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Abstract: Gravity-aided navigation is an effective navigation method for underwater vehicles. How-
ever, the distribution of the gravity field may affect the measurement errors of gravity anomalies
and the precision of gravity-aided navigation. In this paper, the upper and lower thresholds of the
gravity field standard deviation are computed by the statistical properties of the local gravity field to
classify each grid in the gravity map into different levels. A parallel multiple methods with adaptive
decision making (PMMADM) for gravity-aided navigation is proposed which incorporates the gravity
anomaly measurements, particle filtering, and maximum correlation method into the observation
equation of the extended Kalman filter. The algorithm autonomously selects the observation variables
in the filter by combining the gravity field standard deviation at the current position of the carrier with
a decision tree. This approach can combine the characteristics of different gravity matching algorithms,
reduce the impact of random noise in the measurements, and improve the positioning accuracy of
gravity-aided navigation. Physical simulation experiments demonstrated that the proposed gravity
matching algorithm achieves the high navigation accuracy and long-term stability in different gravity
fields, and the mean value of positioning error is 620.72 m.

Keywords: integrated navigation; gravity matching; gravity field standard deviation; skewed distribution;
decision tree

1. Introduction

Gravity-aided navigation, which utilizes geophysical field information, has attracted
significant attention from scholars both domestically and abroad due to its high autonomy
and passive concealment features. Key technologies of this navigation system include
the pre-production of large-scale high-precision gravity maps, real-time gravity anomaly
measurement, and gravity matching algorithms. The basic principle involves utilizing
real-time gravity anomaly measurements to locate the carrier position in a known gravity
map through the gravity matching algorithm and correcting the position of the inertial
navigation system (INS). This approach is applicable to submarine navigation where
external radiation information is not available, and can effectively reduce the accumulated
error of the INS, ensuring long-term navigation accuracy of the carrier [1].

The performance of gravity-aided navigation is influenced by the characteristics of the
gravity field distribution, and for gravity matching algorithms to achieve precise positioning,
they require regions with evident gravity field features [2]. Scholars have proposed several
evaluation criteria for gravity field regions based on the gravity field’s characteristic parame-
ters [3]. Simulation experiments have demonstrated that conducting gravity navigation within
adaptive regions significantly improves navigation accuracy [4]. Cai [5] employed the Analytic
Hierarchy Process to combine multiple features and obtain gravity field adaptation criteria.
In [6], a method was proposed to calculate local gravity features using a moving window and
introduce a fast Euclidean distance field algorithm to generate locally adaptive regions. Addi-
tionally, Ma [7] introduced an adaptive region selection method based on feature parameter

J. Mar. Sci. Eng. 2023, 11, 1624. https://doi.org/10.3390/jmse11081624 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11081624
https://doi.org/10.3390/jmse11081624
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-6693-9024
https://doi.org/10.3390/jmse11081624
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11081624?type=check_update&version=1


J. Mar. Sci. Eng. 2023, 11, 1624 2 of 18

information entropy. These studies have provided methods for partitioning the gravity field
to identify regions with prominent features suitable for gravity matching. Even within the
adaptive regions, different gravity matching algorithms exhibit distinct positioning effects.
Therefore, depending on the characteristics of the matching algorithms, appropriate algorithms
can be selected for navigation in regions with different gravity field characteristics [8].

Currently, there are two main categories of gravity navigation algorithms based on their
characteristics: sequential-based matching algorithms, such as Terrain Contour Matching
(TERCOM) and Iterative Closest Contour Point (ICCP) [9,10], and iterative-based filter-
recursive algorithms, such as Sandia Inertial Terrain-Aided Navigation (SITAN) [11] and
Particle Filter (PF) [12]. In pursuit of better applications in gravity-aided navigation, numer-
ous scholars have made improvements to existing algorithms or proposed novel ones by
integrating artificial intelligence [13–15]. Zhao [16] considered both gravity measurements
and their variation characteristics, enhancing the acquisition method of trajectory points, and
optimizing the accuracy and robustness of the PF algorithm. Ouyang [17] analyzed various
factors influencing gravity matching navigation results, combining PSO and PF to mitigate
the impact of initial registration errors on subsequent particle filtering, thereby enhancing par-
ticle filtering navigation accuracy. Mao [18] utilized INS latitude information to decompose
gravity anomalies, proposing the V-ICCP and V-TERCOM methods, which averaged a 10%
increase in the matching efficiency of the ICCP algorithm. Wang [19] addressed the model
error in the state equation of the SITAN algorithm by proposing an adaptive parallel extended
Kalman filter-based SITAN algorithm, suppressing filter divergence through adaptive factor-
adjusted weights for state prediction information. Different gravity field characteristics and
gravity measurement noise can affect the positioning performance of matching algorithms,
necessitating the development of noise-resistant and stable gravity matching algorithms [20].

