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Abstract: Underwater acoustic channels, influenced by time-varying, space-varying, frequency-
varying, and multipath effects, pose significant interference challenges to underwater acoustic
communication (UWAC) signals, especially in non-cooperative scenarios. The task of modulating
and identifying distorted signals faces huge challenges. Although traditional modulation recognition
methods can be useful in the radio field, they often prove inadequate in underwater environments.
This paper introduces a modulation recognition system for recognizing UWAC signals based on
higher-order cumulants and deep learning. The system achieves blind recognition of received
UWAC signals even under non-cooperative conditions. Higher-order cumulants are employed due
to their excellent noise resistance, enabling the differentiation of OFDM signals from PSK and FSK
signals. Additionally, the high-order spectra differences among signals are utilized for the intra-class
recognition of PSK and FSK signals. Both simulation and lake test results substantiate the effectiveness
of the proposed method.

Keywords: underwater acoustic communication; modulation recognition; higher-order cumulants;
deep learning

1. Introduction

The ocean contains abundant untapped resources. To safeguard maritime sovereignty
and maritime rights and interests, the demand for underwater information transmission is
becoming increasingly urgent. However, the propagation of electromagnetic waves in un-
derwater media suffers from severe attenuation, which greatly limits the direct application
of wireless technologies in underwater communication. Although there are technologies
such as photonic communication for underwater communication, they have higher trans-
mission bandwidth, data transfer rates, lower link delays, and are difficult to detect with
high security. However, limitations, such as losses, caused by complex turbulence, bubbles,
seawater absorption, and light scattering in the underwater environment restrict their
transmission distance and reliability [1,2]. As a result, underwater acoustic communication
currently serves as the primary form of underwater information transmission and is gaining
more importance.

In underwater acoustic communication (UWAC), information is transmitted via sound
waves, and information is loaded by mapping parameters, such as phase, frequency,
and amplitude. In practical applications, there are two scenarios for the underwater
communication receiver to receive and process signals. In a cooperative communication
scenario, prior to the accurate restoration of the data encompassed within the signal,
the receiver must identify the modulation method, also known as the information loading
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method; in a non-cooperative communication scenario, the reconnaissance party needs to
quickly and accurately classify and recognize the intercepted signals’ modulation methods,
which is a prerequisite for further analyzing and mastering the enemy’s communication
information. Even if our side cannot directly decipher the information, we can send
deceptive signals to interfere with the enemy’s communication signals by identifying
their modulation methods, which can provide a new idea for underwater communication
countermeasures technology. Building a smooth and secure underwater communication
network in both civilian and military fields requires the automatic modulation classification
(AMC) of UWAC signals. Therefore, AMC holds great significance.

Figure 1 displays the two principal classifications of modulation identification meth-
ods: likelihood-based (LB) hypothesis testing based on decision-theory and feature-based
(FB) modulation classification based on feature extraction. The FB modulation classification
can be further segregated into three distinct types: statistical pattern analysis utilizing
feature extraction, modulation classification based on machine learning, and modulation
classification based on deep learning.

Figure 1. Common modulation recognition methods.

The hypothesis testing method based on decision theory, which is likelihood-based,
treats the modulation recognition problem as a probability-based hypothesis testing prob-
lem, utilizing hypothesis testing-related theory. It establishes the maximum likelihood
discrimination formula of the signal, deduces the optimal decision threshold of the signal,
compares a certain statistical quantity of the signal with the threshold value, and judges the
signal modulation type [3]. Despite the robust theoretical foundation of modulation recog-
nition technology based on the maximum likelihood ratio hypothesis testing algorithm, this
approach necessitates prior knowledge, such as the signal’s mean, variance, and covariance,
which can be challenging to acquire in typical non-cooperative communication settings.
This results in practical difficulties in application, insufficient generalization and robustness,
and high computational complexity. Therefore, this research method is not commonly used
at present [4].

The feature-based statistical pattern analysis method selects and extracts the signal’s
modulation-type features, transferring them from the object space to the feature space.
Subsequently, this method analyzes the distribution properties of the various features,
identifies the clustering patterns of different features, partitions the feature space, and then
maps it from the feature space to the decision space to make classification decisions or
judgments, ultimately accomplishing modulation recognition [5]. The disadvantage is
that the recognition framework of this method currently lacks a unified and complete
theoretical basis as support, and the recognition system is relatively complex. The algorithm
usually extracts features based on specific signal samples, and the decision threshold is
set artificially based on experience, so the recognition effect is greatly affected by changes
in noise and environment. When entering unfamiliar waters and the channel is not ideal,
the features will become blurred or even invalid, and the system’s robustness will be
insufficient [6].
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The machine learning-based signal modulation recognition method initially extracts
specific signal features and subsequently utilizes machine learning categorizer algorithms
to differentiate the signal’s modulation type based on the differences in signal features [7].
As the machine learning-based signal modulation recognition method is created manually
based on specific standards and then feature selection is determined based on these criteria,
the feature extraction procedure and the final prediction model learning are separate.
Consequently, the acquired features may not enhance the final model’s performance or
guarantee the model’s capacity for generalization.

The deep learning-based modulation recognition method employs deeper neural
networks and data-driven techniques to solve the modulation recognition problem without
human intervention [8,9]. It extracts complex features directly from raw data using a
feature extraction network and makes effective recognition decisions using a classification
network, thereby achieving end-to-end feature extraction and recognition. Compared to
conventional methods, it eliminates the need for complex manual feature selection and is
capable of achieving synchronous optimization processing of the feature extraction network
and classifier under sufficient training samples. This results in excellent communication
signal recognition performance and makes it an important technical method for target
feature extraction and recognition [10].

Thus, in comparison to the preceding three approaches, deep learning network technol-
ogy possesses potent representation learning capabilities, enabling the automatic extraction
of various intricate features from raw data. In the face of a complex underwater acoustic
channel, the deep learning-based modulation recognition classifier has good robustness
and can adapt to changes in the underwater environment, even under low signal-to-noise
ratio conditions, it can still effectively complete the signal modulation recognition task.

In 1998, Nandi, A.K. et al. systematically expounded the theory and algorithm of
automatic recognition of communication signal modulation in reference [11]. The simu-
lation results indicate that the results obtained by the artificial neural network method
are better than those obtained by the decision theory method. In 2016, O’Shea, T.J. et al.
utilized convolutional neural networks for the first time in communication signal recogni-
tion, as referenced in [12]. By constructing an end-to-end convolutional neural network, he
successfully identified the modulation methods of 11 different signals. In 2018, the team
further demonstrated the ability of deep learning (DL) in radio modulation recognition
through experimental research, which is stronger than computer vision (CV) and machine
learning (ML). The signal recognition model based on VGG-Net and ResNet networks can
identify 24 signal modulation methods [13]. The investigation carried out by Jeong, S. et al.
in [14] employed short-time Fourier transform (STFT) for generating a time–frequency
diagram of the communication signal. Subsequently, CNN was utilized to capture the
signal characteristics present in the time–frequency diagram. The FSK, PSK, and QAM
modulation methods were recognized. Zhang, Z. et al. proposed a feature fusion scheme
for AMC based on convolutional neural networks in reference [15]. By filtering the pseudo-
Wigner–Ville distribution and Born–Jordan distribution, this method transforms the signal
into two time–frequency images and employs a finely tuned CNN model to extract im-
age features. The outcomes of the simulation revealed that the scheme can achieve a
classification accuracy of 92.5% when the SNR is 4 dB.

