were introduced
in general. In some process steps, automatic container handling requires that even fine
structures (such as twistlocks or corner casts; see Section 2.3) be localised. For this to
be possible, these structures must also be resolved by the sensor used. This property is
characterised by the so-called sampling density. In order to obtain a better understanding
about this parameter, we will compare the sampling density of both sensor technologies
based on a real example from the stack area (see Section 2.1). For this purpose, some
assumptions are made, which will be presented below and visualised in Figure 6.

Figure 6. Example: Localising a container below a yard crane.

• A straddle carrier placed a 40 ft container below a stacking crane.
• Its rough position is known, but should be precisely measured by an automation

system.
• The area to be considered is thus selected to be larger in each direction by half a

container width or length.
• The sensor is mounted at the crane girder, roughly 15 m above the container.
• The sensor must evaluate a field of view of approx. 60° × 20°.
• As the sensor and container do not move in this example, it is a static object detection

(see Section 3).
• To avoid slowing down the automation process, the evaluation needs to be completed

within one second.

In order to safely lift a container using a crane, a mechanical connection is made using
corner casts and twistlocks (see Section 2.3). The exact position of these corner casts—which
have a size of roughly 10 cm × 10 cm—is therefore particularly important and will be
examined more closely in this example. For this comparison, exemplary representatives of
each sensor type, mechanical LiDAR, solid LIDAR, and camera, were chosen.

In this evaluation, it must be taken into account that the information content differs
between the LiDAR system and the camera. LiDAR systems provide a position value
in space for each measurement, whereas cameras can provide colour information. Thus,
this comparison is only valid for use cases in which the intended problem can be solved
completely in a two-dimensional projection (without spatial information) or where multiple
camera views can be combined to obtain spatial information. Table 2 shows the vertical
and horizontal resolution and the respective frequency of the individual sensor. For
the mechanical LiDAR, the assumption was made that the swivelling speed was chosen
accordingly so that the required area could be scanned in one second.
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Table 2. Evaluation of different sensor types to localise a corner cast.

Model hres vres Frequency
Measurements

Per dm2

(d = 15 m)

Solid LiDAR
Velodyne

Puck Hi-Res
0.1° 1.33° 20 Hz 1.09

Ouster OS1 0.17° 0.351° 20 Hz 2.44

mech. LiDAR

Swivel-Unit with
Sick LMS5xx
Heavy Duty

0.1667° 0.2° 1 Hz 4.38

Swivel-Unit with
Sick LRS4000 0.04° 0.8° 1 Hz 4.56

Camera AXIS P3925 0.029° 0.03° 30 Hz 180.16

Looking at the table, one can clearly see that the camera has the highest density
of measuring points in this example. In the relevant area of the corner casts, approx.
180 measuring points (pixels) are to be expected. On the other hand, when considering
the solid LiDAR technology, it is noticeable that only one or two measuring points can
be found in the respective field. To determine the exact position of the container, other
features—such as entire areas or edges—must, therefore, be taken into account.

The mechanical LiDAR systems provide a similar density of measuring points. How-
ever, these systems have the advantage that the number of measuring points correlates
linearly with the swiveling speed. If the measurement time were increased fivefold, the
number of measurement points would also increase fivefold. However, the measuring
point density would not be evenly distributed, but would only increase in the direction
of swivel. To obtain a comparable measurement point density to that of the camera, the
measurement duration would have to be increased to more than 30 s, which would be
unacceptably slow for any automation process.

For this comparison, a task from the field of static object detection has been chosen.
However, as presented in Section 3, there are also situations in which the object and/or
camera are in motion. In these cases, dynamic object detection is required, which places
even higher demands on the sampling speed, which can only be fulfilled by solid LiDAR
and camera systems. In comparison to mechanical LiDAR systems, these sensors can scan
the desired object 30 times (camera) or 20 times (solid LiDAR) within the specified one
second. This makes it possible to average out measurement errors or to capture dynamics.