However, these individual methods have certain limitations, and therefore many
scholars have proposed ways to combine different types of methods for gravity navigation.
For example, Luo [21] proposed a combined the Extended Kalman Filter (EKF) and the
PF that completes the gravity matching process in the first layer of filtering and ensures
real-time performance in the second layer. Han [22,23] combined the ICCP with the PF
and performed an iterative isochronous transformation based on the PF matching results
through a two-step calculation. Wei [24] added a weight-based iterative technique to the
SITAN using the principles of the TERCOM to reduce the coarse errors in the results of
the SITAN. These studies demonstrate that the joint use of multiple methods for gravity
navigation can improve the noise immunity and stability of the gravity matching algorithm,
resulting in higher positioning accuracy.

Therefore, this paper proposes a parallel multiple methods with adaptative decision
making for gravity-aided navigation. Before navigation, the local standard deviation of
the gravity map used for navigation is computed to derive a threshold value for level
classification of each gravity field region. During the voyage, the algorithm calculates the
gravity field standard deviation of the grid in which the carrier is located, and determines
the current gravity field level based on the threshold. The algorithm then uses the EKF
as the main component in conjunction with the decision tree established in this paper
and adaptively incorporates the matching results of the PF and the maximum correlation
method (MCM) into the EKF observation equation.

The structure of the paper is as follows. Section 2 is divided into two parts, with
the first part providing an overview of the EKF, the PF, and the MCM employed in this
study. The second part presents the adaptive selection method for calculating the gravity
field level classification threshold and the matching algorithm proposed in this paper. In
Section 3, the first part shows the calculation of the threshold parameters for each region in
the gravity map using the proposed threshold selection method. The second part presents
the results of comparative experiments to validate the improvements in navigation accuracy
and long-term stability of the proposed algorithm over traditional methods. Finally, the
paper concludes with a summary of the findings and suggestions for further optimization
of the proposed method and future research directions.
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2. Methods
2.1. Principle of Gravity-Aided Navigation

The positioning errors of INS will be accumulated, necessitating periodic recalibration
or correction using external information to enhance positioning accuracy. Utilizing Earth’s
gravity field for aiding inertial navigation is a highly promising approach. Gravity-aided
navigation involves comparing measured gravity anomaly values during the submarine’s
movement with stored gravity anomaly data in a computer, leading to more precise deter-
mination of the submarine’s position. This gravity-aided navigation technique possesses
passive, all-weather, and covert characteristics, rendering it well-suited for correcting inertial
navigation positions in the absence of external signals, its principle is illustrated in Figure 1.
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Figure 1. Schematic diagram of gravity-aided navigation principle.

The composition diagram of the gravity-aided navigation system is illustrated in
Figure 2, comprising the INS, gravimeter, gravity anomaly map, and gravity matching
algorithm. The precision of gravity-aided navigation is influenced by factors such as gravity
anomaly measurement noise, INS accuracy, gravity map resolution, and precision. As
gravity-aided navigation systems gradually transition from theory to practical application,
it necessitates gravity matching algorithms to possess high accuracy and real-time capability,
enabling long-term stable navigation in a broader range of regions.
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2.2. Overview of Parallel Methods

The proposed navigation algorithm PMMADM is implemented in an integrated navi-
gation system, which includes an INS, a Doppler velocity log (DVL), and a gravimeter. The
algorithm utilizes the EKF with the PF and the MCM for parallel matching computations.
The joint gravity matching method is autonomously selected from the three results based
on the standard deviation of the local gravity field and the current navigation state of
the carrier.