The aforementioned accomplishments are some outcomes in the domain of modula-
tion recognition technology in wireless communication. In the complex time-varying and
space-varying underwater acoustic channel environment, improvements are needed in
wireless technologies to better adapt to the modulation recognition scenarios in UWAC.
Cheng, E. et al. proposed a method for recognizing MPSK-like UWAC signals, which
contain Gaussian white noise and multipath, in their study. Initially, this technique em-
ploys wavelet transform on the signals and utilizes the variance amplitude of the processed
signals for inter-class recognition to ascertain whether they are PSK-like modulation signals.
Eventually, the fourth-order cumulant of the signals is computed for intra-class recognition
of PSK-like signals. The simulation outcomes revealed that, at an SNR of −5 dB, the iden-
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tification precision for both BPSK and QPSK was 100% [16]. To address the problem of
acquiring high-quality labeled data in time-varying and space-varying underwater chan-
nels, Xu, Z. et al. presented a semi-supervised learning-based blind modulation recognition
technique called SSLUWA in their work [17]. The technique employs linear interpolation to
pseudo-label unlabeled signals and trains the classification system using the interpolation
consistency principle to extract classification features from unlabeled signals and test the
knowledge learned from labeled signals, improving recognition accuracy when labeled
data are scarce. Experimental results showed that compared to fully labeled samples, when
the labeled samples accounted for only 10%, the recognition accuracy was 99% at an SNR
of 2 dB.

In the context of non-cooperative reception, Wang, B. et al. proposed a deep learning-
based blind detection technique for underwater acoustic communication signals [18].
The technique utilizes an impulse noise preprocessor (INP) and a generative adversarial
network (GAN) to preprocess the received signals for noise reduction, mitigating the ad-
verse effects of underwater impulse noise. Subsequently, an automatic feature extraction
technique based on a convolutional neural network (CNN) is employed to differentiate
underwater acoustic communication signals from underwater noise. Furthermore, in their
subsequent research documented in [19], they introduced a hybrid neural network (HNN)
for modulation classification of UWAC signals. The network employs the same impulse
noise preprocessor (INP) as in [18] for noise reduction, and then employs a CNN with an
attention mechanism to extract signal features for recognition of 2FSK, 4FSK, 8FSK, PSK,
OFDM, and other signals. Subsequently, a sparse autoencoder is used for the intra-class
recognition of PSK-like signals, distinguishing between BPSK and QPSK. Field trial results
showed that except for 8FSK, the recognition accuracy for other signals was above 84.5%.
Lastly, in [20], the authors presented their new achievement, an underwater acoustic com-
munication modulation recognition technique suitable for small sample conditions, named
IAFNet. It includes an impulse noise pre-processing module (INP), an attention mechanism
(AN), and few-shot learning (FSL). The fundamental concept is to extract similarity features
from a handful of labeled signals and unlabeled signals, assign weights to the features
using an attention network, and then feed them into a similarity comparison module to
ascertain the modulation type of the unlabeled signals. The field trial outcomes indicated
that, aside from BPSK and QPSK signals, which had a 30% probability of being classified
erroneously as OFDM signals, the recognition accuracy for other signals exceeded 93%,
demonstrating the effectiveness of the proposed approach.

Wang, J. et al. proposed a deep fusion neural network model called R&CNN (recurrent
and convolutional neural network) for modulation classification of UWAC signals in their
work [21]. The model constructs a recurrent layer using a gated recurrent unit (GRU),
which can mitigate the interference of the Doppler effect by memorizing and processing
signal sequences. In the Yellow Sea zone of China, they assembled a dataset containing
measured signals of seven modulation types, namely BPSK, QPSK, BFSK, QFSK, 16QAM,
64QAM, and OFDM. The classification recognition accuracy on the field trial data reached
99.38%, outperforming traditional methods, such as AlexNet8, LSTM, and CNN-LSTM in
terms of recognition accuracy.

This paper presents a modulation recognition system designed for the blind identi-
fication of received signals in the passband, utilizing modulation techniques, like binary
phase shift keying (BPSK), quadrature phase shift keying (QPSK), 2-frequency shift keying
(2FSK), 4-frequency shift keying (4FSK), and orthogonal frequency division multiplexing
(OFDM) in non-cooperative settings, particularly tailored to complex underwater channel
environments. Below, we outline the primary contributions of this paper:

(1) An improvedsixth-order cumulant is proposed for the identification of OFDM signals.
(2) An improved bispectrum is proposed for the identification of BPSK, QPSK, 2FSK and

4FSK signals.
(3) Extensive simulations are conducted in a theoretical computer simulation environ-

ment and a Bellhop simulation environment. The simulations involve the addition
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of realistic in-band colored noise and multipath effects to the transmitted signals.
The simulation outcomes validate the effectiveness of the proposed techniques. More-
over, field experiments conducted in an actual lake environment furnish additional
proof of the effectiveness and resilience of the proposed system.

2. System Model
2.1. Signal Model

Several factors, including specific application scenarios, transmission distances, and
bandwidth limitations, need to be considered when selecting modulation schemes in un-
derwater acoustic communication. Different modulation schemes are suitable for different
channel conditions. This paper considers common underwater acoustic modulation signals
such as BPSK, QPSK, 2FSK, 4FSK, and OFDM. BPSK is generally suitable for poor channel
conditions, such as high noise environments or strong fading channels. BPSK’s two-phase
states provide high tolerance to the phase offset and inter-symbol interference, leading to
better error rate performance in low SNR environments. QPSK is suitable for relatively
good channel conditions, such as moderate signal-to-noise ratio environments. QPSK
divides the signal into four phase states, allowing for the transmission of more information
under the same bandwidth and power conditions. Therefore, in good channel conditions,
QPSK can provide higher transmission rates. Both 2FSK and 4FSK belong to frequency shift
keying modulation and are suitable for channel conditions with pronounced frequency
selective fading. As underwater acoustic channels are afflicted by frequency selective fad-
ing, FSK modulation schemes adapt to the frequency variations of the channel by changing
the carrier frequency, thereby improving communication reliability. Among them, 4FSK
can transmit more information under the same bandwidth and power conditions by di-
viding the signal into four frequency states, thus providing higher data transmission rates
compared to 2FSK.OFDM is appropriate for channel conditions characterized by frequency
selective fading and multipath propagation. As underwater acoustic channels are suscepti-
ble to these issues, OFDM segregates the spectrum into multiple subcarriers and transmits
them orthogonally, effectively minimizing inter-symbol interference caused by multipath
propagation, thereby enhancing anti-interference performance and spectral efficiency.

When there is no relative movement between the transmitter and receiver, the under-
water acoustic channel can be modeled as a coherent multipath UWAC channel. In this
scenario, the received signal on a single channel can be expressed as follows:

r(t) = h(t)⊗ s(t) + n(t) (1)

Here, r(t) denotes the signal received, h(t) represents the response of the system to
an impulse of the UWAC channel, s(t) represents the transmitted passband modulated
signal, ⊗ denotes the convolution operation, and n(t) represents the ambient noise in the
ocean environment.

If the transmitted signal s(t) is the MPSK signal, its mathematical expression is as
follows:

s(t) = Acos[2π fct + 2πk/M + θ] (2)

In this equation, A represents the magnitude of the signal, fc signifies the carrier
frequency, k is the symbol index, M stands for the number of symbols, and θ denotes the
initial phase.

