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Abstract: This paper investigates the multi-objective optimization problem in the production of
offshore wind turbine steel pipe piles (OWTSPP). Considering the particularity of the steel pipe
pile production process, it is divided into a flexible flow shop scheduling (FFSS) stage and an open
parallel shop scheduling (OPSS) stage, respectively. Mathematical models are established for each
stage, and the critical path and production time information are obtained using a disjunctive graph
model. Due to the inability of existing empirical scheduling methods to balance production goals,
an improved Pythagorean hesitant fuzzy method (IPHFM) is proposed to solve the multi-objective
optimization problem in steel pipe pile production. Specifically, the maximum completion time,
machine total load, and total completion time are taken as optimization objectives. The improved
Lagrange multiplier method with penalty terms is used to handle the constraints and objective
functions, and a Lagrange objective function is generated. Then, the Lagrange objective function
matrix is obtained by normalization and same-scale processing, and an algorithm is designed to
obtain the Pareto front solution set. Finally, this paper compares the optimal scheduling plans under
the empirical scheduling method and the improved method. The results show that the improved
method can significantly improve production efficiency in both small-scale and large-scale production,
with improvements of 15.7% and 22.16%, respectively.

Keywords: offshore wind turbine steel pipe piles (OWTSPP); flexible flow shop scheduling (FFSS);
open parallel shop scheduling (OPSS); disjunctive graph model; multi-objective optimization;
improved Pythagorean hesitant fuzzy method (IPHFM)

1. Introduction

With the vigorous development of renewable energy, it is crucial to improve the
production efficiency of Offshore Wind Turbine Steel Pipe Piles (OWTSPP), which are
widely used as the foundation in offshore wind farms. As one of the largest wind power
markets globally, China recognizes the significance of efficient and high-quality OWTSPP
production as a key manifestation of industrial competitiveness. Therefore, enhancing the
production efficiency and quality of OWTSPP holds great importance in promoting the de-
velopment of the renewable energy industry and strengthening enterprise competitiveness.

Considering the current situation where enterprises rely on experience scheduling,
the production efficiency is low, and the production of various types of OWTSPP may be
disorderly when urgent production occurs. Figure 1 shows the key steps involved in the
OWTSPP production process, including cutting, splicing, rolling, longitudinal welding,
and circumferential welding. Among them, the cutting, splicing, and rolling processes
can be regarded as FFSS, while the longitudinal and circumferential welding can be seen
as OPSS.
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Figure 1. The Production Process of OWTSPP.

The research on scheduling problems can be traced back to the mid-1950s [1]. With
the rapid development of artificial intelligence technology, intelligent manufacturing has
become increasingly popular, which undoubtedly promotes the research of optimization
scheduling algorithms, multi-objective optimization, and other aspects. Both FFSS and
OPSS problems are very valuable for research, and multi-objective optimization has been
a research hotspot in recent years [2–7]. In recent years, researchers have used various
algorithms, improved algorithms, and reinforcement learning methods to solve various
workshop scheduling problems [8–13], as well as various multi-objective optimization
scheduling problems [14–19]. At the same time, research methods are relatively mature,
including optimization theory research, algorithm improvement simulation research meth-
ods to improve optimization capabilities and achieve better convergence results [20,21].
In addition, researchers have combined improved methods with real production data to
conduct multi-objective optimization studies in workshop production, which is also a very
important research method [22].

It should be emphasized that all scheduling optimization methods must be combined
with actual production. In production, it is necessary to consider how to optimize multiple
objectives such as project duration, machine utilization, and total production time in an
uncertain environment [23–25]. Since fuzzy methods can solve uncertainty problems
well, more and more scholars have started to study scheduling problems under various
uncertain environments, including uncertain delivery dates, uncertain scheduling start
and end times [26–32]. In terms of multi-objective optimization, fuzzy methods have also
been widely used, such as multi-objective optimization priori weighting, multi-stage multi-
objective optimization, and constrained multi-objective optimization examples [33–38].

With the emergence of Pythagorean fuzzy methods, fuzzy methods have become more
flexible in making actual problem decisions and optimizations [39,40]. Zhang expanded the
use of interval representation for membership, non-membership, and hesitation information
based on Pythagorean fuzzy method [41]. Liu Weifeng et al. combined the advantages
of Pythagorean fuzzy method and hesitant fuzzy method and used the expert scoring
simulation and assigning decision influencing factor weights to obtain the multi-objective
ranking results under multiple criteria [42,43]. When considering the weight of unknown
decision objectives, it is impossible to obtain a score function or determine the optimal
solution ranking. In this case, the multi-objective decision-making problem can be viewed
as a multi-objective optimization problem. Finally, an improved Pythagorean hesitant fuzzy
method was used to discuss and study the multi-objective optimization problem.