5. Related Work

As presented in the previous chapters, container automation nowadays relies on
laser-based measurement systems in many areas. In the port environment, the research
area of camera-based container automation is relatively new and has been studied only
selectively. To best of our knowledge, there is currently no existing literature that examines
the transformation from laser-based to camera-based container automation on this scale.
Individual publications focus on early camera-based applications, but often only a single
area of the container flow is considered. A comprehensive view of the entire process is still
missing. On the other hand, cameras have been successfully used for measuring objects
in other fields of application for many years. Shirmohammadi et al. generally considered
the trend of vision-based measurement (VBM) [35]. They first show the general processing
chain: visual sensor, preprocessing, image analysis, measurand identification, measurement,
and result. In addition to the process steps considered by the authors, this chain should be
supplemented in the crane environment by additional plausibility checks. These additional
checks are necessary to increase the safety of the terminal employees. Furthermore, the
authors considered what uncertainties can arise from the use of cameras for evaluating real-
world scenarios. The following points are the biggest causes of measurement inaccuracies:
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poor lighting, changing camera angles, incorrect calibration/gauging, and different camera
equipment [35]. The points mentioned are also relevant for the use of cameras in the
port environment.

Mi et al. picked up the general considerations regarding VBM and looked at the
current development trend towards VBM in ACT. The authors presented camera solutions
that are already in use nowadays. In addition, future application fields in the terminal
environment were considered, for example, container surface damage recognition, the task
of truck positioning, and truck-lifting prevention [36].

Ref. [37] took a closer look at one of the aforementioned use cases: the positioning of
trucks under yard cranes (ARMGs). For this purpose, two cameras—which are mounted
vertically above the truck lane—are used to determine the exact position of the loaded
container on a truck. To localise the exact position, they proposed a multi-stage approach.
First, the rough position of the corner casts is determined using an adapted single-shot
detector. Then, the detections are preprocessed with classical computer vision methods
to compensate for illumination invariances and other disturbances. In the final step, the
best rectangular fit around the corner cast is computed [37]. The position and size of the
corner hole is then used to compute the offset distance and deflection angle between the
container and spreader landing position. Ref. [37] evaluated their approach in a set of
experiments and compared the unsupported SSD results against the complete multi-stage
approach. The positioning error of the modified SSD detection is about 8.52 px in the gantry
and 4.44 px in the trolley direction. Projecting the positions detected in the image back into
the real world results in a measurement error of 48.2 mm in the gantry and 25.1 mm in the
trolley direction. If these measurement errors are compared with the mechanical properties
of a container presented in Section 2.3, the accuracy would not be sufficient to automatically
pick up a container. Therefore, the additional processing steps are required that reduce
the error to 19.6 mm in the gantry and 14.3 mm in the trolley direction. Consequently, it is
possible that the spreader automatically slips into the corner casts and the container can
automatically be grabbed.

Based on their previous findings, Zhang et al. focused in their following publication
on the realtime three-dimensional attitude positioning when loading containers onto and
off of trucks [37]. When loading containers automatically, it is essential to know the exact
three-dimensional position of the container in order to avoid dangerous situations, such
as the truck lifting up or the container overturning. They used the same basic structure
as in the previously presented paper. First, the rough position is determined with the
help of a deep learning method and it is then specified using classical computer vision
methods. However, the application presented in this paper differs in the mounting position
of the cameras and in terms of the required inference speed. In order to achieve a high
inference speed, the backbone architecture of the model was adapted. Instead of a VGG16,
a ResNet 18 backbone was chosen, which contains significantly fewer parameters [38].
The determined predictions are fed into a detection-based tracking network afterwards,
which combines the detection results over time. Finally, the individual results are further
improved using classic computer vision methods for detecting the slotted hole in the corner
cast. The final investigations show that the spatial position in the gantry and hoist directions
can be determined much more precisely than the trolley position. This is due to the fact
that the offset of the container in the trolley direction is only determined by the size of the
corner cast hole. All in all, the presented approach can determine the three-dimensional
position in approx. 80 ms, which enables the desired safety monitoring.