If s(t) is the MFSK signal, its mathematical expression is as follows:

s(t) = Acos[2π f1t + ϕ1(k)] + Acos[2π f2t + ϕ2(k)] + · · ·+ Acos[2π fMt + ϕM(k)] (3)

where A is the signal amplitude, f1, f2, . . . , fM are the carrier frequencies, ϕ1(k), ϕ2(k), . . . ,
ϕM(k) represent the phase shifts corresponding to the k-th symbol, while M denotes the
total number of symbols.
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If the transmitted signal s(t) is an OFDM signal, its mathematical expression is as
follows:

s(t) =
N−1

∑
k=0

xk(t)ej2π fkt (4)

In this equation, xk(t) signifies the complex-valued symbol transmitted on the k-th
subcarrier at time t, fk denotes the frequency of the k-th subcarrier, N represents the total
number of subcarriers, and j stands for the imaginary unit.

To obtain xk(t) in the time domain, the Fourier inverse transform of the corresponding
frequency-domain symbol Xk is taken:

xk(t) =
1√
N

N−1

∑
n=0

Xkej2πkn/N (5)

In this equation, Xk denotes the complex-valued symbol transmitted on the k-th
subcarrier in the spectral domain.

The OFDM signal is formed by concatenating the time-domain symbols for all subcarriers:

s(t) =
N−1

∑
k=0

1√
N

N−1

∑
n=0

Xkej2πkn/Nej2π fkt (6)

Usually, the OFDM signal is transmitted through a frequency-selective channel, where
each subcarrier undergoes diverse channel gain and phase shift. At the receiver, the signal is
demodulated by performing a Fourier transform to recover the frequency-domain symbols
Xk that are then employed to retrieve the original data.

2.2. Underwater Acoustic Channel Analysis

Frequency selective channel refers to a channel in which the transmitted signal un-
dergoes frequency selective fading. This type of channel is characterized by different
degrees of signal attenuation at different frequencies, resulting in changes in the transmit-
ted signal’s spectrum. Multipath propagation refers to the phenomenon where the signal
reaches the receiver through multiple paths during transmission, with each path having
different propagation distances and propagation times. This leads to the generation of
multiple different time delays and amplitudes at the receiver. This phenomenon causes
the signals to superimpose, resulting in multipath interference. For frequency-selective
channels, multipath propagation can cause different degrees of interference on signals at
different frequencies, resulting in spectrum expansion and distortion. From the perspective
of ray acoustics, the signal is emitted from the sound source and travels along different
paths to reach the receiver. At the recipient’s end, the composite received signal arises from
the combination and interference of the transmitted signals across all conceivable acoustic
pathways. For simplicity, we assume that each path has sufficient stability during a certain
communication duration. Under this assumption, the underwater acoustic channel can be
approximated as a static time-invariant channel, and its corresponding impulse response is
a one-dimensional function with a delay τ, denoted as follows:

c(τ) =
P

∑
p=1

αpejφp δ
(
τ − τp

)
(7)

In Equation (7), δ(·) represents the Dirac impulse function, P represents the number
of paths in the channel, and αp, φp, τp signify the magnitude, phase, and delay of the p-th
path, respectively. The relevant path parameters can be obtained by solving the eigenray
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equations as mentioned earlier. Then, the channel response output signal is obtained by
convolving it with the transmitted signal.

r(t) =
∫ ∞

−∞
s(t− τ)c(τ)dτ (8)

By substituting c(τ) into the equation above, we obtain

r(t) =
P

∑
p=1

αpejφp s
(
τ − τp

)
(9)

In Equation (9), s(t) and r(t) indicate the emitted signal and the received signal,
respectively, following transmission through the underwater acoustic channel. The Doppler
shift refers to the change in frequency of a signal when either the source or the receiver is
in motion. When the source or the receiver moves toward the other, the signal frequency
increases; when the source or the receiver moves away, the signal frequency decreases.
In the underwater acoustic channel, the motion of a vessel or sonar equipment can cause
the Doppler shift. The Doppler shift affects the spectral composition of the transmitted
signal, resulting in changes in the received signal’s spectrum. When primarily considering
this factor, Doppler shift ∆ f can be expressed by the following formula:

∆ f = δ fc = vr fc/c (10)

In Equation (10), vr signifies the relative speed between the sender and receiver,
and can be expressed as vr = vT cos θT + v0 cos θ0. Here, vT and v0 denote the velocities
of the transmitter and receiver, respectively, while θT and θ0 represent the angles between
the transmitter and receiver velocities and the direction of sound propagation. Moreover,
fc denotes the carrier frequency, δ signifies the Doppler factor, and c denotes the speed of
sound. As the velocity of sound in the ocean is relatively low (approximately 1500 m/s)
compared to terrestrial wireless communication systems, the Doppler effect has a more
significant influence on underwater acoustic communication. The Doppler effect intro-
duces time-varying characteristics to the channel response. In underwater communication
systems, the channel’s time-varying nature, to some extent, can prevent the receiver from
recovering the carrier, making it impossible to achieve high-rate communication using
coherent transmission. Fading refers to the amplitude attenuation that signals experience
during transmission. In underwater acoustic channels, fading can be caused by various
factors such as sound propagation loss, scattering, and the Doppler effect. Fading leads to
changes in the amplitude of the received signal, thereby affecting signal quality and relia-
bility. In summary, frequency-selective channels in underwater communication are affected
by multipath propagation, Doppler shift, and fading. Multipath propagation causes signal
spectrum expansion and distortion, Doppler shift results in changes to the signal spectrum,
and fading causes changes in signal amplitude. These effects have significant impacts on
the transmission quality and reliability of signals.

2.3. Theoretical Analysis of Higher-Order Cumulant
2.3.1. Higher-Order Cumulant

Higher-order statistical analysis of signals, often termed non-Gaussian waveform
processing, refers to signal analysis utilizing higher-order statistical moments. Classical
signal processing approaches employ second-order statistical moments as mathematical
tools for analysis, which are represented in the temporal realm as correlation functions and
in the spectral domain as power spectra. However, these methods have certain limitations,
such as multiplicity or equivalency, and cannot identify non-minimum phase systems.
Moreover, they are susceptible to the influence of additive noise and can only handle
signal data with additive white noise. To address these limitations, higher-order statistical
moments are required. While analysis based on second-order statistical measures can solely
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capture the primary information of the signal, namely the outline, higher-order statistical
analysis can offer more intricate insights into the signal [22]. Consequently, this paper
employs higher-order statistical moments as mathematical tools for modulation recognition.

Reference [22] provides some derivations: Given a random variable x, the initial
characteristic function (also known as the moment generating function) is characterized as
the Fourier inverse transform of its probability density function.

