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Abstract: Object detection by shipborne unmanned aerial vehicles (UAVs) equipped with electro-
optical (EO) sensors plays an important role in maritime rescue and ocean monitoring. However,
high-precision and low-latency maritime environment small-object-detection algorithms remain
a major challenge. To address this problem, this paper proposes the YOLO-BEV (“you only look
once”–“bird’s-eye view”) model. First, we constructed a bidirectional feature fusion module—that
is, PAN+ (Path Aggregation Network+)—adding an extremely-small-object-prediction head to deal
with the large-scale variance of targets at different heights. Second, we propose a C2fSESA (Squeeze-
and-Excitation Spatial Attention Based on C2f) module based on the attention mechanism to obtain
richer feature information by aggregating features of different depth layers. Finally, we describe
a lightweight spatial pyramid pooling structure called RGSPP (Random and Group Convolution
Spatial Pyramid Pooling), which uses group convolution and random channel rearrangement to
reduce the model’s computational overhead and improve its generalization ability. The article
compares the YOLO-BEV model with other object-detection algorithms on the publicly available
MOBDrone dataset. The research results show that the mAP0.5 value of YOLO-BEV reached 97.1%,
which is 4.3% higher than that of YOLOv5, and the average precision for small objects increased by
22.2%. Additionally, the YOLO-BEV model maintained a detection speed of 48 frames per second
(FPS). Consequently, the proposed method effectively balances the accuracy and efficiency of object-
detection in shipborne UAV scenarios, outperforming other related techniques in shipboard UAV
maritime object detection.

Keywords: shipborne UAV scenarios; object detection; attention mechanism; space pyramid pool;
YOLOv5

1. Introduction

Object detection from the perspective of unmanned aerial vehicles (UAVs) is an
efficient and flexible recognition method which has been widely used in various fields. For
example, in man overboard (MOB) search and rescue [1], urban road traffic control [2],
synthetic aperture radar monitoring [3], and building structure defect detection [4], UAV
image detection has unique advantages and developmental potential. As an emerging
means of maritime monitoring, shipborne UAVs have the advantages of high flexibility,
rapid response, and low costs. Consequently, object detection based on shipborne UAVs
has become a popular research topic in the field of maritime monitoring.

In maritime environments, images captured by UAVs often contain small objects—for
example, MOB situations, life rafts, life buoys, and small boats, which often represent
emergencies. Using UAVs to detect these small objects, they can be quickly located, effec-
tively improving rescue efficiency and success rates, which is of great importance in the
field of maritime rescue and monitoring. However, visible light images of the maritime
environment captured by electro-optical (EO) sensors often contain complex maritime
environmental information [5,6], as shown in Figure 1.
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Figure 1. Main features of maritime UAV images. The square shows small objects such as man 
overboard and life buoy taken by the drone at a height of 60 meters. 
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jects can be difficult to observe with the naked eye, and can be easily affected by disturb-
ance factors, such as waves. Second, changes in illumination and maritime texture can 
blur the boundaries and outlines of small objects in maritime areas, thereby reducing de-
tection accuracy. Consequently, considering changes in the object size at different heights 
and angles, different illumination interference, and maritime textures, among others, an 
object-detection algorithm must exhibit strong adaptability and robustness to improve the 
detection performance of small objects in maritime environments from a UAV perspec-
tive. 

Developing a detection algorithm with high precision and low latency in detecting 
small maritime objects from a UAV perspective is a major challenge. Traditional small-
object-detection methods, such as those based on template matching, feature extraction, 
and biological vision, can achieve small-object detection to a certain extent but can be af-
fected by environmental changes and object positions. For example, background subtrac-
tion [7] is effective in detecting small objects with static backgrounds but performs poorly 
with dynamic backgrounds. Consequently, to improve detection accuracy, researchers 
have attempted to integrate a variety of features and filtering methods—such as histo-
gram of oriented gradients (HOG) features [8], scale-invariant feature transform (SIFT) 
features [9], and Gabor filtering [10]. However, these methods still suffer from problems 
of false positives when the object and background have similar features. Additionally, 
researchers have exploited biological vision mechanisms, such as the graph-based visual 
saliency (GBVS) algorithm [11] and biological eagle-eye vision adaptive methods [12], to 
identify small-object regions. However, these methods usually perform poorly in terms of 
detection accuracy for extremely small objects. 

In recent years, researchers have begun to explore the use of deep-learning methods 
to solve small-object-detection problems. Such methods based on deep learning can be 
divided into one-stage and two-stage methods. The one-stage method directly outputs the 
position and category of an object through a forward pass, making it suitable for scenarios 
with high real-time requirements; however, its accuracy is relatively low. Representative 
algorithms include the single shot multiBox detector (SSD) [13], focal loss for dense object 
detection (RetinaNet) [14], you only look once version 3 (YOLOv3) [15], and you only look 
once version 7 (YOLOv7) [16] algorithms. The two-stage approach involves splitting the 
object-detection task into two stages—that is, first extracting a set of candidate object re-
gions from an image through a selective search or candidate region extraction, and then 
classifying and regressing these regions. The two-stage method can obtain better detection 
accuracy, but its real-time performance is poor. Representative algorithms include region-
based convolutional neural networks (R-CNNs) [17], faster region-based convolutional 

Figure 1. Main features of maritime UAV images. The square shows small objects such as man
overboard and life buoy taken by the drone at a height of 60 m.

First, the shapes and sizes of small objects in the image can change because of changes
in the flying height and angle of the UAV. In complex maritime environments, small objects
can be difficult to observe with the naked eye, and can be easily affected by disturbance
factors, such as waves. Second, changes in illumination and maritime texture can blur
the boundaries and outlines of small objects in maritime areas, thereby reducing detec-
tion accuracy. Consequently, considering changes in the object size at different heights
and angles, different illumination interference, and maritime textures, among others, an
object-detection algorithm must exhibit strong adaptability and robustness to improve the
detection performance of small objects in maritime environments from a UAV perspective.