ACTs are a dangerous working environment, as heavy loads are moved. Therefore, it
is important to know the exact position of the load. The previously discussed work [37]
achieves this by localising the corner casts. Ref. [39] deals with the same problem but
by localising the spreader and not the picked-up load. In comparison to the approach
of [37], the position of the spreader can be determined even without a picked-up load.
In the method presented, the image of a spreader is compared with a three-dimensional
wireframe rendering of a 3D triangle mesh model of the spreader. The initial estimated pose
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is then continuously shifted so that the visible lines of the wireframe match the straight
line segments detected in the original spreader image [39]. With the presented method, the
spreader position can be determined with a maximum error of 2.5 m and an average error
of 0.5 m. These values are too inaccurate for the exact control of an automation system, but
they are sufficient for avoiding rough container collisions and protecting dock workers.

6. Evaluation of Using Cameras Instead of LiDAR Sensors for Automated
Container Handling

In Section 2.4, the typical container flow in a terminal was presented. LiDAR sensors
are used at different process steps. In addition, cameras for remote control but also for
other automation tasks are available (see Section 4), which cover a similar field of view.
Application papers in similar and other domains have shown that specific problem types
can be solved using cameras and deep learning techniques. In the following, the chances
and challenges of replacing LiDAR-driven automation with cameras in the field of ACTs
will be discussed. The idea of using cameras instead of expensive LiDAR and radar sensors
to save costs is not new. This idea has been driven from the field of autonomous driving in
recent years. However, at the time of writing, there has still been no breakthrough in this
field. However, it must be considered that the crane environment differs significantly from
the application of autonomous driving. The movement possibilities of a crane are limited,
the objects to be detected are known in advance, and the environment can be illuminated
and adapted if necessary. In relation to the specific application field of container automation,
the chances as well as the challenges of this transformation are discussed in the following
sections. Finally, the mentioned aspects are evaluated.

6.1. Chances
6.1.1. Cost Reduction

Due to the far distance between the sensor and container as well as the challenging
demand regarding measurement precision, the 3D-LiDAR sensors used in the harbour
environment are quite expensive. At the time of writing, typical outdoor 3D-LiDAR sensors
cost more than USD10,000 [32]. Meanwhile, an outdoor PTZ camera costs several hundred
dollars. LiDAR sensors are becoming smaller in size, enabling them to be utilised in new
areas such as smartphones. As the market demand increases, the cost of LiDAR sensors will
eventually decrease. However, an industrial camera, with a cost of several hundred euros,
is still considerably less expensive than a LiDAR sensor. If one also takes into account
that some cameras are already needed for remote control and could be reused for other
applications, there is a clear cost advantage, even if several of these cameras would have to
be mounted.

Due to the reduced hardware costs, automated cranes would become affordable for
smaller terminals that currently cannot afford expensive LiDAR sensors. Therefore, these
terminals could increase their throughput and safety as well.

In addition, there has been a clear trend towards energy reduction in container termi-
nals in recent years [40]. If the exact spatial locations of the containers can be detected by
inexpensive sensors, the travel path of the crane can be optimised, resulting in energy savings.

6.1.2. Mounting Positions

The LiDAR systems used during stacking operations are currently attached to the
bottom side of the trolley. Therefore, the system is protected from environmental influences
such as heavy rain and is mechanically less stressed. However, this mounting position
quickly causes occlusion effects, especially if a container is grabbed by the spreader (see
Figure 7). The problem gets worse when neighboring stacks are high and cause additional
occlusion effects. As a consequence, the hardware setup is only able to capture a portion
of the relevant area. When the load is lowered, it is not possible to further measure the
target position. Therefore, the container is placed blindly on the destination for the last few
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meters. If mechanical wear and tear leads to an uneven movement of ropes and tires, the
container is not placed precisely on the target position.