φ(ω) =
∫ ∞

−∞
f (x)ejωxdx = E{ejωx} (11)

The cumulant generating function, alternatively referred to as the second moment-
generating function, is defined as follows:

ψ(ω) = ln(φ(ω)) (12)

Let the k-th derivative of the initial characteristic function be denoted as follows:

φk(ω) =
dkφ(ω)

dωk = jkE{xkejωx} (13)

By setting ω = 0, we can derive the k-th moment of x as follows:

mk = E{xk} = (−j)k dkφ(ω)

dωk

∣∣∣∣∣
ω=0

= (−j)kφ(k)(0) (14)

The delineation of the kth-order cumulant of x is

ckx = (−j)k dk ln(φ(ω))

dωk

∣∣∣∣∣
ω=0

= (−j)kψ(k)(0) (15)

We consider a Gaussian random variable x with a distribution, described as x ∼ N(0, σ2),
where its probability density function is expressed as

f (x) =
1√
2πσ

exp(− x2

2σ2 ) (16)

Thus, the generating function of moments for the Gaussian random variable x can be
formulated as follows:

φ(ω) =
∫ ∞

−∞
f (x)ejωxdx =

1√
2πσ

∫ ∞

−∞
exp(− x2

2σ2 + jωx)dx (17)

According to the integral transformation formula, the equation can be transformed
as follows: ∫ ∞

−∞
exp(−Ax2 ± 2Bx− C)dx =

√
π

A
exp(−AC− B2

A
) (18)

Let us consider the values A = 1
2σ2 , B = jω

2 , and C = 0. In this case, the moment
generating function of x can be expressed as follows:

φ(ω) = e−σ2ω2/2 (19)

In this case, the various derivatives of φ(ω) can be computed as follows:

φ′(ω) = −σ2ωe−σ2ω2/2 (20)

φ′′(ω) = (σ4ω2 − σ2)e−σ2ω2/2 (21)
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φ(3)(ω) = (3σ4ω− σ6ω3)e−σ2ω2/2 (22)

φ(4)(ω) = (3σ4 − 6σ6ω2 + σ8ω4)e−σ2ω2/2. . . . . . (23)

Therefore, the k-th order statistical moment of the Gaussian random variable x can be
represented as follows:

m1 = 0 (24)

m2 = σ2 (25)

m3 = 0 (26)

m4 = 3σ4 (27)

Consequently, it can be generalized that for any arbitrary integer k, the moment of the
random variable x following a Gaussian distribution is given by

mk =

{
0, k = Oddnumber
1 · 3 · · · (k− 1)σk, k = Evennumber

(28)

Subsequently, the cumulative generating function of x can be derived as follows:

ϕ(ω) = ln(φ(ω)) = −σ2ω2

2
(29)

The derivatives of the cumulative generating function of x with respect to its orders
are given by

ϕ′(ω) = −σ2ω (30)

ϕ′′(ω) = −σ2 (31)

ϕ(k)(ω) = 0, k > 2 (32)

Therefore, the kth-order cumulative moments of the Gaussian random variable x are
given by

c1 = 0 (33)

c2 = σ2 (34)

ck = 0, k > 2 (35)

Upon derivation, it becomes apparent that the variance of any zero-mean Gaussian
random process is equivalent to its second-order cumulant, which is also equivalent to its
variance σ2. The odd-order statistical moments are consistently zero, while the even-order
statistical moments are non-zero. Nevertheless, the higher-order cumulants (third-order
and beyond) are always zero. This indicates that the second-order cumulant is susceptible to
additive noise, whereas the higher-order cumulants (third-order and beyond) demonstrate
anti-noise interference characteristics for Gaussian random processes, such as Gaussian-
colored noise.

High-order statistical moments refer to moments greater than the second order, while
high-order cumulative moments refer to cumulative moments greater than the second
order. We denote the operation of calculating moments as mom(·) and the operation of
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calculating cumulative moments as cum(·). According to the definitions, we can derive
some properties of high-order moments and high-order cumulative moments:

According to the reference [22], in the presence of additive Gaussian-colored noise,
the high-order cumulant moments of the observation process mirror the high-order cu-
mulant moments of the non-Gaussian signal. In other words, the high-order cumulant
moments are insensitive or resistant to Gaussian-colored noise. While due to the absence of
semi-invariance in high-order moments, the high-order statistical moments of the observa-
tion process might differ from those of the non-Gaussian signal, suggesting that high-order
moments are susceptible to Gaussian noise. Therefore, in higher-order statistical analysis,
high-order cumulant moments are commonly used as tools for analyzing and processing
non-Gaussian signals, rather than high-order moments. In signal analysis, high-order
cumulant moments provide more comprehensive information about signal characteristics
compared to high-order moments, making them significant for the analysis and processing
of non-Gaussian signals.

Common high-order cumulative moments include the third-order cumulative moment
(skewness) and the fourth-order cumulative moment (kurtosis). Skewness reflects the
degree of asymmetry in the signal distribution and can be used to describe its asymmetric
characteristics. Kurtosis reflects the peakedness of the signal distribution and can be used
to describe its peakedness characteristics.

In signal analysis, high-order cumulative moments can be used to identify and dif-
ferentiate different types of signals. By calculating the high-order cumulative moments
of different signals, non-Gaussianity and nonlinearity features can be extracted, enabling
signal classification and recognition. Additionally, high-order cumulative moments can be
used to detect abnormal conditions in signals, such as abnormal pulses or noise, as these
abnormal signals often lead to significant changes in high-order cumulative moments.

In conclusion, high-order cumulative moments involve the accumulation computation
of higher-order statistical quantities of signals, providing more detailed and accurate
information about signal characteristics. They have a crucial role in the examination and
manipulation of signals that are non-Gaussian and nonlinear. The application of high-order
cumulative moments in signal processing, pattern recognition, and anomaly detection
fields can help us better understand and utilize signal properties.

The pth-order mixed moment of the stationary stochastic process x(t) is defined as
follows [22]:

Mpq = E[x(k)p−qx∗(k)q] (36)

The second to eighth-order cumulants of x(t) can be obtained as follows [23]:

C20 = Cum(x, x) = M20 = E[x(k)2] (37)

C21 = Cum(x, x∗) = M21 = E[|x(k)|2] (38)

C40 = Cum(x, x, x, x) = M40 − 3M2
20 (39)

C41 = Cum(x, x, x, x∗) = M41 − 3M20M21 (40)

C42 = Cum(x, x, x∗, x∗) = M42 − |M20|2 − 2M2
21 (41)

C60 = Cum(x, x, x, x, x, x) = M60 − 15M40M20 + 30M3
20 (42)

C61 = Cum(x, x, x, x, x, x∗) = M61 − 5M40M21 − 10M20M41 + 30M3
20M2

21 (43)
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C63 = Cum(x, x, x, x∗, x∗, x∗) = M63 − 6M41 M20 − 9M42 M21 + 18M2
20 M21 + 12M3

21 (44)

C80 = Cum(x, x, x, x, x, x, x, x) = M80 − 28M20 M60 − 35M2
40 + 420M2

20 M40 − 630M4
20 (45)

In the event that x(t) is a Gaussian process, the cumulants beyond the second order
will always be zero, resulting in the higher-order cumulants being capable of efficiently
attenuating Gaussian noise. The theoretical values of higher-order cumulants for various
modulation techniques of baseband signals are detailed in Table 1 [24,25].

Table 1. Theoretical values of higher-order cumulants for various types of digital modulation signals.

Modulation
Mode |C20| |C21| |C40| |C41| |C42| |C60| |C61| |C63| |C80|

2ASK E * E 2E² 2E² 2E² 16E³ 16E³ 13E³ 35E4

4ASK E E 1.36E² 1.36E² 1.36E² 8.32E³ 8.32E³ 9.16E³ /
BPSK E E 2E² 2E² 2E² 16E³ 16E³ 13E³ 272E4

QPSK 0 E E² 0 E² 0 4E³ 4E³ 34E4

8PSK 0 E 0 0 E² 0 0 4E³ /
2FSK 0 E 0 0 E² 0 0 4E³ 0
4FSK 0 E 0 0 E² 0 0 3E³ /
8FSK 0 E 0 0 E² 0 0 3E³ /

16QAM 0 E 0.68E² 0 0.68E² 0 2.08E³ 2.08E³ 14E4

64QAM 0 E 0.619E² 0 0.619E² 0 1.80E³ 1.80E³ /
OFDM 0 0 0 0 0 0 0 0 0

* where E is the power of the signal.

