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Abstract: Low-visibility maritime image enhancement is essential for maritime surveillance in
extreme weathers. However, traditional methods merely optimize contrast while ignoring image
features and color recovery, which leads to subpar enhancement outcomes. The majority of learning-
based methods attempt to improve low-visibility images by only using local features extracted from
convolutional layers, which significantly improves performance but still falls short of fully resolving
these issues. Furthermore, the computational complexity is always sacrificed for larger receptive
fields and better enhancement in CNN-based methods. In this paper, we propose a multiple-feature
fusion-guided low-visibility enhancement network (MFF-Net) for real-time maritime surveillance,
which extracts global and local features simultaneously to guide the reconstruction of the low-
visibility image. The quantitative and visual experiments on both standard and maritime-related
datasets demonstrate that our MFF-Net provides superior enhancement with noise reduction and
color restoration, and has a fast computational speed. Furthermore, the object detection experiment
indicates practical benefits for maritime surveillance.

Keywords: multiple feature fusion; convolutional neural network; attention mechanism;
low-visibility image enhancement; maritime surveillance

1. Introduction

With the growth of the Internet of Things and artificial intelligence, the perception
efficiency of maritime sensors has been employed for different tasks in ocean engineering,
e.g., vessel trajectory prediction [1,2] and maritime surveillance [3]. In particular, visual
sensors are widely used because of their unique intuitiveness and high timeliness [4].
However, imaging devices working in extremely low-visibility conditions, typically low-
light and hazy, will generate images with severe distortion [5,6], which constantly suffer
from low contrast, non-uniform noise, and details lost, as shown in Figure 1. Undoubtedly,
the negative impact of low visibility will make it tricky to analyze critical information in
the image, which brings difficulty in subsequent tasks [7]. For instance, it has been proven
that low visibility will reduce the precision of object detection [8–10], image semantic
segmentation [11,12], etc. Therefore, an effective and real-time method for low-visibility
image enhancement is required in various domains, such as visual navigation [13], maritime
management [14], etc.

Many academics have attempted to improve extremely low-visibility photos with both
hardware- and software-enabled methods during the past several decades. The former
attempts to increase the robustness of the visual sensors by applying extra artificial light
sources, such as infrared and ultraviolet flashes [15], while the latter is more popular [16]
due to the relatively low cost. Specifically, some traditional software-enabled methods
have tried to employ some physical model and prior knowledge [15,17], which successfully
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enhanced the visibility but caused severe detail lost and failed to effectively overcome
the noise interference. The convolutional neural network (CNN) has become increasingly
popular in recent years for enhancement tasks [18]. The learnable convolutional kernel
parameters enable CNNs to simultaneously eliminate noise interference [19]. However,
the features extracted by convolutional layers are local, which works ineffectively for
some non-uniform illumination patches, and the translation invariance of the CNN is
incompatible to the non-linear relationship between the object and the background, which
causes vague edges in enhanced images. Furthermore, to improve the receptive view of the
convolutional kernel for better feature extraction, the computational complexity gradually
increases with the deepening of the network structure [20].

Figure 1. Examples of the comparison between maritime low-visibility images and clear images.

1.1. Motivation

For the convolutional layers, the critical mechanism is to learn a convolution kernel
with fixed parameters and perform the same transformation process on the entire feature
map. The size and stride settings of the convolution kernels only change the scope of action.
The translation invariance is an important feature of the convolutional layer, which also
makes it difficult for the CNN to extract the non-local features [21].

Meanwhile, the spatial attention mechanism is widely employed in computer vision
tasks [22]. Unlike convolution, the receptive field of the spatial mechanism is larger and
more diverse, which can extract the global features from the feature map and overcomes
the limitation of the local features. However, compared with words in passages of text,
the resolution of pixels is much higher, which requires more parameters to learn. In 2019,
Huang et al. [23] proposed the criss-cross attention mechanism, which extracts the contex-
tual information from full-image dependencies with competitive computational efficiency.

To let the comprehensive information guide the enhancement processing, we propose
the multi-feature fusion-guided network. Specifically, inspired by [23], we employ the
densely connected convolution layers and the cross attention module for local and global
feature extraction and fuse them to form the general feature map, which helps the network
enhance the low-visibility image with more detail preservation and better color recovery.

1.2. Contribution

In this paper, we present a multi-feature fusion-guided low-visibility image enhance-
ment network (MFF-Net) for maritime surveillance advancement. It achieves a superior
balance between the enhancement effect and computational time. The main contributions
of our method are summarized as follows:

• We propose a multiple feature fusion-guided low-visibility image enhancement
method for maritime surveillance advancement. It extracts the features of the image
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and reconstruct it with the supervision of a joint loss function to calculate both the
Euclidean distance and angle difference between the output and the ground truth.
The proposed network tackles two typical low-visibility problems, i.e., low-light and
hazy, with the same framework.