Developing a detection algorithm with high precision and low latency in detecting
small maritime objects from a UAV perspective is a major challenge. Traditional small-
object-detection methods, such as those based on template matching, feature extraction, and
biological vision, can achieve small-object detection to a certain extent but can be affected
by environmental changes and object positions. For example, background subtraction [7]
is effective in detecting small objects with static backgrounds but performs poorly with
dynamic backgrounds. Consequently, to improve detection accuracy, researchers have
attempted to integrate a variety of features and filtering methods—such as histogram of
oriented gradients (HOG) features [8], scale-invariant feature transform (SIFT) features [9],
and Gabor filtering [10]. However, these methods still suffer from problems of false
positives when the object and background have similar features. Additionally, researchers
have exploited biological vision mechanisms, such as the graph-based visual saliency
(GBVS) algorithm [11] and biological eagle-eye vision adaptive methods [12], to identify
small-object regions. However, these methods usually perform poorly in terms of detection
accuracy for extremely small objects.

In recent years, researchers have begun to explore the use of deep-learning methods to
solve small-object-detection problems. Such methods based on deep learning can be divided
into one-stage and two-stage methods. The one-stage method directly outputs the position
and category of an object through a forward pass, making it suitable for scenarios with high
real-time requirements; however, its accuracy is relatively low. Representative algorithms
include the single shot multiBox detector (SSD) [13], focal loss for dense object detection
(RetinaNet) [14], you only look once version 3 (YOLOv3) [15], and you only look once
version 7 (YOLOv7) [16] algorithms. The two-stage approach involves splitting the object-
detection task into two stages—that is, first extracting a set of candidate object regions from
an image through a selective search or candidate region extraction, and then classifying
and regressing these regions. The two-stage method can obtain better detection accuracy,
but its real-time performance is poor. Representative algorithms include region-based
convolutional neural networks (R-CNNs) [17], faster region-based convolutional neural
networks (Faster R-CNNs) [18], and an IoU-aware dense object detector (VarifocalNet) [19].
These deep-learning methods have achieved remarkable progress in small-object detection
based on UAV scenarios, owing to their excellent feature extraction capabilities and end-to-
end training methods.
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To further meet the accuracy and real-time requirements of small-object detection from
a UAV perspective, researchers have made a series of improvements and optimizations
using deep-learning technology. First, in response to the large-scale variance problem of
small objects caused about by changes in the flying height and angle of UAVs, researchers
have proposed a series of new network modules to improve the detection accuracy of
small objects. Yang et al. [20] designed a multi-scale semantic enhancement module
to adapt to the large-scale variance problem of small objects, but it achieved a small
improvement in accuracy. Liu et al. [21] improved the Darknet structure of YOLOv3 by
optimizing the ResBlock module and adding convolution operations to a shallow layer.
This method effectively expanded the receptive field but did not consider the impact of
complex backgrounds on small objects.

Second, researchers have tried to address the problem of complex backgrounds
and illumination changes in the images captured by UAVs. Ye et al. [22] proposed a
global-local feature enhancement network to solve the problem of dense-object detection
in complex backgrounds; however, they could not meet the real-time requirements.
Wang et al. [23] solved the problem of an object being submerged by background clutter
during the detection and tracking process by adding a channel attention mechanism to
the model; however, they did not discuss the detection performance of small objects.
Chen et al. [24] proposed a weather-sensing object-detection method, which realizes
high-precision object detection through dynamic selection of machine learning models
and regular training, and shows significant performance improvement under rainy and
foggy conditions.

Finally, to improve the real-time stability of small-object detection, researchers have
also focused their attention on lightweight module construction and network pruning.
Ye et al. [25] designed a lightweight feature extraction module to build a backbone net-
work to control the model parameters and calculations, realizing the real-time detection
of small objects in UAV images; however, their method did not achieve high-precision
performance. Sharafaldeen et al. [26] relied on convolutional neural technology to de-
tect the sea-surface object from the top view and deployed the training model on the
embedded edge device, achieving a reasoning performance of more than 80 frames
per second, but the detection accuracy needs to be improved. Cai et al. [27] adopted a
network model pruning algorithm to solve the problem that real-time performance of
the algorithm cannot be satisfied, being compromised owing to the limited resources of
the computing platform. However, network pruning degraded the overall performance
of the model. In summary, these improvements provide many ideas and methods for
ongoing research into small-object detection in maritime environments from a UAV
perspective, promoting the continuous development in this field.

To achieve high-precision and real-time detection of small objects, this study proposes
a high-precision maritime detection system for small objects based on shipborne UAV
scenarios. We call this the YOLO-BEV (“you only look once”–“bird’s-eye view”) model,
and its network model is shown in Figure 2. Moreover, considering the limited computing
resources of shipborne UAV platforms, we used the you only look once version 5 (YOLOv5)
framework as the basic framework for the proposed model.

Experimental results on the MOBDrone dataset demonstrated that the proposed
method could realize good real-time performance while achieving high-precision detection.
The main contributions of this study are as follows:

This article constructed a bidirectional feature fusion module—that is, PAN+—which
added an extremely small-object prediction head to the network to deal with the large-
scale variance of objects at different heights and improve the detection accuracy of small
maritime objects.

This article proposed a C2fSESA module based on the attention mechanism that
obtained richer gradient flow information by aggregating the features of different depth
layers, improving the model’s perception of key features.
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This article designed a lightweight spatial pyramid pooling structure—that is,
RGSPP—which reduced the parameters and computational overhead of the model by
grouping the convolutions and randomly rearranging the channels, improving the model
detection accuracy and generalization performance.