2.2.1. Introduction of the EKF Method

The system state variables are chosen as X = [δVe, δVn, δϕ, δλ]T , where δVe and
δVn represent the eastward and northward velocity errors of the carrier, and δλ and δϕ
represent the longitude and latitude errors of the carrier, respectively. The system state
equation is as follow:

.
X = FX + W (1)

where W denotes the system state noise and F means the system state transfer matrix as:

F =



Vn

RN
tan ϕ 2ωie sin ϕ +

VE
RE

tan ϕ 2ωiecos ϕvn +
VeVn

RE
sec2 ϕ 0

−2ωiesin ϕ− 2Vetan ϕ

RE
0 −2ωiecos ϕVe −

V2
e sec2 ϕ

RE
0

0
1

RN
0 0

sec ϕ

RE
0

Vesec ϕ tan ϕ

RE
0


(2)

In which ωie means the angular speed of the earth’s rotation, RN and RE are the radius
of the curvature of the Uranus and Meridian circles at the position of the carrier.

The measurement vector of the system is:

Z =



Ve −VDVL
e

Vn −VDVL
n

λ− λG

ϕ− ϕG

g(λ, ϕ)− ∼g


(3)

The VDVL
e and VDVL

n represent the east and north velocities of the carrier measured
by the DVL, respectively. Meanwhile, λG and ϕG denote the longitude and latitude of the
matching results obtained by the PF or the MCM, and

∼
g represents the gravimeter measure-

ments. The PMMADM adaptively determines whether the matching result variables and
gravimeter measurements in the measurement vector are valid. If only the matching result
variable is valid, the EKF method is labeled as EKF-M, with the source of the matching
result marked with a subscript. If only the gravimeter measurement is valid, the EKF is
labeled as EKF-g. If both are valid, it is labeled as EKF-Mg.

The observation equation for the system is:

Z = HX + V (4)

where V denotes the system measurement noise and H means the system observation
matrix as:

H =

I2×2 02×2

02×2 HG

01×2 Hg

 (5)
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If the gravity measurements are available, the observation matrix Hg is defined as

Hg =
[

∂g
∂ϕ , ∂g

∂λ

]
, where ∂g

∂ϕ and ∂g
∂λ denote the first-order partial derivatives of the gravity

field with respect to latitude and longitude, respectively, at the position indicated by the
INS. Otherwise, Hg is set to be a zero matrix. If the matching result is available, HG is set to
the unit matrix. By adapting the observation matrix of the EKF, the proposed algorithm
utilizes both the gravity anomaly measurements and the gravity matching results from
other algorithms to calculate the correction for the INS position.

2.2.2. Introduction of the PF Method

The nonlinear model of the PF system is:

xt+1 = xt + ut + vt
yt = g(xt) + et

(6)

where xt = [λt, ϕt]
T represents the current position of the particle, and ut denotes the

system state transfer variable. The observed variable, yt, corresponds to the gravity anomaly
measurement, while g(xt) represents the gravity map value at the actual location of the
carrier. Furthermore, et and vt are independent white noise with known probability density
distribution functions pet(·) and pvt(·), respectively.

Suppose that there are K particles {xt(k), k = 1, 2, . . . , K} distributed in the vicinity of
the carrier’s location, and the posterior probability density of each particle is represented by:

p(xt(k)|Yt) k = 1, 2, . . . , K (7)

where Yt =
{∼

gi

}t

i=0
denotes the accumulated gravity anomaly measurement obtained by

the gravimeter from the start of the navigation to the current moment.
The systematic process noise probability density function for each particle is obtained

from carrier displacement as:

pvt

(
µ

kj
t , ut

)
= 1

σQ
√

2π
exp

(
−
∥∥∥µ

kj
t −ut

∥∥∥
2σ2

Q

)
µ

kj
t = xt(k)− xt−1(j)

(8)

where σQ is the system process noise standard deviation related to the INS and the DVL
accuracy.

The probability density function of the gravity anomaly measurement noise for each
particle is:

pet(∆g(k)) =
1

σR
√

2π
exp

−
[∼

gt − g(xt(k))
]2

2σ2
R

 (9)

where σR is the gravity anomaly measurement error standard deviation.
Using Bayesian filtering method, the recursive equations for the states and probability

density of the particle population are obtained as follows:

xt+1(k) = xt(k) + ut (10)

p(xt(k)|Yt) = α−1
t pet(∆g(k))p(xt(k)|Yt−1)

α−1
t =

K

∑
k=1

pet(∆g(k))p(xt(k)|Yt−1)

p(x(k)|Yt−1) =
K

∑
j=1

pvt

(
µ

kj
t , ut

)
p(xt−1(j)|Yt−1)