• To overcome the limitation caused by the translation invariance of the CNN, we design
a two-branched global and local features extraction block (GL-Block) comprising cross
attention modules and densely residual convolutional layers. The output feature maps are
then fused to guide the enhancement processing with more comprehensive information.

• Extensive experimental results show that our MFF-Net enhances both low-light and
hazy maritime images with significant noise reduction and detail preservation, which
outperforms other competitive methods. Furthermore, we evaluate the computational
complexity of the MFF-Net. The results indicate an outperforming balance between
the effect and the speed.

1.3. Organization

The rest of this paper is organized as follows: Section 2 reviews previous research on
low-visibility image enhancement tasks. Section 3 introduces the proposed method and the
detailed design of each component. Section 4 presents the experimental results compared
with state-of-the-art methods on both enhancement performance and the running time
cost. In addition, the ablation study investigates the necessity of the multi-feature fusion
guidance for low-visibility image enhancement and the rationality about the weight settings
of the joint loss function. The experiment on vessel detection demonstrates the practical
benefits of our method. Section 5 summarizes the content of the paper and discusses
future work.

2. Related Work

Low-light and haze are the most common low-visibility weathers in maritime surveil-
lance. Many research studies have been proposed to over come these problems [24]. In this
section, we briefly review the related works about low-light image enhancement and image
dehazing, which can be generally classified into traditional and deep learning-based method.

2.1. Low-Light Image Enhancement Methods

Low-light image enhancement methods can generally be divided to mathematical
model- and deep learning-based methods. Mathematical model-based methods include
some famous theories such as histogram equalization (HE) [17], gamma correction (GC) [25],
Retinex theory [26], and so on. HE firstly attempts to enhance the image with the most
frequent intensity values uniformly. However, in practical applications, HE and its vari-
ants [27,28] are severely hampered by non-uniform noise. GC tries to increase the in-
tensity of each pixel with an exponential function, which is also effective for contrast
enhancement. However, it ignores adjacent pixels’ correlation, resulting in artifacts and
enlarged noise. Retinex theory is based on the retinal-imaging concept that decomposes
images into illumination and reflection maps. It was first utilized in 1997 to lighten low-
light images [26,29]. Many Retinex-based methods were proposed in subsequent years.
For instance, Wang et al. [30] proposed a specially designed enhancement method for
non-uniform illumination, and Guo et al. [31] proposed low-light image enhancement via
illumination map estimation (LIME), which achieved competitive performance in low-light
image enhancement. However, mathematical model-based methods generally use some
specific functions to estimate the noise and illumination, which is non-uniform and dif-
ficult to express as a specific equation. Therefore, the results always suffer from severe
color distortion. Noise interference is also a thorny problem for traditional mathematical
model-based methods.

With the rapid advancement of computing devices, deep learning-based methods
have produced outstanding results in low-light image enhancement. In 2018, Chen et al.
proposed an end-to-end network trained using extremely low-light raw sensor data [32],
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which demonstrated the superior performance of the neural network in low-light image
enhancement tasks. In the following years, a number of works were published on low-light
enhancement [33,34]. For instance, KinD [35] proposed a CNN based on Retinex theory,
which successfully correlated the mathematical model and neural network. Zero [36]
formulated light enhancement as a task of image-specific curve estimation, which en-
hanced the low-light images with a lightweight neural network. Hap et al. [37] proposed
a low-light image enhancement method, which decouples the model into two sequential
stages to improve the scene visibility and suppress the rest degeneration factors separately.
Guo et al. [38] designed a multi-scale deep stacking fusion enhancer to lighten the darkness
in an intelligent transportation system. LLFlow [39] proposed a normalizing flow model
to establish the relationship between the single low-light images to different normally
exposed images. However, most deep learning methods suffer from several thorny prob-
lems like color distortion and detail lost, which are difficult to solve simultaneously by a
lightweight CNN.

2.2. Image Dehazing Method

Image dehazing methods can be generally divided into prior- and deep-learning based
methods. Prior-based dehazing methods exploit the statistical properties of clean images
to estimate transmission maps, and then predict the haze-free image using the scattering
model, which can be expressed as

H(x) = J(x) ∗ t(x) + A ∗ (1− t(x)), (1)

where H(x) is the hazy image, t(x) is the transmittance, and A is the atmospheric light intensity.
To acquire prior knowledge, early works attempted to concentrate on statistic analysis

or observation of the haze-free images. Among them, He et al. [40] proposed the dark
channel prior (DCP), which detects the haze distribution of hazy images by assuming
that the lowest local intensity in the RGB channels are close to zero in a clear image.
Zhu et al. [41] introduced the color attenuation prior, which supposes that in a linear model,
the difference between the saturation and the pixel values are positively correlated with the
depth of the scene. Although these methods have achieved certain dehazing effects, they
are based on artificially constructed prior models, which cannot fully describe the real haze
image. Therefore, these methods are highly restricted by the scene and have insufficient
generalization ability.