This article proposed a maritime small-object-detection algorithm—that is, the
YOLO-BEV model—suitable for a bird’s-eye view (BEV), which realized high-precision
and real-time detection of small objects from a shipborne UAV perspective.

The remainder of the paper is structured as follows: Section 2 describes related work on
detector-related modules. Section 3 analyzes the BEV network model. Section 4 discusses
the effectiveness of the proposed algorithm via analysis and discussion of the experimental
results. Section 5 presents the conclusions.

2. Related Work

In this section, we provide an overview of related work from three aspects—the feature
fusion structure, attention mechanism module, and spatial pyramid pooling structure.

2.1. Feature Fusion Structure

You only look once (YOLO) is an advanced object-detection algorithm. YOLOv1 [28]
and YOLOv2 [29] improved the accuracy of object detection using methods such as deep
convolutional neural networks and anchor mechanisms; however, they could not effectively
detect objects of different scales. To solve these problems, YOLOv3 [15] introduced a feature
fusion network and feature pyramid network (FPN) strategy; you only look once version 4
(YOLOv4) [30] and YOLOv5 later used the FPN strategy.

A feature fusion network is used to fuse the feature maps at different levels. The
FPN [31] processes feature maps of different scales by constructing feature pyramids,
enabling the network to simultaneously process objects at different scales, thus improving
the performance of the detector. However, when an FPN performs feature fusion on
multiscale feature maps, problems remain, such as the loss of small-object information. To
solve these problems, researchers have proposed a series of optimization methods for FPN.
Ghiasi et al. [32] designed a neural architecture search feature pyramid network (NAS-FPN)
using a neural network structure search method to solve the problem of small-information
loss in an FPN, automatically selecting the scale, number of layers, and feature fusion
method for a feature map. Liu et al. [33] proposed a path aggregation network (PANet)
based on adaptive feature pooling and feature weighting to solve the problem of low FPN
accuracy. By performing adaptive feature pooling and feature weighting on feature maps at
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different levels and then performing cascade aggregation, the network could better capture
the characteristics of small objects. Tan et al. [34] proposed a bidirectional feature pyramid
network (BiFPN) that introduced feature fusion paths in both the top-down and bottom-up
directions. With this structure, the BiFPN could achieve adaptive feature fusion between
different scales and levels. Additionally, Liu [35] et al. proposed an attentional semantic
feature fusion (ASFF) method. It adaptively selected and fused features of different scales
by computing the importance scores of feature maps, thereby improving the performance
and robustness of object detection. In summary, these methods improved the performance
and range of FPNs by introducing different feature fusion paths and mechanisms.

2.2. Attention Mechanism Module

The attention mechanism provides the ability to focus on and sift through information
clutter. It can find small-object features in massive information, so that it can process and
understand complex perception tasks more effectively.

Consequently, researchers have introduced different attention mechanisms in convolu-
tional neural networks to improve their performance in vision tasks by learning attention
weights to highlight important features and suppress noise effects. The squeeze-and-
excitation (SE) [36] module is a local attention mechanism based on channel attention
that can calculate channel weights through its global average pooling layer and two fully
connected layers. The efficient channel attention (ECA) [37] module is a lightweight local
attention mechanism that focuses only on the channel dimension and learns the interac-
tion and feature representation capabilities between channels through one-dimensional
convolution operations. Additionally, the coordinate attention (CA) [38] module is a local
attention mechanism based on location coordinates and can be implemented by performing
a spatial transformation network on the input feature map. It can learn the importance
weights for each location, and capture location information and spatial relationships. How-
ever, the convolutional block attention module (CBAM) [39] also pays attention to spatial
attention while considering channel attention, performing attention operations in both the
channel and spatial dimensions. As distinct from these local attention mechanisms, the
global attention module (GAM) [40] is a global attention mechanism that generates a global
context vector by weighted summation over the entire input sequence to capture the key
information of the entire sequence.

In conclusion, the application of the attention mechanism in convolutional neural net-
works can provide greater representational ability and adaptability to the model. However,
choosing an appropriate attention mechanism requires considering many factors such as
the application scenario and the computational overhead of the model.

2.3. Spatial Pyramid Pooling Structure

Spatial pyramid pooling (SPP) is a technique for mapping an input image of any size
into a fixed-size feature vector in a convolutional neural network, which can adaptively
divide the input image into a pyramid and perform pooling at each division level so that
the network can handle images of any size and scale.

He et al. [41] introduced an SPP module into a convolutional neural network for
the first time. The SPP module divided the feature map into multiple grids of different
scales and performed a pooling operation within each grid, thereby combining the features
of different scales to improve the accuracy of the model. The spatial pyramid pooling—
fast (SPPF) [42] module greatly improved the calculation speed by using one pooling
layer instead of multiple pooling layers in the SPP module and by adding two pooling
operations of different sizes to obtain more contextual information. To further improve
the calculation speed, the simplified spatial pyramid pooling—fast (SimSPPF) [43] module
used the rectified linear unit (ReLU) activation function instead of the sigmoid-weighted
linear unit (SiLU) activation function of the SPPF module. The spatial pyramid pooling
cross-stage partial connection (SPPCSPC) [16] module introduced a cross-stage partial
(CSP) connection to improve the feature transfer capability of the SPP module; however, the
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computational overhead was substantial. In convolutional neural networks, SPP technology
provides an effective solution for processing images of arbitrary sizes and scales and has
been continuously optimized and improved.