In OFDM systems, the spectrum is divided into multiple subcarriers, and modulation
and transmission are performed on each subcarrier. To simplify system design and imple-
mentation complexity, OFDM assumes that the modulation sequences on each subcarrier
are independent and identically distributed complex random sequences. This assumption
is made to simplify the system design and implementation complexity. If the modula-
tion sequences on each subcarrier are mutually independent and identically distributed
complex random sequences, the same modulator and demodulator can be used to process
each subcarrier, thus reducing system complexity. Additionally, this assumption simplifies
the implementation of key techniques, such as channel estimation and equalization. The
design and implementation of OFDM systems are closely related to the independence and
identical distribution of the modulation sequences on each subcarrier. When designing an
OFDM system, parameters such as the number of subcarriers, frequency spacing between
subcarriers, and modulation scheme need to be determined. By assuming that the modu-
lation sequences on the subcarriers are independent and identically distributed complex
random sequences, system performance analysis and optimization can be conducted to
select appropriate parameter settings. In the implementation of an OFDM system, the same
modulator and demodulator can be used to process the modulation sequences on each
subcarrier, simplifying the hardware design and software implementation of the system.

OFDM is a signal composed of multiple orthogonal subcarriers, with each subcarrier
transmitting independent data. The frequency spacing between subcarriers in an OFDM
system is orthogonal to each other, which helps avoid interference between subcarriers.
The time-domain waveform of an OFDM signal is formed by adding multiple sinusoidal
waves together. According to the central limit theorem, when many independent random
variables with finite variances are linearly summed, the distribution of the sum is inclined
to a normal distribution. In an OFDM signal, the data on each subcarrier can be considered
as independent random variables, and due to the orthogonal frequency spacing between
subcarriers, their linear sum can be approximated as a Gaussian distribution. Furthermore,
OFDM signals are periodic in the time domain, while a Gaussian distribution is a stationary
process that has infinite bandwidth in the spectral domain. As a result, the spectrum of an
OFDM signal remains flat near the center frequency of each subcarrier and decays rapidly
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at the frequency spacing between subcarriers. This spectral characteristic contributes to
the improved spectral efficiency and resistance to multipath fading in OFDM systems.
In conclusion, the orthogonality between subcarriers and the application of the central
limit theorem results in the Gaussian distribution characteristics of OFDM signals in the
spectral domain.

Regarding the received OFDM signal at the receiver, since the OFDM signal is a super-
position of multiple orthogonal subcarriers, it is assumed that the modulation sequences
on individual subcarriers follow independent and identically distributed complex random
sequences. According to the central limit theorem of statistics, the OFDM communication
signal follows an asymptotic complex Gaussian distribution. Furthermore, the Gaussian
nature of OFDM is affected by the number of subcarriers, with stronger Gaussianity ob-
served as the number of subcarriers increases [23]. This property is independent of the
modulation scheme used on the subcarriers, whether it is BPSK or QPSK. For single-carrier
modulation signals, they do not exhibit normal distribution characteristics, so their C42 and
C63 are non-zero.

This paper constructs

C̃42(x(n)) =

∣∣∣∣∣C42

C2
21

∣∣∣∣∣ (46)

C42 = 10log10(C̃42(x(n)) + 1) (47)

C̃63(x(n)) =

∣∣∣∣∣C63

C3
21

∣∣∣∣∣ (48)

C63 = 10log10(C̃63(x(n)) + 1) (49)

In the baseband, the theoretical values of C̃42(x(n)) for BPSK, QPSK, 2FSK, 4FSK, and
OFDM signals are 2, 1, 1, 1, and 0, respectively. The theoretical values of C̃63(x(n)) are 13,
4, 4, 3, and 0, respectively. The aim of creating C42 and C63 is to augment the separation
between the data that correspond to the higher-order cumulants of distinct modulation
signals. This is conducted to more effectively differentiate between various modulation
schemes in the presence of noise. Compared to C̃42(x(n)) and C42, due to the complex
noise effects in the underwater acoustic channel, using the sixth-order cumulant will have
higher robustness than employing the fourth-order cumulant, and C63 is used in this paper
to distinguish between OFDM and other modulation schemes.

2.3.2. High-Order Spectral Analysis

The higher-order spectrum, also known as the polyspectrum, refers to the spectrum
containing multiple frequencies. More precisely, the third-order spectrum S3x(ω1, ω2) is
known as the bispectrum, while the fourth-order spectrum S4x(ω1, ω2, ω3) is commonly
referred to as the trispectrum. This is because they respectively represent the energy
spectrum of two and three frequencies. It is customary to use Bx(ω1, ω2) to represent the
bispectrum and Tx(ω1, ω2, ω3) to express the trispectrum. The implementation process of
the bispectrum is derived below [22].

Consider zero-mean observed samples x(0), x(1), . . . , x(N − 1) with a sampling fre-
quency of fs. The data to be detected are partitioned into K segments, each with a length
of M, denoted as x(k)(0), x(k)(1), · · · , x(k)(M − 1), where k = 1, . . . , K, and overlapping
between adjacent data segments is permitted.

We compute the coefficients of the discrete Fourier transform (DFT), where λ = 0, 1, . . . , M/2
and k = 1, . . . , K.

X(k)(λ) =
1
M

M−1

∑
n=0

x(k)(n)e−j2πnλ/M (50)
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We compute the triple correlation of DFT coefficients, where ∆0 = fs/N0, and N0 and
L1 must meet the condition that M = (2L1 + 1)N0:

b̂k(λ1, λ2) =
1

∆2
0

L2

∑
i1=−L1

L1

∑
i2=−L1

X(k)(λ1 + i1)X(k)(λ2 + i2)X(k)(−λ1 − λ2 − i1 − i2) (51)

where k = 1, · · · , K; 0 ≤ λ2 ≤ λ1, λ1 + λ2 ≤ fs/2.
The average value of K-segment bispectrum estimation is the final bispectrum estima-

tion value of the sample data [22].

B̂D(ω1, ω2) =
1
K

K

∑
k=1

p̂k(ω1, ω2) (52)

where ω1 = 2π fs
N0

λ1, ω2 = 2π fs
N0

λ2.

3. Proposed Methods
3.1. System Framework

The configuration of the system for recognizing underwater communication signal
modulation, which is based on higher-order cumulant theory and deep learning network,
is illustrated in Figure 2. The system first utilizes the improved higher-order cumulant
C63 value of OFDM, which is zero, while the C63 values of other phase modulation and
frequency type signals are non-zero. By using this difference, OFDM and other modulation-
type signals can be distinguished. The theoretical simulation results without noise are
shown in Figure 3, and it can be seen that the feature distance between C42 and C63 is
larger than that between C̃42(x(n)) and C̃63(x(n)), resulting in a better distinguishing effect.
Moreover, the distinguishing effect of C63 is better than that of C42. Therefore, it is more
appropriate for the system to use C63 to distinguish OFDM and other modulation types.