The method based on deep learning also has a large application in dehazing. Cai et al. [42]
proposed an end-to-end-based DehazeNet, which estimates the transmission map from
a hazy image. Tang et al. [43] proposed a multi-scale network to exploit multi-scale in-
formation, which predicts the transmission by a coarse-scale net and a fine-scale one.
Chen et al. [44] proposed a gated context aggregation network (GCANet), which employs
a smooth dilated convolution to reduce the gridding artifacts led by the dilation tech-
nique. However, the image enhanced by GCANet still has unevenly distributed haze.
However, these methods cannot recover the details of the image. Therefore, Qin et al. [45]
further employed the application of the attention mechanism in dehazing work, which
exploits a feature attention module that fuses the features with pixel and channel attention.
Guo et al. [46] proposed a self-paced semi-curricular attention network to overcome the
non-uniform distribution features of the hazy images.

3. Proposed Method

In practical applications, low-visibility weathers always bring challenges in traffic
observation and navigational environment perception. An effective and efficient low-
visibility enhancement method is beneficial for maritime surveillance. In this section, we
introduce our method in detail. For a better understanding, Table 1 lists the main symbols
adopted in this work.
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Table 1. Summary of key notations.

Notation Description

M The feature map generated by neural networks
Mi,_ The i-th row vectors of the feature map
M_,j The j-th column vectors of the feature map
Mi,j The vector at position (i, j) of the feature map

λ The weight of the loss function
L The loss function
P The pixel of the output image
P̂ The pixel of the ground truth image
h The height of the image
w The width of the image
c The channel number of the image

3.1. Architecture

The overview of the network is presented in Figure 2. To reduce the computational
complexity, we use 1× 1 convolutional and max-pooling layers to downsample the low-
visibility image. For feature extraction, we propose the GL-Block consisting of convolutional
layers and cross attention modules. In the end, 1× 1 convolutional and bilinear upsampling
layers transform the output image to the corresponding fine scale.

Figure 2. Flowchart of the proposed MFF-Net. Firstly, the low-visibility image is downsampled with
a max-pooling layer. The multiple features are then extracted with three GL-Blocks to guide the
enhancement process. The enhanced image is finally upsampled to the original scale.

3.2. GL-Block

We design a two-branched block to extract multiple features simultaneously. Firstly
we employ cross attention modules [23] to extract global features, which collect global infor-
mation in the horizontal and vertical directions to enhances the representative capability of
each pixel, as shown in Figure 3. Specifically, 1× 1 convolutional layers are used to obtain
the query (Q), key (K), and value (V) matrix and generate the attention map M with an
affinity operation. Unlike the common attention method, GL-Block achieves global spatial
information interaction with two cross attention modules, which sufficiently reduces the
computational complexity. The contextual information collected by the cross attention
module can be expressed as

Mi,j = f (M
′
i,j, M

′
i,_, M

′
_,j), (2)

where M′ i,j represents each vector in the input feature maps, M
′
i,_ and M

′
_,j represent the

horizontal and vertical vectors, respectively, and f denotes the process of establishing
the connection between each pixel. However, the cross attention mechanism will cause a
black-line problem due to the extremely dark or bright pixels, as discussed in Section 4.6.
Therefore, to balance the extreme non-uniformity, we optimize the cross attention module
with two subsequent dilated convolutional layers. The kernel size is set to three, and the
dilation steps are set to four and six, respectively.
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Figure 3. The detailed implementation of the GL-Block and cross attention module.

The other branch consists of several residual convolutional layers, designed to extract
local features separately. In particular, inspired by [47], the convolutional layers are densely
connected for better detail preservation. The kernel size and stride of convolutional layers
are set to three and one, respectively. In the end, we merge the global and local feature
maps and feed it into a 1× 1 convolutional layer for feature fusion.

3.3. Loss Function

For the back-propagation process, we propose a joint loss function consisting of L1
loss L1, L2 loss L2, and color similarity loss Lcolor to supervise our network from both the
Euclidean and angle difference. This can be defined as

L = λ1L1 + λ2L2 + λ3Lcolor, (3)

where λ1, λ2, and λ3 are the weights of each loss function.
L1 Loss. To ensure the quality of the generated images, we employ the widely used

L1 loss function, which is based on the Euclidean distance between each pixel. It can be
expressed as

L1 =
1

hwc ∑
i,k

∥∥∥Pk
i − P̂k

i

∥∥∥, (4)

where Pk
i and P̂k

i are the pixels of the output images and ground truth, respectively. i and k
represent the positions and channels, respectively. h, w, and c denote the height, width and
the number of channels, respectively.