3. Methods: The YOLO-BEV Model

This section describes the proposed methodology—that is, a YOLO-BEV model based
on the YOLOv5 framework. For the backbone network, this article proposes an RGSPP
structure; for the feature fusion network, we designed a PAN+ structure; and for the entire
YOLO-BEV model, we designed C2fSESA as a CSP network. In this section, the paper
provides a detailed introduction to the key modules—namely, the YOLO-BEV, PAN+,
C2fSESA, and RGSPP modules.

3.1. PAN+ Module

The feature fusion module of YOLOv5 fuses feature maps at different levels and
outputs feature maps at three different scales, the three feature-map sizes being 80 × 80,
40 × 40, and 20 × 20, corresponding to the detection of small, medium, and large
objects, respectively. However, owing to changes in the flying height and angle of UAVs,
extremely small objects are often present in the captured images. Consequently, we
used a method of adding large-scale feature maps to solve the problem of low detection
accuracy for small objects.

During object detection, in addition to paying attention to the semantic information of
high-level features, we also need to consider shallow texture information, such as image
pixels. Therefore, the network layers in the backbone should be fused to obtain both deep
semantic and shallow texture information. To achieve this goal, the PANet [33] uses a top-
down and bottom-up bidirectional fusion backbone network and adds a “shortcut” between
the bottom and top layers to shorten the path between layers. To improve the detection
accuracy of small maritime objects from the UAV perspective, as shown in Figure 3, we
designed PAN+ as a feature fusion module. With the deepening of the backbone network,
the feature map is downsampled five times with a step size of two. As the size of the
feature map continues to decrease, the semantic information becomes more abundant. Then,
upsampling in the FPN three times generates a larger 160 × 160 feature map (the green
feature map shown in Figure 3), so that the underlying features also contain rich semantic
information. Finally, a bottom-up feature aggregation method in the PAN is adopted,
further enriching the location information of the object, thus alleviating the problem of
small maritime object loss during the feature fusion process.
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In the proposed algorithm, we used the last 160 × 160 feature map (1) and output
the predicted feature maps (2), (3), and (4) after the three PAN+ structures. The added
160 × 160 large-scale feature map provides rich feature information for the detection of
small objects in maritime environments, improving the detection accuracy of small objects
from a shipborne UAV perspective.
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3.2. C2fSESA Module

Maritime images captured by shipborne UAVs always contain interference information—
such as illumination reflections and texture changes—making it difficult to detect objects.
Consequently, we used an attention mechanism to solve the problem of background
interference. The attention mechanism allows the model to focus selectively on important
features and suppress noise and redundant information, thereby improving its perception
of key features.

3.2.1. The SESA Attention Mechanism

The CBAM [39] is a channel-spatial attention mechanism based on a convolutional
neural network, that can learn and adaptively adjust the importance of feature maps.
The channel attention mechanism module of the CBAM compresses the dimensions of
the feature map into two different feature descriptions by performing global maximum
pooling and global average pooling on the input feature map. The two feature maps share a
multilayer perceptron network comprising a fully connected layer that reduces the number
of channels, and a fully connected layer that restores the number of channels. The weight
of each channel is obtained by stacking two feature maps and using a sigmoid activation
function for normalization. The channel attention can be calculated using Equation (1) [39]:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(AvgPool(F)))
= σ(W1(W0(Fc

avg)) + W1(W0(Fc
max)))

(1)

where Fc
avg and Fc

max denote the average and maximum pooled feature maps, respectively;
W0 and W1 denote the two-layer weights of the multilayer perception, respectively; and σ
denotes the sigmoid activation function.

In the spatial attention mechanism module of the CBAM, maximum and average
pooling are first performed on the output feature map of the channel attention mechanism,
and the two obtained feature maps are stacked on the channel dimension. Subsequently, a
7 × 7 convolutional layer is used to fuse the channel information of these two feature maps,
and a sigmoid function is used to normalize the channel weights at each spatial position
to obtain the spatial attention of the feature maps. The calculation method is shown in
Equation (2) [39]:

Mc(F) = σ( f 7×7([AvgPool(F); MaxPool(F)]))
= σ( f 7×7([Fs

avg; Fs
max]))

(2)

where f 7×7 denotes a convolution operation with a filter size of 7 × 7.
The SE [36] module is a channel attention module based on the squeeze-and-excitation

mechanism. In the compression operation, the channel information is generated by global
average pooling and compressed into channel descriptors. The global average pooling can
be calculated using Equation (3) [36]:

zc = Fsq(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j) (3)

where uc denotes the input feature, H ×W denotes the dimension of the f 7×7 information,
zc denotes the pooling result, and Fsq denotes the squeeze operation.

In the excitation operation, the vector z obtained in the previous step can be processed
through two fully connected layers (W1 and W0) to obtain the channel weight value (s), as
shown in Equation (4) [36]:

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (4)
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where the weight vector s is used to assign weights to the feature uc to obtain the final
feature map X̃, which can be calculated using Equation (5) [36]:

X̃ = Fscale(uc, sc) = sc · uc (5)

SE adds a squeeze-and-excitation module after each convolutional layer to learn the
weight of each channel, strengthen the response of important channels, and reduce the
response of unimportant channels, thereby improving the model’s attention to important
features. By contrast, the channel attention module of the CBAM processes only feature
maps through max pooling and average pooling, which may fail to capture the more
complex dependencies between channels. Consequently, we combined SE with the
spatial attention module of the CBAM to propose a new SESA attention mechanism, as
shown in Figure 4.
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First, the input feature map obtains the channel attention weight c_out of the feature
map using the SE attention module. Subsequently, c_out is multiplied by input feature map
X to generate a new feature map Xc based on the channel attention weight. The calculation
process is shown in Equation (6):

Xc = X ⊗ c_out (6)