Figure 2. Block diagram of the modulation recognition system.

Then, using the theory of higher-order spectra characteristics of the signal, the bis-
pectrum of signals with different modulation methods is plotted. Figure 4 shows the
bispectrum generated under an SNR of 10 dB.
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Figure 3. Higher-order cumulants under a theoretical simulation environment without noise. (a) The
trend of C̃42(x(n)) with respect to the SNR; (b) the trend of C42 with respect to the SNR; (c) the trend
of C̃63(x(n)) with respect to the SNR; (d) the trend of C63 with respect to the SNR.

(a) (b)

(c) (d)

Figure 4. The bispectrum of the signal. (a) BPSK; (b) QPSK; (c) 2FSK; (d) 4FSK.
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Due to the fact that the bispectrum directly generated does not have prominent features
and is easily obscured by noise, this paper has made improvements based on this and
squared the signal before estimating its bispectrum. The enhanced bispectrum of the
squared signal is presented in Figure 5. It is apparent that the distinctions between the
spectra of various signals are more pronounced, making it suitable for identifying the
modulation type in image recognition.

(a) (b)

(c) (d)

Figure 5. Squared bispectrum of the signal. (a) BPSK; (b) QPSK; (c) 2FSK; (d) 4FSK.

3.2. Neural Network Model

Feedforward neural networks that encompass convolutional operations and possess
a deep structure are commonly known as conventional convolutional neural networks
(CNNs). The most representative of these is the LeNet network model proposed by Yan
LeCun in 1998, which laid the foundation for modern CNNs and earned him the title of
“father of convolutional neural networks”. Figure 6 displays the LeNet network architecture,
which consists of convolutional layers, activation layers, pooling layers, fully connected
layers, and ultimately utilizes the softmax function to classify the resultant image [26].
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Figure 6. LeNet network structure.

Nevertheless, due to the intricate nature of the UWAC channel environment and the
impact of noise, the signal may experience distortion, and the critical feature expression in
the squared bispectrum plot may also be obscured by noise. Consequently, classical CNN
networks exhibit substandard recognition performance under low signal-to-noise ratios.
One potential solution is to augment the depth of the network to gather a greater amount
of information present in the images. However, blindly pursuing network depth can lead
to problems such as gradient disappearance or explosion, and bring difficulties to manual
parameter tuning of the network.

Therefore, this paper uses the ResNet model proposed by He, K. et al. in 2015 as the
main structure [27]. The fundamental component of the network, ResBlock, is depicted
in Figure 7. It creates “shortcut connections” between the upper and lower layers, which
facilitates gradient backpropagation throughout the training process and trains deeper
CNN networks. From the perspective of information transmission, this structure has
advantages. In conventional convolutional neural networks, information loss may occur
after convolution and other operations, and as the network’s depth escalates, the loss
of information becomes increasingly severe. This can result in issues such as gradient
disappearance or explosion, rendering the network ineffective in training. In the design of
ResBlock, through the direct bridging operation from the upper layer to the lower layer,
the lower layer can receive the feature representation extracted by the convolution layer
as well as the complete information from the upper layer, effectively reducing the loss of
information during network transmission.

In ResNet, the skip connection operation, also known as the direct bridging operation,
connects the input signal directly to the output signal, enabling the preservation and
transmission of information across layers. This architecture aids in resolving the problems of
dwindling and skyrocketing gradients in deep neural networks. By using skip connections,
the input signal can bypass certain layers and be directly propagated to subsequent layers,
thereby retaining more information and gradients.

The convolution operation is a commonly used feature extraction method in deep
learning. Through convolution operation, neural networks can learn to extract local features
from data such as images, speech, and text. The convolution kernel performs convolu-
tion operation on the input data by the sliding window, convolving the local features
within the window with the convolution kernel, and obtaining feature maps. Through
multiple convolution operations, neural networks can gradually extract more abstract and
advanced features.

Batch normalization is a technique used to accelerate training and improve the perfor-
mance of neural networks. It normalizes the input of each mini-batch, making the mean of
each feature dimension close to 0 and the variance close to 1. This mitigates the challenges
of gradient vanishing and exploding, while simultaneously enhancing the steadiness and
rate of convergence of the network. In addition, batch normalization also has a certain
regularization effect, which can reduce the risk of overfitting.

ReLU (rectified linear unit) activation function is a commonly used non-linear acti-
vation function. It sets the input signal to 0 for values less than 0, and keeps the values
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greater than 0 unchanged. The ReLU activation function has a simple computational form
and good non-linear expression ability, which helps neural networks learn more complex
features and express more complex non-linear relationships. Furthermore, the ReLU activa-
tion function possesses sparse activation characteristics, which aid the network in learning
more sparse feature representations and enhancing the network’s generalization capability.

In summary, in ResNet, the skip connection operation achieves the preservation and
transmission of information across layers, convolution operation extracts features, batch
normalization accelerates training time and improves network performance, and the ReLU
activation function enhances non-linear relationships, thereby improving the performance
and generalization ability of neural networks.

In ResBlock, the information is divided into two paths. One path directly proceeds to
the subsequent layer, while the other path traverses through a convolution layer with a
kernel size of 3 × 3, a stride of 1, and a padding of 1, succeeded by a batch normalization
layer and a ReLU activation layer. The batch normalization layer is employed to expedite
the training process and enhance the model’s generalization capability, whereas the ReLU
activation function is a frequently used nonlinear activation function that amplifies the
network’s nonlinear expression ability. Among these, the in-place setting of the ReLU
activation function is set to True, which implies that it operates in place and can conserve
memory usage.

Figure 7. ResBlock.

The overall residual network structure is depicted in Figure 8. Because the bispectrum
plot has central symmetry, the actual input of the network is in the lower right corner
of the cropped image, which accounts for 1/4 of the original image. The image passes
through a convolution layer equipped with a 3 × 3 kernel size, a stride of 1, and a padding
of 1, subsequently accompanied by a batch normalization layer and a ReLU activation
layer. Then it enters the residual network layer, which is composed of three residual blocks,
as mentioned earlier, for feature extraction. This structure is deeper than a CNN network.
Finally, average pooling is performed, and the recognition result is output using the softmax
function through a fully connected layer. The network used the cross-entropy loss function
to measure the difference between the true values and the model’s predicted values for
image classification tasks.
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Figure 8. ResNet network structure.

Table 2 illustrates the network parameters utilized in this paper.

Table 2. Transmission signal parameters in the simulation environment.

Structure Layer Name Input Channels Output Channels Stride Padding

Input
Conv2d(3 × 3) 16 16 1 1
BatchNorm2d / 16 / /

ReLU inplace = True

ResBlock × 3

Conv2d(3 × 3) 16 16 1 1
BatchNorm2d / 16 / /

ReLU inplace = True
Conv2d(3 × 3) −1 * 16 1 1
BatchNorm2d / 16 / /

ReLU inplace = True

Output
AvgPool2d kernel_size = 3

Full connection_1 16,384 256 / /
Full connection_2 256 4 / /

* The parameter represented by −1 varies with the number of channels in the previous layer’s output.

The neural network in this study was trained and evaluated on an Ubuntu system with
a 12th Gen Intel(R) Core(TM) i9-12900KF CPU and a GeForce RTX 3090 GPU, with 64 GB
of graphics memory. The environment was established using the PyTorch deep learning
network platform framework. During the training process, the Adam optimizer with a
learning rate of 0.001 was employed, and the batch size for both the training and testing
datasets was set to 64. The network was trained for 100 epochs.