L2 Loss. Besides L1, the L2 loss function is also widely used in low-level computer
vision tasks for the effective restriction on the output image, which can be expressed as

L2 =
1

hwc ∑
i,k
‖Pk

i − P̂k
i ‖2. (5)

Color Similarity Loss. In RGB images, the Euclidean distance is a typical evaluation
metrics to validate the similarity between two pixels, However, it ignores the angle differ-
ence between two RGB vectors, which also causes severe color differences between two
pixels. To measure the deviation more comprehensively, we employ the cosine similarity be-
tween each vector as the color similarity loss to take the angle difference into consideration.
The color loss function can be expressed as

Lcolor = 1− 1
hw
·∑

i

Pi · P̂i

max(‖Pi‖2 · ‖P̂i‖2, ε)
, (6)

where the cosine value of the angle between the RGB vectors Pi and P̂i is calculated, which
represents the angle differences of the pixel at the position i. ε = 0.001 is a hyper-parameter
used to avoid zero becoming the denominator.
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4. Experiments

In this section, we firstly describe the dataset and the implementation details used in
the experiment. To comprehensively evaluate the performance of the MFF-Net, different
aspects of the state-of-the-art methods and our model are compared including GT reference,
noise reduction, color naturalness, and computational complexity. The ablation studies
concerning the necessity of multiple feature fusion and the weight settings of the joint loss
function are presented to demonstrate the rationality of the proposed method. Finally,
to verify the practical benefits of the proposed method, we construct the vessel detection
experiments on the enhanced images.

4.1. Dataset and Evaluation Indicators

Supervised learning requires the perfectly paired dataset to calculate the pixel differ-
ence between the output and ground truth. However, the current publicly available paired
datasets (LOL [48], EnlightenGAN [49], I-HAZE [50], SMOKE [51], etc.) are not suitable for
maritime low-visbility image enhancement1, and the paired maritime low-visibility image
dataset is difficult to obtain. We thus synthesize a large number of marine low-visibility
images based on the Seaships dataset. Specifically, we select 1500 high-quality images from
the Seaships dataset for training and 30 images for testing, as shown in Figure 4. It is noted
that the characters in the image are the timestamps and locations of the camera, which is
contained in the original dataset. In low-light image enhancement tasks, we also adopt
traditional methods to synthesize low-light maritime images, which can be expressed as

Lmaritime(x) = J(x)× g(x), (7)

where Lmaritime(x) is the low-light maritime image, J(x) is the clear image, and g(x) is
the coefficient, which is a random number between 0.1 and 0.8. Meanwhile, we exploit
Equation (1) to obtain synthetic training hazy data. We restrict t(x) from 0.1 to 0.7, and set
A from 0.2 to 0.8. For the test data, we synthesized three types of low-light images
with different light levels, i.e., g1(x) = 0.2, g2(x) = 0.4, and g3(x) = 0.6 (termed Test-L).
Similarly, we also synthesized three types of images using Equation (1) with different
degrees of degradation, i.e., t1 = 0.4/A1 = 0.9, t2 = 0.2/A2 = 0.8, and t3 = 0.2/A3 = 0.7
(termed Test-H).

For the supervised neural network, the results closer to the ground truth represent
a better performance. Therefore, for quantitative image quality assessment comparisons,
we choose five reference evaluation indicators, i.e., peak signal-to-noise ratio (PSNR),
structural similarity (SSIM) [52], feature similarity index measure (FSIM) [53], and visual
saliency-induced index (VSI) [54] to evaluate the enhancement performance. It is noted
that a higher PSNR, SSIM, FSIM, VSI represent better image quality and a closer proximity
to the ground truth.

4.2. Implementation Details

We use Pytorch to build and train the MFF-Net. The network is trained for 300 epochs,
and the ADAM optimizer is employed during training. The starting learning rate is set to
1× 10−3 and is multiplied by 0.1 after every 100 epochs. In the loss function, to equally em-
ploy the Euclidean distance and the angle difference as the restraint, the weights of L1, L2,
and Lcolor are set to 0.25, 0.25, and 0.5, respectively. For data augmentation, we randomly
crop the 600× 400 images to patches of size 128 × 128 for training and the original size for
testing, and the running time costs are calculated on a laptop with an AMD Ryzen 7 5800H
CPU accelerated by an NVIDIA GTX 3060 GPU. For a fair comparison, the parameters of
all competing methods are from the open access checkpoints by the authors.
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Figure 4. Thirty selected maritime images from the Seaships [55] dataset, which contains raw
maritime surveillance data captured in different scenes.