The feature map Xc generated by the SE module is input into the spatial attention
module of the CBAM to obtain the spatial attention weight s_out of the feature map.
Subsequently, X can be considered to be the feature map multiplied by s_out. Because
of the illumination reflection and texture changes in maritime images, the pixel value
of the image changes spatially; therefore, the spatial information in the image can be
difficult to weight accurately, making it difficult to determine the weight distribution
corresponding to the spatial information of the image. If Xc is multiplied by s_out, this
weighting method overemphasizes the information of certain spatial positions, resulting
in the compression or overemphasis of the reflection and texture change information
in the image. We chose to use X as the feature map multiplied by s_out such that the
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spatial attention weight s_out only controls the weighting of spatial information, thereby
preserving more spatial detail information without overemphasizing specific spatial
locations, which can be calculated as follows:

Xs = X ⊗ s_out (7)

Finally, we applied the sigmoid activation function to the feature map after summing
Xc and Xs to output the final feature map, the calculation formula of which is shown in
Equation (8):

Xcs = sigmoid (Xc ⊕ Xs) (8)

3.2.2. The C2fSESA Module

The C3 module of the YOLOv5 model has two branches—that is, one bottleneck is
stacked with n modules, the other using only a basic convolution module—and finally
performs the concat operation on the two branches, as shown in Figure 5a.
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In deep neural networks, gradients constitute important information for the training
process, as they can guide the updating of model parameters. However, when the depth
increases, the gradient information may become extremely sparse or discontinuous, making
it difficult to train and converge. The efficient layer-aggregation network (ELAN) [16]
module is an efficient layer-aggregation technology for deep neural networks. It can obtain
richer gradient flow information by aggregating the features of different depth layers, and
can solve the problem of difficult convergence when the depth model is extended. Its
structure is shown in Figure 5b.

Consequently, the C2f module is designed by integrating the ideas of the C3 module
and ELAN, and is able to obtain more abundant gradient flow information than the C3
module. The structure of the C2f module is as shown in Figure 5c.

The C2f module uses the split–apply–concatenate method for feature fusion. Thus,
the features of the different branches can be fully integrated, which is conducive to the
extraction of richer features. Additionally, we introduce the attention mechanism SESA into
the bottleneck of the C2f module and propose the C2fSESA module. This module helps the
model adaptively adjust the importance of each feature map, capture the local and global
features of the object more accurately, and improve the detection accuracy of the model.
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3.3. RGSPP Structure

Maritime images captured by shipborne UAVs often have different resolutions and
scales, and changes in the height and angle of the UAVs can cause different representations
of the same object at different scales.

This study used SPP layers to overcome the limitations of fully connected layers,
which require fixed-size inputs. First, we added a residual edge of size 1 × 1. Sub-
sequently, the three parallel MaxPool layers of sizes 5 × 5, 9 × 9, and 13 × 13 were
transformed into three serial MaxPool layers of size 5 × 5 to reduce the model parame-
ters and computational overhead. Subsequently, the SiLU activation function of Conv
was changed to a ReLU activation function, simplifying the convolution. Finally, the
simplified convolution was grouped again, each convolution kernel only acting on the
channels in each group instead of all the input channels, thereby reducing the model’s
computational overhead and memory consumption.

However, group convolution can also slightly reduce the expressive ability of the
model, as the number of channels in each group is the same. This may limit the model
from learning the combination of features between channels, resulting in a certain loss of
information. Introducing random operations based on group convolution is a means of
enhancing the expression and generalization abilities of convolutional neural networks.
Consequently, shuffled group convolution [44] was used to shuffle the output of each
group to enhance the interaction between different groups. The number of calculations
was relatively large, and the potential relationship between the channels could not be
determined, as shown in Figure 6.
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However, grouped convolution [45] and random channel rearrangement divide the
input feature map into multiple groups and randomly rearrange the channels in each group
to enhance the interaction between different channels while simultaneously reducing the
dependence of the model on the channel order, as shown in Figure 7.

Therefore, based on the group convolution and random channel rearrangement meth-
ods, we designed a new spatial pyramid pooling structure—that is, RGSPP—as shown
in Figure 8. Here, the convolution kernel is divided into four groups, each group being
responsible for processing the corresponding input layer to enhance the generalization
performance of the model.
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We compared different SPP structures at baseline, with the parameters and GFLOPS
(Giga Floating-point Operations Per Second) listed in Table 1. It is evident that the RGSPP
parameters and calculations are reduced. Our experiments also proved that RGSPP is not
only a lightweight spatial pyramid pooling structure but also improves the accuracy of
object detection.

Table 1. Comparison of spatial pyramid pooling structure parameters and calculation.

Model Parameters GFLOPS

SPPF 7,033,114 16.0
SimSPPF 7,033,114 16.0

SPPFCSPC 13,461,274 21.1
RGSPP 6,888,218 15.9

4. Experiments and Results

This section briefly describes the datasets used in the study. We then present the
details of the experimental design and results and analyze the performance of the proposed
method by comparing it with other object-detection algorithms. For an objective and fair
comparison, our experiments were conducted on an NVIDIA RTX 2060 GPU, using CUDA
v11.0, cuDNN v8.1.1, PyTorch 1.7.1, and other configurations.
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4.1. MOBDrone Dataset Based on an EO Sensor

The MOBDrone dataset [46] is a large-scale drone image dataset for MOB detection,
collected using the DJI FC6310 camera of the Phantom 4 Pro V2 UAV. The dataset comprises
66 video clips. We divided the 66 videos into frames based on specific intervals and
obtained 7805 images. After removing the empty maritime data, we divided the remaining
data into training, verification, and test datasets at a ratio of 8:1:1. The tags included five
types (person, boat, wood, lifebuoy, and surfboard); the number of labels for each category
is listed in Table 2.

Table 2. Statistics and samples of object annotation information.