(11)
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Based on the distribution and probability density of the particle population at current
moment, the position of the carrier can be estimated as:

x̂t =
K

∑
k=1

xt(k)p(xt(k)|Yt) (12)

The variance of the estimated position is:

Pt =
K

∑
k=1
‖xt(k)− x̂t‖p(xt(k)|Yt) (13)

2.2.3. Introduction of the MCM Method

After collecting the navigational position and gravity anomaly measurements at each
distance, the carrier obtains a reference track LINS composed of N track points. To search
for the matching track, the indicator track is rotated and translated within the specified
search area, according to the following formula:

Lθd = CθLINS + ∆Dd (14)

where Cθ represents the rotation matrix and ∆Dd represents the offset distance. By varying
the rotation angles θ and offset distances d, multiple trajectories Lθd can be generated for
matching within the search range.

The gravity anomaly map values for each track point in Lθd are obtained using the
nearest grid point method.

gM

(
λi

θd, ϕi
θd

)
= g(< λi

θd >,< ϕi
θd >), (λi

θd, ϕi
θd) ∈ Lθd, i < N (15)

where <·> indicates a rounding operation.
This paper uses MSD to evaluate the correlation of gravity anomaly measurement

sequences with the trajectory sequences to be matched:

JMSD =
N

∑
i=1

(
∼
g

i
− gi

M)2 (16)

Within the specified search range, the correlation between all Lθd and the gravity anomaly
measurement sequences is calculated iteratively. Then, the end point x̂N =

(
λN

θd, ϕN
θd
)

of Lθd
that corresponds to the smallest JMSD is selected as the matching result of the correlation
extremum method.

The matching results obtained by the MCM are related to the randomness of the
gravity field. Therefore, the end points xN corresponding to the n smallest correlation
values are selected, and their dispersion in distribution is used to estimate the variance of
the matching results.

Pn = Var
({

xN

∣∣∣xN ⇐= min
n

JMSD

})
(17)

2.3. Description of The PMMADM

The algorithm proposed in this paper consists of two main parts: the calculation of
gravity field standard deviation thresholds before the voyage, and the calculation of gravity
matching during the voyage.

2.3.1. Classification of Gravity Field

The accuracy of gravity-aided navigation will be influenced by the distribution char-
acteristics of the gravity field in the navigation area. The main indicators used to evaluate
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the gravity field include the standard deviation, slope, and roughness of the gravity field,
which reflect its inherent properties from different perspectives. According to [25,26],
gravity matching algorithms tend to achieve better navigation accuracy in regions where
the gravity field is well-adapted.

In this paper, the standard deviation of the gravity field σ is selected as an evaluation
index for selecting matching methods in different gravity fields. The standard deviation of
the gravity field is a parameter that reflects the intensity of gravity field variation in a local
area. The larger the value of σ, the more intense the gravity field variation is. Assuming
that the entire ocean gravity field is gridded, the standard deviation of the gravity field can
be calculated as follows:

σ =

√
1

mn− 1 ∑m
i=1 ∑n

j=1[g(i, j)− g]2

g =
1

mn

m

∑
i=1

n

∑
j=1

g(i, j)
(18)

where m and n denote the number of horizontal grid points and the number of vertical
grid points in the area of standard deviation calculation, respectively. g(i, j) indicates the
gravity anomaly map value at coordinate (i, j).

The above equation is used to calculate the standard deviation of the gravity field
for all grid points in a region of the Yellow Sea in China, and the statistical histogram is
obtained as shown in Figure 3.

Figure 3. Statistical histogram of the standard deviation of the gravity field within a sea area.

As can be seen in Figure 3, the statistical distribution of the standard deviation of the
gravity field follows a skewed distribution [27,28]:

f (x; α, µ, s) =
2

σ
√

2π
exp

(
− (x− µ)2

2s2

)
Φ
(

α(x− µ)

s

)
(19)

where s and µ represent the statistical standard deviation and mean of the standard devia-
tion of the gravity field, respectively, α is the skewness parameter, and Φ is the cumulative
distribution function of the standard normal distribution.

Φ(z) =
1√
2π

∫ z

−∞
e−

x2
2 dx (20)
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The skewness parameter α is estimated using the skewness of the overall sample.

α =
µ3

s3 (21)

where µ3 is the third central moment of the sample data.