4.3. Experiments on Maritime Low-Light Images

To verify the superior performance of our method, we select some competitive
classical algorithms and state-of-the-art methods to compare: (a) traditional mathemat-
ical model methods, including HE [17], NPE [30], BCP [56], SRIE [57], and LIME [31];
(b) deep learning-based methods, including RetinexNet [48], LightenNet [58], MBLLEN [59],
KinD [35], Zero [36], and StableLLVE [18]. The visual comparisons on Test-L are shown
in Figure 5. In terms of mathematical model-based methods, the results of HE and BCP
have obvious color distortion, some non-uniform artifact exists in the results enhanced
by NPE, and LIME fails to lighten the low-light images effectively. In addition, for deep
learning-based methods, RetinexNet suffers from severe color distortion, KinD only en-
hances the image with local features, which is incompatible with the illumination diversity
between the non-adjacent patches, Zero sacrifices the enhancement effect for fast speed,
making the results look a little dark, and StableLLVE fails to enlighten the extremely dark
regions. Compared with these methods, our results look more natural with better recovery.
As shown in Table 2, the quantitative experiment result indicates that our method achieves
a competitive performance on the whole. Although not the best in terms of certain met-
rics, our proposed method has substantial advantages in running speed, as discussed in
Section 4.5.
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Figure 5. Visual comparison of the synthetic low-light images from the Seaships [55] dataset with
other competitive methods: (a) low-light; (b) HE [17]; (c) NPE [30]; (d) BCP [56]; (e) SRIE [57];
(f) LIME [31]; (g) RetinexNet [48]; (h) LightenNet [58]; (i) MBLLEN [59]; (j) KinD [35]; (k) Zero [36];
(l) StableLLVE [18]; (m) MFF-Net; (n) ground truth.

Table 2. Quantitative comparison between our method and the state-of-the-art methods on the
90 maritime low-light images. The top three results are marked in red, blue, and green colors,
respectively. The ↑ represents that the higher value means better result.

Methods PSNR ↑ SSIM ↑ FSIM ↑ VSI ↑
HE [17] 18.011± 1.838 0.770 ± 0.073 0.896 ± 0.031 0.961 ± 0.013

NPE [30] 21.839± 2.936 0.946 ± 0.023 0.977 ± 0.008 0.992 ± 0.003
BCP [56] 16.577± 1.857 0.844 ± 0.051 0.929 ± 0.026 0.969 ± 0.016
SRIE [57] 18.044± 4.432 0.889 ± 0.074 0.946 ± 0.034 0.986 ± 0.008
LIME [31] 20.597± 3.719 0.945 ± 0.026 0.981 ± 0.008 0.993 ± 0.004

RetinexNet [48] 14.927± 1.927 0.691 ± 0.093 0.815 ± 0.049 0.943 ± 0.019
LightenNet [58] 11.985± 2.702 0.788 ± 0.072 0.916 ± 0.028 0.972 ± 0.008
MBLLEN [59] 13.721± 3.065 0.739 ± 0.064 0.950 ± 0.011 0.984 ± 0.004

KinD [35] 17.037± 1.413 0.906 ± 0.031 0.954 ± 0.015 0.984 ± 0.009
Zero [36] 17.074± 1.421 0.838 ± 0.036 0.891 ± 0.029 0.964 ± 0.017

StableLLVE [18] 14.853± 2.921 0.797 ± 0.044 0.898 ± 0.042 0.974 ± 0.011

MFF-Net 23.666± 4.222 0.941 ± 0.024 0.978 ± 0.009 0.994 ± 0.003

4.4. Experiments on Maritime Hazy Images

To demonstrate the dehazing ability of MFF-Net, we also select some classical tradi-
tional enhancement methods, including DCP [40], CAP [41], HL [60], F-LDCP [61], and
GRM [62], and some state-of-the-art learning-based methods, including DehazeNet [42],
MSCNN [63], AOD-Net [64], GCANet [44], HTDNet [65], and FFANet [45], for testing.
As shown in Figure 6, the image dehazed by DCP suffers serious noise interference, espe-
cially on the water surface. Meanwhile, color distortion occurs in some areas. CAP and
F-LDCP fail to dehaze the images thoroughly, resulting in the overall image being covered
by a layer of haze. In contrast, HL dehazes the images better, but the enhanced image is too
bright with serious noise interference. Furthermore, on the edge of the vessel and some of
the water surface, the reflection phenomenon seriously influences the visual feeling, which
brings a barrier to the lookout. On the whole, the learning-based methods achieve better
performance than the traditional methods. However, DehazeNet, MSCNN, and AOD-Net
still cannot dehaze the images thoroughly. Furthermore, although GCANet and FFA-Net
can remove most of the haze, the images are still riddled with artifacts. The quantitative



J. Mar. Sci. Eng. 2023, 11, 1625 10 of 19

results are shown in Table 3. Compared with other methods, MFF-Net can successfully
dehaze the images with a good balance between color restoration and detail preservation,
benefiting from the strong learning ability of the CNN and the multi-feature fusion strategy.
The expoeriments on the real captued images are shown in Figure 7. It can be seen that our
method is effective for both real-captured low-light and hazy images.