4. Experiment and Verification

In this paper, a training set generated under a theoretical simulation environment was
constructed, and test sets generated under a theoretical simulation environment, a Bellhop
underwater acoustic simulation channel environment, and a real lake trial environment
were used for testing. The empirical findings demonstrate the strength of the system in
blind recognition of received signals in non-cooperative communication scenarios.

4.1. Simulation Verification

In this paper, we constructed training and test sets in a theoretical simulation environ-
ment, and the parameters of the transmitted signals are shown in Table 3.

To make the simulation results closer to the real environment and mitigate the disparity
between the training and actual test datasets, after the transmission signals were generated,
they passed through a Rayleigh fading channel with a multipath number of 7 and added
in-band colored noise with a bandwidth of 4000–8000 Hz, rather than simple Gaussian
white noise. This can better simulate the real underwater acoustic channel environment,
enhance the training set’s capacity for generalization, and enhance the persuasiveness of
the simulation results.
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Table 3. Transmission signal parameters in a simulation environment.

Signal Frequency Band: 4000–8000 Hz

Sampling Frequency: 48,000 Hz

Modulation Mode Source
Length/bit Data Rate/bps Code Width/ms Signal

Duration/s

BPSK 40,000 4000 0.25 10.01
QPSK 80,000 8000 0.25 10.01
2FSK 500 47 21.00 10.68
4FSK 500 47 42.00 10.67

OFDM-BPSK 28,000 2678 16.00 10.46
OFDM-QPSK 56,000 5357 16.00 10.45

As shown in Figure 9, the signal passed through a channel with a multipath number
of 7 and added in-band colored noise, and the SNR (SNR) range varied from −10 dB to
20 dB, gradually increasing in 2 dB steps. The regularity of C̃42(x(n)), C42, C̃63(x(n)) and
C63, estimated as SNR changes, can be used to set a classification threshold of 0.7, which
can distinguish OFDM from BPSK, QPSK, 2FSK, and 4FSK signals when the SNR is 0 dB.
Comparing (a) and (b), and (c) and (d), it can be found that even after adding noise, C42
and C63 still have a larger feature spacing than C̃42(x(n)) and C̃63(x(n)). Comparing (b)
and (d), it can be seen that the discrimination effect of C63 is better than that of C42.

(a) (b)

(c) (d)

Figure 9. Higher-order cumulants in a theoretical simulation environment with noise and multipath
effects. (a) C̃42(x(n)) trend with SNR changes; (b) C42 trend with SNR changes; (c) C̃63(x(n)) trend
with SNR changes; (d) C63 trend with SNR changes.
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As shown in Figure 10, the squared spectrogram of the signal was plotted after adding
multipath effects and in-band colored noise with SNRs of −10 dB, 0 dB, 10 dB, and 20 dB.
The constructed training and test sets consisted of 12,800 and 640 images, respectively,
which were input into ResNet for training and testing. The network’s testing recognition
outcomes were exhibited in the shape of a confusion matrix, as illustrated in Figure 11.
It is discernible that ResNet achieved 100% recognition accuracy for BPSK, QPSK, 2FSK,
and 4FSK signals at an SNR of 0 dB.

(a) (b)

(c) (d)

Figure 10. Squared bispectrogram generated at an SNR of 10dB. (a) BPSK; (b) QPSK; (c) 2FSK;
(d) 4FSK.

As shown in Figure 12, the curves of the recognition accuracies of ResNet and LeNet
networks with SNR changes are presented. It is evident that ResNet outperforms LeNet
under low SNR conditions. LeNet achieves a 100% recognition rate at an SNR of 2 dB,
while ResNet achieves a 100% recognition rate at an SNR of 0 dB. To summarize, it can be
observed that ResNet achieves 100% intra-class recognition accuracy at an SNR of 0 dB for
BPSK, QPSK, 2FSK, and 4FSK signal classifications. The intra-class recognition accuracy is
around 90% for SNR > −3 dB and reaches 80% for SNR > −8 dB.
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(a) (b)

(c) (d)

Figure 11. The testing confusion matrix at different SNRs under theoretical simulation conditions.
(a) SNR = −10 dB; (b) SNR = 0 dB; (c) SNR = 10 dB; (d) SNR = 20 dB.

Figure 12. Network recognition accuracy curve under theoretical simulation conditions.
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The training and testing processes of the network with an SNR of 20 dB are presented
in Figure 13. It is apparent from Figure 13a that the ResNet achieves a testing accuracy that
tends to be 100% from the beginning, while the testing accuracy of LeNet fluctuates signifi-
cantly. Moreover, as shown in Figure 13b,c, the testing loss and training loss demonstrate
that ResNet can converge rapidly and achieve optimal performance compared to LeNet.

(a) (b)

(c)

Figure 13. The training and testing process of the network at an SNR of 20 dB. (a) Test accuracy curve;
(b) test loss curve; (c) train loss curve.

This paper further demonstrates the effectiveness of the proposed method by com-
paring it with the methods proposed in references [28,29]. Reference [28] used the original
bispectrum of the signal as the dataset for the deep learning neural network, directly
estimating the bispectrum of the signal. Reference [29] used the smooth pseud Wigner-Ville
distribution (SPWVD) to plot the time–frequency diagram of the signal as the dataset for
the neural network. Figure 14 shows the performance of the three methods in the inter-class
recognition of PSK, FSK, and OFDM signals in a computer simulation environment. Both
the original bispectrum and SPWVD methods also exhibit good performance in recognizing
PSK, FSK, and OFDM signals, with an inter-class recognition accuracy of over 90% when
SNR > 0 dB. The proposed squared bispectrum method achieves 100% inter-class recogni-
tion accuracy when SNR≥−4 dB. Figure 15 shows the performance of the three methods in
intra-class recognition of BPSK, QPSK, 2FSK, and 4FSK signals, highlighting the superiority
of the proposed method. The average recognition accuracy of the original bispectrum
method is 78.91%, while the average recognition accuracy of the SPWVD time–frequency
method is 67.42%.
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Figure 14. Inter-class recognition comparison curves under theoretical simulation conditions.

Figure 15. Intra-class recognition comparison curves under theoretical simulation conditions.

4.2. Bellhop Dataset Simulation Validation

In this work, a Bellhop simulation model was used to generate underwater acoustic
channels. The simulated source depth was set to 100 m, the receiver depth was set to 50 m,
and the lateral communication distance between the transmitter and receiver was 1 km.
The sound ray diagram of the simulated water is shown in Figure 16, and the generated
channel impulse response is shown in Figure 17. It can be seen that the channel received by
the receiver comprises 7 multipaths.
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Figure 16. Sound ray diagram between the transmitter and receiver in the Bellhop.
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Figure 17. Impulse response of the UWAC channel in the Bellhop simulation.

As shown in Figure 18, the signal passed through a Bellhop channel and added colored
noise within the bandwidth with a step size of 2 dB, ranging from 10 dB to 20 dB. The trends
of estimated C̃63(x(n)) and C63 with the change of SNR were obtained. The results show
that the classification threshold set to 0.7 can distinguish OFDM from BPSK, QPSK, 2FSK,
4FSK and other modulated signals at an SNR of 4 dB in the Bellhop simulated underwater
acoustic channel.
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Figure 18. Higher-order cumulants in the Bellhop-simulated channel environment. (a) The trend of
C̃63(x(n)) with the change of SNR. (b) The trend of C63 with the change of SNR.