The problem could be reduced if a greater distance were maintained between the
individual container rows. However, this would lead to a lower stack density and thus,
lower utilisation of the terminal. Due to their compact design and high mechanical load
capacity, cameras can be mounted directly on the spreader. Due to the reduced distance
to the target object, occlusion does not occur at all or only occurs much later during the
lowering process of the container. The stack density also remains unchanged. Today,
spreader cameras are already being used successfully for remote control [41].

Figure 7. The typical LiDAR mounting position protects the sensor from strong shocks and weather
effects. However, occlusion may occur due to the relative position of the objects.

6.1.3. High Sampling Rate and Sampling Density

Over the past decades, the pixel density of camera chips has been steadily increased,
resulting in a higher number of pixels. Modern industry cameras offer a 4K resolution
(3840 × 2160 pixels) at a frame rate of 30 FPS. Thus, potentially about 250 million measure-
ment points per second are available for further evaluation [42]. In comparison, a modern
solid 360° LiDAR sensor achieves up to 5 million measurement points per second, but
distributed over a significantly larger field of view.

One must clearly differentiate between the information content of each sensor type.
With LiDAR systems, the spatial position in the x, y, and z directions can be determined
for each individual measurement point. In addition, information is obtained about the
remission of the object that was hit by the individual measuring beam. In comparison, the
pixels of a camera sensor provide different information. Only reduced spatial information
can be determined with a single pixel. However, color information about the environment is
obtained. In addition, the spatial density is significantly higher. There are fewer unscanned
areas and detailed contextual relationships can be more easily determined because of the
high scanning density.

6.1.4. Multifunctional Use

In order to be able to intervene in the event of errors, each automatic stacking crane can
be controlled remotely. To achieve this, each crane is equipped with additional cameras for
remote control. During automatic operation, these cameras are not used and can therefore
enable automation solutions. The current FOV is chosen in such a way that a remote
operator can easily capture the current situation and therefore safely operate the crane. As a
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consequence, the camera FOV often fits quite well for automation tasks as well. In addition,
some cameras can be adjusted in their FOV. Therefore, one sensor fulfills multiple functions.

6.1.5. Less Affected by Mechanical Deformations

Heavy weights are loaded with the help of a crane. This means that the crane boom
and the whole crane structure can bend under the mechanical stress. This bending is
intentional and taken into account in the crane design. However, this leads to a general
problem of attaching optical sensors to the crane structure. The field of view slightly
changes depending on the crane deformation (extrinsic sensor parameter). If there are
large distances between the sensor and acquired object, even small deviations lead to large
measuring errors.

Due to the compact and robust design of a camera, these sensors can be placed closer
to the desired object and are therefore less affected. Furthermore, there is the possibility
to attach cameras to the spreader and directly measure the desired relative offset between
the spreader and the target object. Crane structure deformations are compensated for by
performing relative measurements.

6.1.6. Complexity during Commissioning and Operation

Our eyes, like cameras, transform our environment into a two-dimensional repre-
sentation. Therefore, we are accustomed to this representation of our surroundings and
capable of assessing its content intuitively. This ability makes it easier to commission
camera systems compared to LiDAR systems. The precise adjustment and registration of
the sensor system is additionally facilitated by the high pixel density (see Section 6.1.3 for
comparison). Due to their low cost, cameras are often already used for other tasks in the
port environment. The port operators responsible for commissioning and maintaining the
sensors thus often have experience with the sensor technology used, even if there has been
no container automation before. The low storage requirements of images compared to
LiDAR point clouds also facilitate daily work. It is possible to store images on a large scale
and use them to test and further develop the system.

6.2. Challenges

Besides the mentioned chances, there are also some disadvantages regarding camera-
based container automation.