Figure 6. Visual comparison on the synthetic hazy image from the Seaships [55] dataset with
other competitive methods: (a) hazy; (b) DCP [40]; (c) CAP [41]; (d) HL [60]; (e) F-LDCP [61];
(f) GRM [62]; (g) DehazeNet [42]; (h) MSCNN [63]; (i) AODNet [64]; (j) GCANet [44]; (k) HTDNet [65];
(l) FFANet [45]; (m) MFF-Net; (n) ground truth.

Figure 7. Visual performance on the physically captured low-visibility images. The first row contains
the low-light images extracted from the TMDIED [66] dataset, and the third row contains the hazy
images extracted from SMD [67] and online websites. The corresponding enhanced results of our
MFF-Net are shown in the second and fourth rows.

4.5. Computational Complexity Analysis

In the practical maritime surveillance, the visual enhancement methods must take the
running time into account. To evaluate the performance on computational complexity, we
provide the running time cost on both low-light image enhancement and dehazing. For low-
light enhancement, as shown in Table 4, MFF-Net is able to enhance the 400 × 600 images
at over 20 FPS with the acceleration of an NVIDIA RTX 3060 GPU, which is faster than most
other methods. LightenNet [58] and Zero [36] are more lightweight, but the enhancement
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effect is much worse than ours. For the dehazing method, as shown in Table 5, our MFF-Net
also outperforms most of the previous methods. AOD-Net is faster, but the effectiveness
of dehazing is worse than ours. In general, MFF-Net achieves a superior balance between
the enhancement effect and the running time cost compared with the other methods, as
depicted in Figure 8.

Table 3. Quantitative comparison between our method and the state-of-the-art methods on the
90 maritime hazy images. The top three results are marked in red, blue, and green colors, respectively.
The ↑ represents that the higher value means better result.

Methods PSNR ↑ SSIM ↑ FSIM ↑ VSI ↑
DCP [15] 15.687± 2.437 0.823 ± 0.059 0.946 ± 0.019 0.976 ± 0.011
CAP [41] 19.218± 4.078 0.848 ± 0.089 0.906 ± 0.057 0.978 ± 0.013
HL [60] 21.440± 2.353 0.917 ± 0.027 0.962 ± 0.019 0.980 ± 0.013

F-LDCP [61] 12.318± 1.454 0.645 ± 0.099 0.781 ± 0.077 0.948 ± 0.020
GRM [62] 20.271± 2.236 0.815 ± 0.068 0.888 ± 0.042 0.968 ± 0.013

DehazeNet [42] 13.092± 1.456 0.683 ± 0.101 0.808 ± 0.076 0.955 ± 0.019
MSCNN [63] 17.084± 2.132 0.843 ± 0.075 0.915 ± 0.048 0.980 ± 0.011
AODNet [64] 17.722± 2.661 0.761 ± 0.105 0.819 ± 0.074 0.958 ± 0.020
GCANet [44] 19.437± 3.066 0.878 ± 0.043 0.952 ± 0.014 0.981 ± 0.007
FFANet [45] 19.918± 4.805 0.858 ± 0.076 0.939 ± 0.031 0.984 ± 0.009

MFF-Net 22.192± 2.021 0.912 ± 0.028 0.955 ± 0.013 0.988 ± 0.006

Table 4. Average running time cost (unit: seconds) and parameter comparison on low-light images
with different resolutions (400 × 600, 480 × 640, and 768 × 1024) of the different methods.

Methods Platform Parameters (K) 400× 600 480× 640 768× 1024

HE [17] Matlab (CPU) - 0.1089 0.1344 0.3234
NPE [30] Matlab (CPU) - 4.6228 5.7649 14.705
BCP [56] Matlab (CPU) - 0.7711 0.9936 2.2191
SRIE [57] Matlab (CPU) - 5.1873 8.8056 20.323
LIME [31] Matlab (CPU) - 8.2369 11.429 46.887

RetinexNet [48] Python (GPU) 8536.7 0.0714 0.0922 0.2070
LightenNet [58] Matlab (GPU) - 0.0570 0.0640 0.2093
MBLLEN [59] Python (GPU) 450.2 0.0870 0.1045 0.2493

KinD [35] Python (GPU) 8017.1 0.1040 0.1469 0.2225
Zero [36] Python (GPU) 79.4 0.0165 0.0178 0.0315

StableLLVE [18] Python (GPU) 4316.3 0.1045 0.1501 0.1953

MFF-Net Python (GPU) 817.3 0.0457 0.0566 0.1657

Table 5. Average running time cost (unit: seconds) and the parameters comparison on hazy images
with different resolutions (400 × 600, 480 × 640, and 768 × 1024) of the different methods.