Using the training set of 12,800 images generated in a theoretical simulation environ-
ment, the test set of 640 images generated by Bellhop was tested. The squared spectrogram
generated by the Bellhop channel is shown in Figure 19. The testing recognition outcomes
are presented in Figure 20. It is evident that ResNet can precisely discern BPSK, QPSK,
2FSK, and 4FSK signals with 100% accuracy at an SNR of 2 dB. The effectiveness is basically
the same as that in the theoretical simulation environment, indicating that the quality of
the training set generated by the simulation meets the simulation requirements of complex
underwater acoustic channel environments.
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(a) (b)

(c) (d)

Figure 19. Squared spectrogram generated at an SNR of 10 dB. (a) BPSK; (b) QPSK; (c) 2FSK; (d) 4FSK.

(a) (b)

(c) (d)

Figure 20. The testing confusion matrix at different SNRs under Bellhop simulation conditions.
(a) SNR = −10 dB. (b) SNR = 0 dB. (c) SNR = 2 dB. (d) SNR = 20 dB.
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As shown in Figure 21, the test set generated under the Bellhop environment is more
affected by the simulated underwater acoustic channel noise than the test set generated
in a theoretical simulation environment. In the range of −10 dB to 0 dB, the recognition
accuracies of ResNet and LeNet networks decreased, but overall, ResNet has better signal
modulation-type recognition performance than LeNet. ResNet can achieve 100% recog-
nition accuracy at an SNR of 2 dB, while LeNet still fluctuates in recognition accuracy in
environments with SNRs above 6 dB and cannot reach 100% accuracy. This indicates that
ResNet is more robust than LeNet in terms of changes in SNRs.

Figure 21. Network recognition accuracy curve under the Bellhop-simulated channel conditions.

Figure 22 shows the performances of the three methods in inter-class recognition
of PSK, FSK, and OFDM signals in a Bellhop-simulated underwater acoustic channel
environment. Figure 23 demonstrates the performances of the three methods in intra-class
recognition of BPSK, QPSK, 2FSK, and 4FSK signals. Further validation of the results
in the computer simulation environment shows that both the original bispectrum and
SPWVD time–frequency methods achieve inter-class recognition accuracy of over 90%
for PSK, FSK, and OFDM signals at 2 dB, slightly outperforming the proposed squared
bispectrum method. In intra-class recognition, the average recognition accuracy of the
original bispectrum method is 75.92%, while the average recognition accuracy of the
SPWVD time–frequency method is 65.15%, highlighting the superiority of the proposed
method in this paper.

Figure 22. Inter-class recognition comparison curves under Bellhop simulation conditions.
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Figure 23. Intra-class recognition comparison curves under Bellhop simulation conditions.

4.3. Lake-Test Dataset Verification

In September 2018, a field experiment was conducted at Danjiangkou Reservoir,
Danjiangkou City, Hubei Province, China, to verify the recognition performance of the
modulation recognition system proposed in this paper under practical underwater channel
conditions. The experiment was conducted on the lake and the communication distance
was 1 km. The arrangement of the transmitting and receiving apparatus is illustrated in
Figure 24.The sound source at the emitting end was directly connected to the transducer
via a long cable using a laptop and power amplifier to generate sound. The receiving end
used a mid-frequency underwater acoustic communication integrated machine developed
by our research team, as shown in Figure 25.

Figure 24. Layout of the transmission and reception devices.

Figure 25. Self-developed hydrophone.
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The parameters of the transmitting signal during the lake trial are shown in Table 4.

Table 4. Modulation parameters of the signal transmitted during the lake trial.

Information Source: 526 Character English Short Sentence

Signal Frequency Band: 4000–8000 Hz

Synchronization Head LFM Signal with a Width of 0.1 s

Modulation Mode Source Length/bit Data Rate/bps Code Width/ms Signal Duration/s

BPSK 20,000 4000 0.25 5.40
QPSK 80,000 8000 0.25 10.40
2FSK 500 10 100.00 50.40
4FSK 500 10 200.00 50.40

OFDM-BPSK 80,000 3200 21.00 25.25
OFDM-QPSK 80,000 6400 21.00 12.85

Generate wav file, 48 kHz sampling.

In this study, operations such as searching for synchronization headers and cropping
were performed on the received data. The signal sampling frequency was 48,000 Hz.
The length of the BPSK signal was 5 s, the length of the QPSK signal was 10 s, the length
of the 2FSK signal was 10 s, the length of the 4FSK signal was 50 s, the length of the
OFDM-BPSK signal was 25 s, and the length of the OFDM-QPSK signal was 11 s. A square
bispectrogram was generated every 0.3 s, resulting in a total of 370 test set images.

As depicted in Figure 26, the improved sixth-order cumulative quantity C63 threshold
was set to 0.7, which was found to be feasible based on the measured data collected during
the lake trial. The system was able to effectively distinguish between OFDM and other
modulation types.

Figure 26. Advanced cumulative quantity C63 of the lake trial data.

As shown in Figure 27, the square bispectrum diagram generated from the offline
processing of the lake trial data exhibits little difference compared to the simulated envi-
ronment, indicating that the network still maintains its effectiveness in identifying the lake
trial data.
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(a) (b)

(c) (d)

Figure 27. Square bispectrum diagram generated from the lake trial data. (a) BPSK; (b) QPSK;
(c) 2FSK; (d) 4FSK.

As illustrated in Figure 28, the recognition outcomes of ResNet and LeNet on the lake
trial data demonstrate that ResNet has effectively accomplished modulation identification
of BPSK, QPSK, 2FSK, and 4FSK signals with a recognition accuracy of 98.44%, whereas
LeNet achieved a recognition accuracy of 90.00%. Therefore, ResNet outperforms LeNet in
terms of performance.
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(a)

(b)

Figure 28. The testing confusion matrix for the recognition of the lake trial received signals. (a) ResNet;
(b) LeNet.

5. Conclusions

This paper proposes a modulation recognition system for UWAC signals using high-
order cumulants and deep learning networks. By utilizing the difference in high-order
cumulant values C63 of signals with different modulation types, the OFDM signal is
distinguished from other modulation types. Subsequently, by leveraging the distinctions in
the square bispectrum diagrams of signals with varying modulation types, a deep learning
network is employed for the visual recognition of distinct images, effectively recognizing
the modulation type of UWAC signals.

The simulation results show that with the improved sixth-order cumulant and a multi-
path number of 7, the system can distinguish between OFDM and BPSK, QPSK, 2FSK, and
4FSK signals under 0 dB conditions with a recognition accuracy of 100%. With the ResNet
neural network recognizing the improved bispectrum diagram, the system can distinguish
between BPSK, QPSK, 2FSK, and 4FSK modulation signals under 0 dB conditions, with
a recognition accuracy of 100% in the simulation environment. In the UWAC simulation
channel generated by BELLHOP, the system achieved recognition accuracy of 100% at
an SNR of 2 dB, verifying the feasibility of the simulation results. In the real lake trial
environment at Danjiangkou, the recognition accuracy of the lake trial data was 98.44%,
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proving that the proposed system, which combines the high-order cumulant theory with
artificial intelligence, can achieve blind modulation recognition of common UWAC signals
in non-cooperative scenarios under low SNR and underwater multipath conditions.
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