6.2.1. Missing Depth Information

The currently used laser systems send a light pulse and measure the time until the
reflected light again reaches the sensor. By knowing the time difference, one can compute the
distance between the laser and the object. This active sensor technology enables very precise
distance measurements even over long distances. Modern LiDAR sensors have a range of up
to 200 m with an accuracy of up to 1 cm. Another advantage of this sensor technology is the
high sampling frequency. Modern sensors can rotate their reflective unit up to 100 times per
second and, therefore, can scan the environment in a two-dimensional scan plane multiple
times per second. This is particularly advantageous for collision monitoring.

In a camera system, the three-dimensional world is projected onto a two-dimensional
chip (see Section 4.3.2). Therefore, the depth information is lost. For some automation tasks,
this only plays a subordinate role, for example, in the case of two-dimensional positioning.
In other cases, the third dimension is essential, for example, to prevent collisions.

Depending on the selected application, this problem can be overcome by reconstruct-
ing the missing depth information using two cameras or known object sizes as shown
in [43]. However, such solutions result in more complex systems and do not provide
accurate depth information in all circumstances.
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6.2.2. Bad Visibility

LiDAR sensors measure distances by actively emitting and receiving a light impulse.
This measurement concept works even in absolute darkness and in poor visibility. How-
ever, passive cameras do not actively emit light but just capture the reflected light of the
surroundings. In order to use passive cameras for container automation it must, therefore,
be ensured that the environment is sufficiently illuminated.

6.2.3. Fixed Field of View and Point Density

As explained in the section on mechanical 3D-LiDAR, a mechanical 3D-LiDAR sensor
is a standard 2D-LiDAR unit mounted on a swivel unit. By simultaneously scanning
and swiveling, the laser can capture a dense 3D point cloud. The density is increased
by reducing the swivel speed. This setup is really beneficial if a varying point density is
desired. However, this setup leads to a slow acquisition frequency. The scan procedure for
one complete 180◦ of the swivel unit lasts multiple seconds.

In comparison, a rigid-mounted camera has a predefined FOV with a fixed horizontal
and vertical resolution. If a varying FOV in terms of direction and size is needed, the use of
PTZ cameras could be considered. Regions of interest can be precisely captured using an
optical zoom. However, these cameras are more expensive than rigidly mounted cameras.

6.2.4. Available Datasets

As outlined in the previous sections, there are first approaches striving for a VBM
for ACTs. These methods are often trained in a supervised manner and therefore, labeled
datasets are required. For other domains such as people or car detection and localisation
there are public datasets that can be used for training and benchmarks. Furthermore, these
available datasets can be used to pretrain new model architectures.

However, for the application field of container automation there are nearly no publicly
available datasets. In order to be able to use deep learning procedures, large data records
must be collected and prepared. Data recording efforts can be reduced by generating
synthetic datasets, e.g., by utilising simulations or generative methods.

6.3. General Evaluation and Looking Ahead

In the previous sections, the port environment and typical areas of application were
presented in detail. Subsequently, the different sensors were presented, and the opportu-
nities and challenges that arise from their use were considered. The key aspects of this
comparison are summarised in Table 3.

To elaborate the core findings from the aforementioned, we evaluate these results and take
a visionary look into the future. Looking at the left column of Table 3, the clear advantages of
using cameras become immediately apparent. Cameras are cost-effective, capable of capturing
the environment at a high resolution and frame rate, and robust against shocks. These
advantages open up prospective applications and automation fields, such as the complete
automation of the water side, which has so far only been partially automated. With reduced
costs, it would then also be possible for smaller terminals to automate their processes, achieve
a higher throughput, and increase safety in the terminals. In addition, this system can help
enable more sustainable loading of containers. Through cost-effective sensors, the spatial
position of the containers under the crane can be determined. The determined container
heights can then be used to minimise the crane’s movement and save energy.