Methods Platform Parameters (K) 400× 600 480× 640 768× 1024

DCP [40] Matlab (CPU) - 0.8124 1.0282 2.8398
CAP [41] Matlab (CPU) - 1.1568 1.3286 2.6762
HL [60] Matlab (CPU) - 4.9637 5.1852 6.6912

F-LDCP [61] Matlab (CPU) - 1.2865 1.4799 3.5562

DehazeNet [42] Matlab (GPU) - 0.5243 0.6742 1.4918
MSCNN [63] Matlab (GPU) - 0.1965 0.2853 0.8973
AODNet [64] Python (GPU) 9 0.0125 0.0141 0.0192
GCANet [44] Python (GPU) 2758 0.0912 0.1055 0.1722
FFANet [45] Python (GPU) 25,999 0.7236 0.7951 1.8978

MFF-Net Python (GPU) 817.3 0.0457 0.0566 0.1657



J. Mar. Sci. Eng. 2023, 11, 1625 12 of 19

Figure 8. The trade-off between the visibility enhancement performance and the computational
efficiency on several state-of-the-art low-light enhancement and dehazing methods. It is noted that
the frame per second (FPS) metric is tested on a 600 × 400 resolution image.

4.6. Ablation Study

To validate the necessity of multiple feature fusion guidance, we first conduct the
ablation experiment on the architecture with two incomplete versions: (a) with only the
local feature guidance network (OLF-Net), which only employs the dense connected
convolutional layers to extract the local features during the processing; and (b) with only
the global feature guidance network (OGF-Net), which only uses the optimized cross
attention module to extract global features. The visual results are shown in Figure 9,
the enhanced image of OLF-Net suffers from obvious dark artifacts, which proves that the
shallow convolutional layers cannot meet the learning capabilities required for extremely
low-visibility image enhancement tasks. In addition, the noticeable black-line issue exists
in the OGF-Net, due to the effect of exceptionally dark or bright pixels on correlated pixels
in the cross attention module. The ablation study on the architecture indicates that multiple
feature fusion guidance successfully improves the effectiveness of feature representation
and alleviates the excessive influence of extremely bright or dark pixels in the cross attention
mechanism, which is necessary in low-visibility enhancement tasks.

Figure 9. Visual comparison between the enhanced results of the MFF-Net with the incomplete
versions on the standard low-light image enhancement dataset. It is noted that the results in the
ablation study are output from the network trained and tested with the same implementation details
as the MFF-Net.
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We also investigate the effectiveness of the weight setting on different loss functions,
including the Euclidean distance (L1 + L2) and angle difference (Lcolor). For a fair experi-
ment, the architecture of the network is set to MFF-Net. According to the comparison of
the quantitative indicators shown in Table 6, the network shows the best performance on
the proposed weight setting, which guarantee the enhancement quality comprehensively
with a rational balance between the Euclidean distance and angle difference.

Table 6. Quantitative quality assessment comparison between different weight distributions of
the loss functions on the testing data consisting of paired images extracted from the LOL [48]
and EnlightenGAN [49] datasets. ↑ and ↓ represent that higher or lower values mean the better
results, respectively.

Loss Functions PSNR↑ SSIM↑ LPIPS↓
0.25L1 + 0.25L2 21.34 ± 4.4286 0.760 ± 0.1336 0.151 ± 0.1098

0.25L1 + 0.25L2 + 0.25Lcolor 21.30 ± 4.6006 0.763 ± 0.1302 0.148 ± 0.1070
0.125L1 + 0.125L2 + 0.25Lcolor 21.40 ± 3.6208 0.753 ± 0.1253 0.170 ± 0.1177