µ3 =
1
n

n

∑
i=1

(xi − x)3 (22)

where n means the number of grid points. Equation (19) can be used to describe the gravity
field standard deviation distribution. In this paper, the upper threshold U and lower
threshold L of the gravity field standard deviation are obtained based on its distribution.
Consequently, the gravity field in the navigation area is divided into three classes, as shown
in Table 1.

Table 1. Classification of gravity field levels.

Level Description Condition

I The gravity field is flat and the features are not obvious. σ < L

II The gravity field varies significantly, and the gravity
anomaly measurement noise is small. L < σ < U

III The gravity field fluctuates drastically, but the gravity
measurement noise is large. σ > U

Assuming that the grid share of the gravity field of class II is β, the lower threshold L
and the upper threshold U of the standard deviation for dividing the gravity field classes
are obtained from the t-distribution table, respectively [29,30]:

L = x−
t β

2 ,n−1
s

√
n

√
1 +

1
n

(
1− 3

α2

)

U = x +
tβ/2,n−1s
√

n

√
1 +

1
n

(
1− 3

α2

) (23)

Before navigation, the gravity map used for gravity-aided navigation is partitioned
into regions, and the upper and lower thresholds are computed individually for each region.
These thresholds are utilized to categorize the gravity field grids within the region into
various classes.

2.3.2. The PMMADM Method

The fundamental principles of three gravity-aided navigation algorithms were elu-
cidated in the preceding section. Distinct gravity matching methods exhibit varying
performance in gravity fields with diverse characteristics. For instance, the EKF method
demonstrates enhanced localization stability in regions characterized by insignificance.
Conversely, the PF and the MCM yield superior matching outcomes in regions charac-
terized by substantial fluctuations in the gravity field owing to their robust resistance
to noise.

In this study, the PMMADM incorporates the EKF algorithm as the primary compo-
nent, while simultaneously employing the PF and the MCM methods for gravity matching
calculations. The schematic diagram illustrating the composition of the algorithm is pre-
sented in Figure 4.
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Figure 4. Block diagram of the PMMADM.

In the PMMADM, the PF and MCM algorithms record sampling points at regular
intervals. Once the number of sampled points reaches the length of the MCM sequence, the
matching results, x̂t from the PF algorithm and x̂N from the MCM algorithm, are fused to
obtain the gravity matching result. The fusion results of the two methods can be obtained
from Equations (12), (13), (16), and (17).

x̂M = x̂t + K(x̂t − x̂N)

K =
Pt

Pt + Pn

(24)

The variance of the fusion results is:

P = Pt + K ∗ Pn (25)

During the voyage, the PMMADM continuously calculates the standard deviation
of the gravity grid at the current location to assess the level of the gravity field. The
observation matrix of the EKF algorithm is determined using a decision tree that considers
both the navigation state and the gravity field level. Figure 5 illustrates the decision tree
specifically designed for the algorithm proposed in this paper. It is used for the adaptive
selection of matching results or gravity measurement based on the standard deviation of
the gravity field at grid points.
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Due to the less prominent characteristics of the Class I gravity field, the utilization of PF
and MSD algorithms fails to yield satisfactory matching results. However, in such scenarios,
the errors in gravity anomaly measurements and gravity field linearization are small, it is
appropriate to employ gravity measurements within the EKF for position correction of the
INS. This approach ensures the stability of navigation results by mitigating the influence of
the stochastic nature of matching outcomes from other algorithms within the Class I gravity
field. Conversely, when the carrier operates within the Class III gravity field, significant
errors may arise in gravity anomaly measurements. Consequently, the utilization of gravity
measurements as observation variables is discontinued, and Equations (24) and (25) are
employed to acquire fused results from various matching algorithms for position correction.

3. Experiment and Results

The experimental data used in this study were obtained from actual navigation mea-
surements conducted in a certain sea area of China. The carrier is equipped with a laser
INS, DVL, and gravimeter. The stability of the gyroscope zero bias in the INS is 0.003◦/h,
with a random walk of 0.0005◦/

√
h, and the accelerometer bias is less than 5 mg. The

position update frequency of INS is 1 Hz. The velocity measurement accuracy of the
DVL is 0.4%v± 5 mm/s and data output frequency of 1 Hz. The gravity meter achieves
a continuous measurement accuracy of better than 1.5 mGal at sea, with a gravity anomaly
data output frequency of 1 Hz. The GPS receiver records the real-time position of the car-
rier, which is used to evaluate the navigation accuracy of the gravity matching algorithm.
The vessel’s average sailing speed is 6.7 m/s, and the duration of the entire experimental
data used in the study is approximately 97 h. By employing an ARM-based hardware
platform to achieve real-time emulation of sensor data streams, this paper accomplished
a semi-physical simulation of gravity-aided navigation within an underwater gravity
measurement and processing platform based on OMAP138.