However, the idea of replacing expensive LiDAR sensors with inexpensive cameras
is not a new idea in the field of container automation. Rather, this idea originated years
ago in the field of autonomous driving and has been extensively researched since then.
However, the breakthrough has not yet come, and car manufacturers worldwide continue
to rely on a hybrid sensor mix to implement driver-assistance systems in their vehicles.
Does this mean that a transformation from LiDAR- to camera-based container automation
is hopeless? Looking at the right column of Table 3, we see that the same problems arise
in the crane environment as in autonomous driving. The biggest challenge arises from
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the lack of depth information and poor visibility in the dark. However, this is precisely
where the domain of autonomous driving differs from the port environment. Container
cranes are much larger than typical vehicles on the road, making it possible to mount a
large number of cameras with varying fields of view. Thus, automated container handling
can be performed-based on many different perspectives. An autonomous vehicle, on the
other hand, can only rely on a cockpit view within its domain. In addition, the variability
of objects to be detected is strongly limited and standardised by norms compared to road
traffic. Additional floodlights enable bright illumination of the current situation at night.

Table 3. Summary of opportunities and challenges of the transformation from laser-based to camera-
based container automation.

Chances Challenges (Ways Forward)

Cost reduction: Camera sen-
sors are less expensive than
LiDAR systems. When exist-
ing cameras are used, a special
cost advantage is created.

Mounting positions: Cam-
eras are small and robust
against shocks. Therefore, this
sensor can also be mounted
in places that are subjected to
higher mechanical stresses.

Higher sampling rate and
density: Cameras provide a
higher sampling rate (mea-
surements per second) and a
higher sampling density.

Missing depth information: Standard industry cameras do not
provide depth information. Therefore, the object position can
only be located in a projection and is not directly known in world
coordinates.

Ways forward: By combining multiple cameras or using con-
text information and prior knowledge (known object sizes), the
missing depth can be compensated for.

Bad visibility: In comparison to LiDAR sensors, cameras do not
actively emit light for their measurements. For a reliable opera-
tion, it is therefore necessary that the environment be adequately
illuminated.

Ways forward: Attaching additional lights to the crane.

Fixed FOV: The working range of a container crane is very large,
and therefore, the potential field of view of a sensor must also be
very large. However, rigidly attached cameras have only a fixed,
limited FOV.

Ways forward: Attaching multiple cameras to a crane or using
cameras with a varying FOV.

Comparing the two application domains, we find that they differ significantly in
their complexity. The problems that arise in the intended transformation are valid for
both domains, but the container-automation domain facilitates clear solutions to these
problems. At the moment, these are just potential strategies that have been selectively
evaluated. Although the breakthrough in camera-only autonomous driving is still pending,
we are convinced that some of the crane-automation issues can be fully addressed with
cameras. Taking into account that significantly more research is being conducted in the
field of camera-based deep learning applications compared to LiDAR technology, it can be
assumed that further advancements in image processing can be expected within the coming
years. Whether all the requirements of a fully autonomous terminal can be realised with
these advancements, however, remains to be shown by further scientific investigations.

7. Conclusions

Nowadays, terminal operators worldwide aim for automated container terminals. For
an automated crane operation, the three-dimensional position of containers, vehicles, and
set-down positions must be determined. This is mainly conducted by utilising LiDAR
sensors. This publication discussed the potential to replace the existing laser-based solu-
tions with cameras. The main benefit of this transformation comes from the reduction in
hardware costs. Thus, automation solutions would also become viable for smaller terminals,
which could also increase their handling rate and safety. Further advantages result from
the additional mounting options. On the one hand, the occlusion of the measuring area can
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be reduced. In addition, further tasks can be automated that previously had to be carried
out manually.

However, the use of cameras also poses some challenges like the fixed field of view.
Some first ideas exist for how to cope with these challenges, but further research is required
to evaluate these approaches. The most important issue is the lack of depth information.
This deficit can be overcome as described by [37] with the utilisation of context information
and prior knowledge, for example, by using known object sizes for depth estimates. In
addition, triangulation with several cameras is conceivable. However, whether the ac-
curacy is sufficient for the expected automation solutions in every application needs to
be investigated.

In summary, this evaluation shows that the transformation from laser- to camera-based
crane automation offers important opportunities, but the identified challenges and their
possible solutions must be further evaluated.
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