0.25L1 + 0.25L2 + 0.5Lcolor 21.36 ± 4.2196 0.779 ± 0.1251 0.139 ± 0.1003

4.7. Improvement in Maritime Vessel Detection

To further demonstrate the practical benefits of our MFF-Net for maritime surveillance
under low-visibility weathers, we apply YOLOv5 and YOLOX [68] to conduct maritime
vessel detection experiments. The test images are randomly selected from the Test-L and
Test-H. First, we select 1500 maritime-related images in the COCO dataset to train our
detection networks. The evaluation tests are then constructed on the selected images. In low-
visibility scenes, the vessel detection accuracy decreases heavily due to the low contrast
and vague edge features, which can cause difficulties in maritime surveillance. In other
words, the caption cannot make full use of the computer vision to assist the artificial lookout.
After enhancement, the visual data can deliver clearer traffic scenes to the managers, and the
detection accuracy is also significantly increased. The experimental results are illustrated in
Figures 10 and 11. Compared with the state-of-the-art methods, the enhanced results of the
MFF-Net perform better due to the application of multi-feature fusion. The quantitative
comparison is shown in Table 7. It is noted that the input image will be first resized to
640 × 640 in YOLOX. However, most of the traditional method cannot enhance them within
one second; thus, they cannot be applied in practical engineering. Therefore, we compare
our method with the fastest representative traditional and deep learning-based methods
in a quantitative experiment. The experimental results demonstrate that the MFF-Net
has practical benefits in maritime surveillance, which is more beneficial for higher-level
visual tasks under low-visibility weathers when assisting artificial observations, thereby
improving maritime management.

Table 7. Quantitative experiments about the vessel detection accuracy improvement on YOLOX,
which is tested on the Seaships [55] dataset. It is noted that mAP (clear), mAP (low-visibility),
and mAP (enhancement) represent the mean average precision on clear, low-visbility, and enhanced
images, respectively.

Weather Method mAP (Clear) mAP (Low-Visibility) mAP (Enhancement)

HE [17] 40.97% 31.97% 33.26%
Low-light Zero [36] 40.97% 31.97% 35.11%

MFF-Net 40.97% 31.97% 36.42%

DCP [15] 40.97% 21.66% 26.25%
Hazy AOD-Net [64] 40.97% 21.66% 32.37%

MFF-Net 40.97% 21.66% 34.81%
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Figure 10. Vessel detection experiment results on maritime low-light images between our method
and other competitive methods: (a) low-light; (b) HE [17]; (c) NPE [30]; (d) BCP [56]; (e) SRIE [57];
(f) RetinexNet [48]; (g) MBLLEN [59]; (h) KinD [35]; (i) Zero [36]; (j) StableLLVE [18]; (k) MFF-
Net; (l) ground truth. It can be seen that our MFF-Net significantly improves the accuracy of vessel
detection under low-light environments, which demonstrates the benefits of our MFF-Net for practical
ocean engineering.
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Figure 11. Vessel detection experiment results on maritime hazy images between our method and
other competitive methods: (a) hazy; (b) DCP [40]; (c) CAP [41]; (d) HL [60]; (e) F-LDCP [61];
(f) MSCNN [63]; (g) AODNet [64]; (h) GCANet [44]; (i) DehazeNet [42]; (j) FFANet [45]; (k) MFF-Net;
(l) ground truth. It can be seen that our MFF-Net significantly improves the accuracy of vessel
detection under hazy environments, which demonstrates the benefits of our MFF-Net for practical
ocean engineering.

5. Conclusions

In this paper, we proposed an end-to-end multi-feature fusion-guided low-visbility
enhancement method for maritime surveillance. Firstly, the maritime low-visibility images,
i.e., low-light and hazy, are downsampled and then fed into the GL-Block comprising cross
attention modules and dense residual convolutional layers. The GL-Block is designed to
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extract the global and local features to guide the enhancement processing simultaneously.
After enhancement, the image is upsampled to a finer scale. For better constraint of
the enhanced output, we introduced a joint loss function comprising L1 loss, L2 loss,
and color similarity loss. In the experiments, we made massive comparisons on the visual
performance, including quantitative image quality assessment, noise reduction, and color
naturalness on both low-light enhancement and dehazing. Compared with other methods,
the MFF-Net achieved a competitive quantitative and visual performance with effective
noise reduction and superior color naturalness. Moreover, we evaluated the operating
time cost and model size of the state-of-the-art methods, which indicates that MFF-Net can
efficiently enhance extremely low-visibility images with lower computational complexity.
In the ablation study, we conducted a series of experiments to investigate the necessity
of multiple feature guidance and rational weight settings of the proposed loss function.
Finally, the experiment of vessel detection indicate that our method is beneficial for practical
maritime surveillance under low-visibility weathers.

In the future, we will test more methods for global feature extraction to demonstrate
the advantages of multiple features for low-visibility image enhancement. Furthermore,
high-definition videos cannot currently be enhanced in real time. We will thus optimize
the architecture of the MFF-Net to achieve a better performance with lower computa-
tional complexity, which will enable the network to work on a diverse range of maritime
edge devices.
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Note
1 LOL [48] and EnlightenGAN [49] are mainly captured in indoor or land environments. The haze in I-HAZE [50] and SMOKE [51]

are artificially generated by smoke or steam, which is different from haze in the ocean.
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