3.1. Gravity Field Classification

The gravity map utilized in this experiment is derived from satellite altimetry in-
version and exhibits a resolution of 1′ × 1′. The map encompasses a latitude range of
13.3◦ and a longitude range of 31.3◦, with the maximum gravity anomaly value reaching
451.047 mGal, while the minimum value stands at −283.4 mGal. Figure 6 visually presents
the gravity map employed in the experiment, accompanied by the GPS trajectory depicting
the carrier’s navigation path.
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In order to minimize computational load, the gravity map is partitioned into twelve
regions and labeled sequentially, as depicted in Figure 6. For each region, upper and lower
thresholds are separately calculated using the gravity field classification method proposed
in this paper. The standard deviation calculation is performed using a 5 × 5 grid, with β is
90% of the gravity field selected as level II. The computation results for the upper threshold
U and the lower threshold L of each gravity field are presented in Table 2.

Table 2. Gravity field classification thresholds for each region.

Serial Number L (mGal) U (mGal)

I 1.2 7.1
I I 0.89 9.33
I I I 1.48 11.49
IV 1.99 11.09
V 1.48 12.3
VI 0.6 10.15
VII 1.2 5.77
VII I 2.1 9.75

IX 1.2 6.33
X 1.0 4.89
XI 0.7 3.13
XII 0.6 3.85

From Figure 6, it is evident that the trajectory traverses through seven regions: I,
I I, I I I, IV, X, XI, and XII. Referring to the data in Table 2, it is noteworthy that the U
for the first four regions are considerably higher compared to the other three regions. In
regions where the standard deviation of the gravity field falls below the L, the gravity field
exhibits minor fluctuations and less pronounced characteristics, making it unsuitable for
gravity matching calculations using the PF and the MCM methods. Conversely, in regions
surpassing the U, the gravity anomaly experiences significant fluctuations, and the gravity
field characteristics become more prominent. However, there is a higher probability of
encountering substantial noise in the gravity anomaly measurements. Therefore, it is not
advisable to utilize these measurements for position correction in the EKF algorithm.

The measurement noise of gravity anomalies is related to the standard deviation of the
gravity field. In this paper, the classification of gravity fields is employed to identify regions
that may exhibit significant measurement errors, allowing for the selection of appropriate
gravity matching algorithms. When the carrier is located in grid cells classified as Class III
gravity fields, larger measurement errors are prone to occur. Figure 7 presents a comparison
between the absolute error of gravity anomaly measurements throughout the carrier’s
trajectory and the standard deviation of the gravity field in the corresponding regions.

Figure 7 illustrates a clear relationship between the measurement error of gravity
anomalies and the standard deviation of the gravity field in the navigation region of the
carrier. The threshold lines in each region indicate that significant measurement errors
in gravity anomalies primarily occur in Class III gravity fields. In order to improve the
accuracy of gravity matching navigation, the proposed method in this paper, which includes
gravity field classification and algorithm selection, recommends employing the PF and
MCM algorithms in regions characterized by Class III gravity fields. These algorithms
demonstrate robust resistance to noise. Conversely, when the standard deviation of the
grid where the carrier is located falls below the lower threshold limit of the interval, the
noise in gravity anomaly measurements is reduced, making EKF-g the preferred choice for
ensuring navigation accuracy and stability.
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3.2. Gravity Matching in Different Gravity Fields

Within Region I I I, the carrier traversed three distinct levels of gravity field. Based
on the advanced threshold division of gravity field in 3.1 and the trajectory of carrier,
three segments of the trajectory are selected for comparison. These selected segments were
subjected to comparative experiments using the MCM, SITAN, and PF algorithms, as well
as the PMMADM algorithm proposed in this paper.