Class Annotations Samples

Person 11,687
Boat 10,269

Wood 2459
Lifebuoy 1712
Surfboard 3793

To train and evaluate the mainstream object-detection network models better, we
counted the large, medium, and small objects in each category based on the metrics of the
Microsoft COCO challenge dataset (Table 3). As shown in Figure 9, the total number of
small objects is 12,817 (42.8%); the total number of medium objects is 11,301 (37.7%); and
the total number of large objects is 5802 (19.5%).

Table 3. Definition of large, medium, and small objects in the COCO dataset.

Objects Metric (Square Pixels)

Small Area < 322

Medium 322 < area < 962

Large Area > 962
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4.2. The Evaluation Index

We used the MOBDrone dataset to test the performance of the YOLO-BEV model, com-
prehensively considering the performance of the model from different aspects, including
detection accuracy and speed. Precision and recall were adopted as the accuracy indices.
The calculation formula for precision can be expressed as shown in Equation (9):

P =
TP

TP + FP
(9)

Recall can be calculated using Equation (10), as follows:

R =
TP

TP + FN
(10)

where TP denotes a positive sample that is correctly predicted, FP is a negative sample that
is incorrectly predicted, TN is a negative sample that is correctly predicted, and FN is a
positive sample that is incorrectly predicted.

The aim is to obtain a model which can simultaneously achieve high precision and
recall; therefore, these two factors must be considered comprehensively. One method uses
the harmonic mean F1 for measurement, and the other uses the area under the P-R curve
(AUC)—that is, the average precision (AP). The AP can be calculated as follows:

AP =
∫ 1

0
P(R)dR (11)

The AP is for one category, and we can calculate the average precision of all categories
according to Equation (12):

mAP =
1
|N|∑i∈N

AP(i) (12)

where N denotes the number of label categories in the MOBDrone dataset.
Consequently, in this study, we used mAP0.5:0.95, mAP0.5, mAP0.75, APS, ARS, and

frames per second (FPS) as the evaluation indices of the model to comprehensively evaluate
its actual performance. Among them, mAP0.5:0.95 is the average precision of all categories
with 10 thresholds between 0.5 and 0.95 (step = 0.05), mAP0.5 is the average precision of
all categories with a threshold of 0.5, and mAP0.75 is the average precision of all categories
with a threshold of 0.75; APS and ARS are the average precision and average recall for small
objects with 10 thresholds between 0.5 and 0.95.

Additionally, the FPS is an important index for measuring the real-time performance
of a computer vision system, indicating the number of frames processed per second.
In the object-detection of shipborne UAV images, a high FPS value ensures that the
system can respond to object changes in a timely manner, thereby ensuring real-time and
accurate detection.

4.3. Performance of the Object-Detection Algorithm

This article conducted a series of simulation experiments on the MOBDrone dataset
to demonstrate the effectiveness of the YOLO-BEV algorithm for small-object detection in
shipboard UAV scenarios.

4.3.1. Ablation Experiment

To explore the impact of different components of the model on the performance of
the algorithm, we conducted ablation experiments based on YOLOv5. We adjusted and
changed several key modules in the algorithm and retrained and tested it to evaluate the
contributions of the different modules. Table 4 lists the performance of the three improved
methods based on the YOLOv5 model.
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Table 4. YOLOv5 combines precision and recall performance of three improved methods.

Methods P C R AP1 AP2 AP3 APS ARS

YOLOv5 × × × 0.526 0.931 0.483 0.333 0.431
MI

√
× × 0.547 0.964 0.510 0.373 0.492

MII
√ √

× 0.557 0.969 0.513 0.390 0.498
MIII

√ √ √
0.564 0.971 0.536 0.407 0.513

Note:
√

: used; ×: not used; MI: Method I; MII: Method II; MIII: Method III; P: PAN+; C: C2fSESA; R: RGSPP;
AP1: mAP0.5:0.95; AP2: mAP0.5; AP3: mAP0.75.

With the improvement in the method, the model achieves a substantial improvement
in detection performance compared to the YOLOv5 baseline. In Method I, the mAP0.5:0.95
value is 0.547, which is 4.0% higher than that at the baseline. Additionally, the APS
value of Method I is 0.04 higher than that of YOLOv5, achieving a substantial increase of
12.0%, proving that the PAN+ module plays an important role in detecting small objects.
Compared with Method I, the mAP0.5:0.95, APS, and ARS indicators of Method II improve
by 1.8%, 4.6%, and 1.2%, respectively, proving that the C2fSESA module has rich gradient
information and the ability to focus on feature maps. Method III adds the RGSPP module
based on Method II, and the values of all evaluation indexes reach their highest values,
with the RGSPP module exhibiting greater competitiveness.

As shown in Table 5, the mAP0.5:0.95 value of the YOLO-BEV algorithm using the
MOBDrone test dataset is 0.564, which is 7.2% higher than the mAP0.5:0.95 value of YOLOv5.
In particular, the YOLO-BEV algorithm performs even better for the detection of small
objects. The APS value of the small object is 0.407, which is 22.2% higher than that of
YOLOv5. Moreover, the ARS of the YOLO-BEV algorithm is 19.0% higher than that of
YOLOv5, showing a very strong recall ability for small objects. The mAP0.5 and mAP0.75 of
the YOLO-BEV algorithm also increases by 4.3% and 11.0%, respectively, proving that its
regression ability to the object-bounding box is more powerful. Additionally, the detection
speed of the YOLO-BEV algorithm is maintained at 48 FPS, greatly improving the detection
accuracy of small objects in shipborne UAV scenarios under the premise of satisfying
real-time performance.

Table 5. Performance evaluation of YOLOv5 and YOLO-BEV on the MOBDrone dataset.