In the SITAN algorithm, the linearization method for the gravity field adopts a nine-
point fitting approach, and the initial position is set to the INS indication position. In the PF
algorithm, the initial distribution state of the particle swarm follows a normal distribution,
with the mean value equal to the inertial guide position and a standard deviation of 0.05◦.
For the MCM algorithm, the sampling sequence length is set to 20, the search range radius
is two grids, and the sampling sequence is updated using a sliding window. In order
to maintain consistency in the comparison experiments, the parameter settings for the
PMMADM algorithm remain the same as those used for each algorithm in the comparison.

3.2.1. Track Segment I

The standard deviations of the gravity map grid points encountered in this trajectory
segment are all below the lower threshold of Region I I I. This indicates a relatively flat
gravity field with indistinct features in this region. The latitude and longitude errors
obtained by the matching algorithms are shown in Figure 8.

Both the MCM and PF algorithms fail to accurately determine the true position of
the carrier and can only perform gravity matching calculations when there are trajectory
points, resulting in discontinuous outputs for gravity navigation. On the other hand, the
SITAN algorithm exhibits a smooth and continuous error curve, although it also falls short
in precisely determining the carrier’s actual position. However, it demonstrates favorable
real-time performance and stability.

As the gravity field encountered in this segment is classified as Level I based on the
decision tree, it indicates that the PMMADM algorithm, in this region, only employs EKF-g
for corrections. Consequently, its matching results align with those of the SITAN algorithm
and it isn’t shown in the Figure 8.
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Figure 8. Positioning errors for track segment I.

3.2.2. Track Segment II

In this segment of the trajectory, the carrier is situated in a region with a relatively large
standard deviation of the gravity field, while the maximum value of gravity measurement
error does not exceed 3 mGal. At this stage, the carrier is positioned in an area with distinct
characteristics and minimal measurement errors, making it well-suited for conducting
gravity matching calculations to achieve higher positioning accuracy. The latitude and
longitude errors obtained from the four algorithms are illustrated in Figure 9.

Figure 9. Positioning errors for track segment II.
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As depicted in Figure 9, when the gravity measurement errors are small and the gravity
field exhibits distinct features, all four gravity navigation algorithms confine the positioning
errors within a single grid, thereby achieving effective gravity-aided navigation. Table 3
presents the statistics of the eastward and northward distances between the matching
positions of the four algorithms and the GPS positions. The data in Table 3 indicate that
within the adapted region, the proposed algorithm demonstrates the highest positioning
accuracy and stability.

Table 3. Segmentation statistics of positioning errors.

Method
Eastward Error Northward Error

Mean (m) Std (m) Mean (m) Std (m)

PF 713.96 540.47 635.82 528.37
MCM 967.92 570.13 766.46 541.43
SITAN 389.84 338.02 557.41 320.19

PMMADM 281.73 206.22 272.38 229.05

3.2.3. Track Segment III

During this trajectory segment, the carrier transitions from a region with gravity
classified as level II to another region with level III gravity, and there are significant
variations in the encountered gravity field. Towards the end of the trajectory, post-data
processing reveals large random errors in the gravity anomaly measurements. The matching
results obtained from the four different methods are illustrated in Figure 10.
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Figure 10. Positioning errors for track segment III.

At the beginning of this trajectory segment, the longitude error is within one grid, and
the latitude error is 0.7 grid. Within the adaptable region and experiences relatively low
gravity measurement noise in the beginning, both SITAN and PMMADM quickly converge
to the vicinity of the true position. PF and MCM algorithms also exhibit a similar trend of
reducing the INS position error during the initial stage. Towards the end of the trajectory,
a sudden increase in measurement noise leads to the divergence of SITAN’s longitude
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error, and the latitude error gradually increases, no longer showing a trend of convergence
towards the true position. From Figure 10, it is evident that PF, MCM, and PMMADM
exhibit robustness against noise at this stage. Their positioning errors remain stable, and
they can still perform correct matching navigation.

3.3. Gravity Matching Navigation under Long Time

To investigate the performance of the proposed algorithm in continuous gravity
matching during long-term navigation, this experiment conducted continuous matching
navigation using the entire voyage data. In the matching process, to prevent mismatch-
ing that could disrupt the normal functioning of traditional algorithms, we introduced
DVL velocity as an additional constraint for the three comparative algorithms used in
Experiment 3.2.