Methods mAP0.5:0.95 mAP0.5 mAP0.75 APS ARS

YOLOv5 0.526 0.931 0.483 0.333 0.431
YOLO-BEV 0.564 0.971 0.536 0.407 0.513

The precision, recall, mAP0.5:0.95, and mAP0.5 of the YOLOv5 and YOLO-BEV algo-
rithms are as shown in Figure 10. It is generally believed that the closer the algorithm curve
is to the top and the smaller the fluctuation, the better the overall performance. As shown
in Figure 10, the four curves (precision, recall, mAP0.5:0.95, and mAP0.5) of the YOLO-BEV
algorithm are all above those of the YOLOv5 algorithm and converge faster. In particular,
for the mAP0.5:0.95 curve, the increase is evident, verifying the high-precision performance
of the YOLO-BEV algorithm proposed in this study.

Table 6 presents the comparison results of the average precision values for each
category on the MOBDrone dataset for 10 thresholds between 0.5 and 0.95. From the
analysis of the YOLOv5 and YOLO-BEV algorithms on the AP0.5:0.95 value change of each
category, the YOLO-BEV algorithm greatly improved the detection accuracy of small
objects; in particular, for categories with many small objects, such as people and wood, the
detection results show an increase of 22.2% and 7.9%, respectively. The AP0.5:0.95 value for
large-boat objects is only reduced by 0.4%. For categories with more medium-sized objects,
such as life buoys and surfboards, the AP0.5:0.95 value of the YOLO-BEV algorithm improves
by 5.7% and 6.5%, respectively. Based on analysis of these results, we can conclude that the
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YOLO-BEV algorithm maintains its accuracy for large objects while greatly improving its
detection accuracy of small objects.
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Figure 10. Comparison of YOLOv5 and YOLO-BEV evaluation indicators; (a–d) respectively show
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Table 6. Comparison of average precision per category between YOLOv5 and YOLO-BEV on MOB-
Drone dataset.

Methods Person Boat Wood Surfboard Life_Buoy

YOLOv5
(AP0.5:0.95) 0.387 0.838 0.598 0.506 0.435

YOLO-BEV
(AP0.5:0.95) 0.473 0.835 0.645 0.539 0.460

4.3.2. Comparisons of the YOLO-BEV Algorithm with Other Object-Detection Algorithms

To further verify the high-precision performance of the YOLO-BEV algorithm, we
compared it with the SSD, RetinaNet, Faster R-CNN, VarifocalNet, YOLOv3, and YOLOv7
algorithms. To objectively compare the performance of each detector on the MOBDrone
dataset, the input resolution of the one-stage detector was adjusted to 416 × 416 px. The
two-stage detector used the default resolution of the official release code. Additionally, the
backbone network of the SSD algorithm was VGG16; that of RetinaNet, Faster R-CNN, and
VarifocalNet algorithms was ResNet50; that of the YOLOv3 algorithm was DarkNet53; and
that of the YOLOv5 and YOLOv7 algorithms was CSPDarkNet53.

Table 7 shows the detection performance comparison results of the YOLO-BEV algo-
rithm and other deep-learning object-detection algorithms on the MOBDrone dataset. As is
evident from Table 7, the mAP0.5 value of the YOLO-BEV algorithm reaches 0.971, which is
4.3% higher than that of the YOLOv5 algorithm. The detection speed of the YOLO-BEV
algorithm reaches 48 FPS. Although it is slightly lower than the 53 FPS of the YOLOv5
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algorithm, it still meets the real-time requirements of 30 FPS for maritime automation. In
the two-stage detection algorithm, both the Faster R-CNN and VarifocalNet algorithms
achieve high detection accuracy; however, the detection speed is only 11 and 15 FPS, respec-
tively, which does not meet real-time detection requirements. In the one-stage detection
algorithm, although the SSD algorithm has an advantage in speed compared with the
two-stage algorithm, it performs poorly in terms of accuracy. RetinaNet is a representative
one-stage algorithm. Although the mAP0.5:0.95 value reaches 0.549, the average precision
and recall for small objects are low and cannot meet real-time detection requirements.
Among the one-stage detection algorithms of the YOLO series, the YOLO-BEV algorithm
achieves excellent competitive performance in terms of both detection accuracy and speed.
Compared to the YOLOv3 algorithm, the mAP0.5:0.95, mAP0.5, and APS of the YOLO-BEV
algorithm increases by 3.8%, 3.7%, and 15.3%, respectively, with the FPS rate increasing
by 50%. Compared to the YOLOv7 algorithm, the mAP0.5:0.95, mAP0.5, and APS of the
YOLO-BEV algorithm increases by 2.4%, 2.9%, and 13.4%, respectively, and the FPS rate
increases by 30%. Three methods, namely YOLOv5, Fast R-CNN, and DETR, were used in
reference [24]. Compared with method 3 in reference [24], all evaluation indexes were im-
proved, among which APS was increased by 12.7%. Although the method in reference [26]
achieves 40 FPS in real-time, the average detection accuracy for small objects is only 0.350.
Although the detection speed of the YOLO-BEV algorithm is slightly lower than that of the
YOLOv5 algorithm, it is important to improve the detection accuracy of maritime objects to
achieve real-time performance. In particular, when detecting a MOB in maritime conditions,
one must accurately obtain the position of the MOB. In summary, the YOLO-BEV algorithm
is a high-precision detection algorithm for small objects under maritime conditions and is
suitable for shipborne UAV scenarios.

Table 7. Comparison of detection performance between YOLO-BEV and other deep-learning object-
detection algorithms on MOBDrone dataset.

Detection Backbone AP1 AP2 AP3 APS ARS FPS

SSD (1) 0.455 0.897 0.418 0.227 0.360 22
RetinaNet (2) 0.549 0.939 0.522 0.346 0.437 26

Faster R-CNN (2) 0.554 0.953 0.495 0.366 0.470 11
VarifocalNet (2) 0.560 0.960 0.529 0.397 0.494 15

YOLOv3 (3) 0.544 0.936 0.519 0.353 0.450 32
YOLOv5 (4) 0.526 0.931 0.483 0.333 0.431 53
YOLOv7 (4) 0.551 0.944 0.528 0.359 0.465 37

[24] (5) 0.551 0.957 0.522 0.361 0.474 23
[26] (3) 0.547 0.940 0.491 0.350 0.463 40

YOLO-BEV (4) 0.564 0.971 0.536 0.407 0.513 48

Note: (1): VGG16; (2): ResNet50; (3): DarkNet53; (4): CSPDarkNet53; (5): Transformer; AP1: mAP0.5:0.95;
AP2: mAP0.5; AP3: mAP0.75.

4.4. Visualization of Some Detection Results

Figure 11 shows the object recognition results of the UAVs at different heights
(30–60 m) in an actual sea area. As shown in Figure 11, even under conditions which
include illumination and angle changes, the proposed algorithm exhibits excellent per-
formance for small-object detection in maritime applications. However, given a novel
algorithm, more test conditions need to be considered to evaluate the actual usability of
the algorithm. Since it is extremely difficult and risky to record a maritime dataset in
reduced visibility, we used simulated datasets [47] for evaluation. Figure 12 illustrates
the visualization of object detection results using the YOLO-BEV algorithm under deteri-
orating visibility ((a) storms and heavy waves; (b) dim; (c) dark lighting; (d) fog). The
proposed algorithm shows good performance under challenging conditions such as dim
or dark light, fog, storm, or heavy waves.
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4.5. Architecture of the System

The shipborne UAV maritime object-detection system comprises a UAV terminal,
data communication module, shipboard computing terminal, object-detection algorithm,
interactive interface, and an airborne global positioning system (GPS) module. The UAV
obtains a maritime image sequence through an EO sensor and transmits it to the ship via
data communication. The object-detection algorithm on the shipboard computing terminal
automatically detects and identifies objects in the image, and the airborne GPS module
accurately locates them, after which the object information is displayed on the interactive
interface. Figure 13 shows the graphical user interface (GUI), including three components:
an image transmission video link address area, an airborne video recognition result display
area, and an airborne GPS position return area.
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5. Discussion
5.1. Discussion of Results

The iteration of AI intelligent algorithms is very important for the study of small-
object detection from the perspective of shipborne UAVs. Although many studies have
explored the problem of maritime object recognition by shipborne UAVs, these studies
have not fully considered its accuracy and real-time. In order to solve this problem, a
high-precision and real-time detection system is proposed in this study, which is suitable
for small object recognition by shipborne UAVs. In the ablation experiment in Table 4, the
influence of each improved module on the performance of the algorithm in this paper is
verified, thus proving the effectiveness of the improvement of each key module. It can
be seen from Tables 5 and 6 that through a series of improvements and optimization, the
detection accuracy of the proposed algorithm reaches the highest level, which proves the
superiority of the proposed algorithm in detecting targets from the perspective of maritime
UAVs. In Table 7, we compare the algorithm with other methods. Experimental results
show that the accuracy of the proposed algorithm achieves a leading edge. Although the
real-time performance is slightly lower than that of YOLOv5, the speed of the proposed
algorithm is still ahead of other algorithms, and it meets the requirement of 30 FPS for
maritime automatic driving. In order to further prove the generalization performance of
the algorithm, we carried out simulation tests under deteriorating visibility (dim or dark
lighting and in the presence of fog, storms, or heavy waves), and prove the applicability of
the algorithm under reduced visibility. While the test results of virtual datasets may not be
fully representative of what happens under actual sea conditions, they can provide initial
insights into how our methods perform in harsh environments.
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5.2. Limitations

Given a novel algorithm, it is necessary to evaluate the actual usability of the algorithm
in its real environment. The proposed algorithm was tested in the fields of sea surface
glare reflection, sea water texture change, UAV height and angle change, etc., and the
practical usability of the proposed algorithm was verified in these scenarios. However,
under deteriorating visibility (dim or dark lighting and in the presence of fog, storms, or
heavy waves), this kind of consideration would require many more test conditions and
possible real implementation and testing over several seasons. In Section 4, although we
used virtual datasets to test applicability under reduced visibility, we also acknowledge
that the test results of virtual datasets cannot fully represent what happens under actual
sea states. Therefore, it is necessary to further enhance the dataset under different sea
conditions, enhance the scale, diversity, and representativeness of the dataset, and improve
the generalization performance of the model.

In addition, the algorithm parameters used in the paper will have an impact on the
results. Different parameter settings will result in different detection performance, so more
parameter tuning is required.

6. Conclusions

This paper presents a novel approach for detecting small maritime objects from the per-
spective of UAVs, utilizing an enhanced detection model based on YOLOv5, CSPDarknet53,
FPN, and PAN. The proposed model incorporates three key improvements to address the
unique characteristics of the maritime environment. Through experimental verification on
the MOBDrone dataset, compared with YOLOv5, its detection accuracy of small objects is
greatly improved by 22.2%, and the inference speed of the model reaches 57 FPS, which
proves that the model can obtain higher detection accuracy and real-time performance. In
addition, this paper provides an overview of the architecture of a shipborne UAV maritime
object-detection system, equipping researchers with the necessary insight to better design
shipborne UAV maritime object-detection systems. Finally, algorithmic applications for
shipborne UAVs usually require real-time processing of large amounts of data, such as
sensor data (e.g., images). Therefore, in future work, converting the model into TensorRT
format can significantly improve the inference speed and performance of the model, and
meet the engineering application requirements of maritime shipborne UAVs.
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