With these modifications, gravity matching navigation is performed independently using
these algorithms, and the resulting navigation outcomes are compared with the GPS positions.
The errors in latitude and longitude are depicted in Figures 11 and 12, respectively.
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From Figures 11 and 12, it can be observed that the INS exhibits initial position errors,
with a longitude error of 0.8 grid and a latitude error of 1 grid. Without external position
information for correction, the navigation error curve of the INS fluctuates periodically,
rendering it ineffective for accurate navigation positioning. The SITAN algorithm corrects
the initial position error early in the voyage. However, due to the influence of gravity
anomaly measurement noise, the SITAN algorithm experiences rapid error divergence in
certain regions. The PF algorithm demonstrates significant random matching errors in
the initial stage, as the particle swarm carries limited genetic information. As the particle
swarm gradually evolves, the matching errors in the later stages of the voyage exhibit
reduced fluctuations, but a fixed error remains. The error curve of the MCM method
fluctuates around zero, but it often produces incorrect matching points, indicating relative
instability compared to other algorithms.

All three algorithms have limitations in achieving gravity-aided navigation in certain
regions. However, PMMADM overcomes these limitations by employing decision judg-
ment to avoid regions with flat gravity fields or obvious gravity anomaly measurement
noise, resulting in more effective gravity matching navigation. The error curves of PM-
MADM demonstrate rapid convergence to a position error close to zero at the beginning of
the navigation. Throughout the entire voyage, the error curves remain smooth and stable.
After 10 h, the longitude error does not exceed half a grid, and after 20 h, the latitude error
does not exceed 0.7 grid, indicating a high level and stable of positioning accuracy achieved
by PMMADM.

Based on the navigation area of the carrier, the trajectory of the route in areas I–IV is
classified as the first section, while the trajectory of the route in areas XI–XII is classified as
the second section. The first section exhibits distinct gravity field characteristics, whereas
the second section experiences a flat gravity field. Table 4 presents a comprehensive
statistical analysis of the relative position errors for the two trajectories using different
gravity matching methods.

Table 4. Segmentation statistics of positioning errors.

Method
Seg 1 Seg 2

Mean (m) Std (m) Mean (m) Std (m)

INS 2570.03 565.43 2601.36 426.06
PF 982.16 439.72 706.90 111.46

MCM 1379.03 582.16 1739.92 788.39
SITAN 1260.99 570.07 1720.57 747.88

PMMADM 857.89 423.14 620.72 311.21

It is evident from Table 4 that the PMMADM algorithm exhibits superior stability and
accuracy in terms of localization error and is less susceptible to the influence of gravity field
characteristics, regardless of whether it is in regions with significant gravity field variations
or in flat regions. In the first trajectory segment, both the MCM and SITAN algorithms
demonstrate smaller average matching errors compared to the latter half of the trajectory.
In the second trajectory segment, the particle swarm evolution of the PF algorithm is
sufficient, resulting in higher localization accuracy and stability when compared to MCM
and SITAN. Remarkably, the PMMADM algorithm consistently achieves comparable levels
of localization accuracy across gravity fields with different characteristics, showcasing
superior stability and broader applicability.

4. Conclusions

This paper introduces a parallel multi-method adaptive decision method for gravity
matching navigation. By computing the standard deviation thresholds of the gravity field
within the navigation area, the algorithm classifies the gravity field into three levels. Based
on the current navigation state and the gravity field level at each grid point, the algorithm
autonomously determines the appropriate gravity matching method to be used in the
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navigation system. This methodology effectively leverages the unique strengths of different
gravity matching algorithms in various gravity field scenarios, expanding the applicability
of gravity-aided navigation.

The experiments conducted in this paper demonstrate that the proposed algorithm
effectively reduces the impact of high noise levels in gravity field measurements by clas-
sifying the gravity field. As a result, the algorithm enhances the robustness of gravity
matching navigation in noisy environments. The navigation tests further confirm that
the algorithm, integrated into a navigation system comprising INS, DVL, and gravimeter,
enables continuous and long-term navigation capabilities.

However, it is important to acknowledge the limitations of the algorithm proposed
in this study. Firstly, the precomputation of gravity field standard deviation thresholds
may involve redundant calculations. Exploring the possibility of real-time computation of
thresholds in the proximity of the inertial navigation system’s position could reduce com-
putational burden. Secondly, there is potential for further advancements in the individual
branches of the adaptive algorithm, with the goal of improving both localization accuracy
and real-time performance of the matching algorithm.
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