2. Description of Production Problems for OWTSPP

OWTSPP can be regarded as workpieces with multiple processes, and each process has
multiple processing machines to choose from. Due to the particularity of the production
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process of OWTSPP, the process is decomposed into FFSS and OPSS, and solutions are
obtained based on these two scheduling problems.

According to the production situation of OWTSPP in the enterprise, the symbols used
in the process of establishing mathematical models are explained as shown in Part (a) of
Nomenclature Section.

Based on production data from the enterprise, a disjunctive graph model is used
to provide slack time for non-production processes and to identify the critical path in
order to ensure scheduling accuracy. In Figure 2, M1, M2 and M3 represent different
types of processing machines and are depicted in different colors. The workflow is repre-
sented by the start and end nodes Start− End while Oij denotes the jth operation of work-
piece i. Directed line segments are used to represent the time required to transition from
one production stage to another, including non-production time.

Figure 2. The Disjunctive Graph Model for a Certain Type of OWTSPP.

2.1. Mathematical Model for Flexible Flow Shop Scheduling Stage

In the production of OWTSPP, the steel plate splicing, cutting, and rolling processes
form a serial machine environment, with a, b, and c parallel machines for each stage
respectively. Let M be the set of all machines, m be the number of production machines
for OWTSPP, and n be the number of steel plates produced. Moreover, workpieces can be
stored indefinitely between any two consecutive stages. Therefore, the steel plate splicing,
cutting, and rolling processes conform to the characteristics of FFSS and can be regarded as
a FFSS model (as shown in Figure 3).

Figure 3. Breakdown Chart of OWTSPP Production Process.

In the FFSS stage of OWTSPP production, a mathematical model for FFSS is estab-
lished based on the mathematical symbols listed in Part (a) “Mathematical Symbols and
Interpretation” of Nomenclature Section. The objective function is formulated according to
actual production situations, and constraint conditions are also specified.

The objective functions considered in this paper are total completion time, maximum
completion time, and machine utilization rate. They are formulated according to actual
production situations as follows:
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(1) Minimizing maximum completion time.

f1 = min(maxj∈Jmaxo∈O(cj,o,m))

(2) Minimizing machine total load.

f2 = min(
m
∑

m=1
∑

o∈O

n
∑

j=1
(tj,o,m · xj,o,m))

(3) Minimizing total completion time.

f3 = min(
n
∑

j=1

m
∑

m=1
(tx

j + ty
j + tz

j )xj,o,m)

The constraint conditions are specified according to the production process in the
FFSS stage.

s.t.



∑n
j=1 xj,o,m = 1, ∀o ∈ O, ∀m ∈ M

∑m
m=1 xj,o,m = 1, ∀j ∈ J, ∀o ∈ O

sj,o,m + tj,o,m ≤ sj,o+1,m, ∀j ∈ J, ∀o + 1 ∈ O, ∀m ∈ M
cj,o,m ≤ cj+1,o,m, ∀j + 1 ∈ J, ∀o ∈ O, ∀m ∈ M
cj,o,m ≤ sj,o+1,m, ∀j ∈ J, ∀o + 1 ∈ O, ∀m ∈ M

sj,o,m = 0, ∀j ∈ J
sj,o,m + tj,o,m ≤ sj,o+1,m, ∀j ∈ J, ∀o ∈ O, ∀m ∈ M

tj,o,m 6= tj′ ,o,m, ∀j 6= j′, ∀j, j′ ∈ J, ∀o ∈ O, ∀m ∈ M

∑M
m=1 xj,o,m ≥ 2, ∀j ∈ J, ∀o ∈ O
xj,o,m = xj,o,m′ , ∀j ∈ J, ∀o ∈ O, ∀m, m′ ∈ M

(1) One machine can only process one operation of a steel pipe pile at a certain point
in time; (2) Only one machine can process the same operation of the same steel pipe
pile at the same time; (3) Once the processing of an operation for a steel pipe pile starts,
it cannot be interrupted; (4) The processing priority is the same for different OWTSPP;
(5) The processing of operations among different OWTSPP has no order constraints, but the
operations of the same steel pipe pile have precedence constraints. (6) The first operation of
any steel pipe pile can be processed at time zero; (7) Each steel pipe pile must be processed
in the order of steel plate splicing, cutting, and rolling; (8) The operations are the same for
different OWTSPP, but their processing times are different; (9) Each steel pipe pile must be
processed in the order of steel plate splicing, cutting, and rolling; (10) The same machine is
used for the same operation of any steel pipe pile.

2.2. Mathematical Model for Open Parallel Shop Scheduling Stage

Both circumferential seam welding and longitudinal seam welding use the same
welding machine for production. Under the condition of meeting the constraint conditions,
these two production processes can be viewed as an OPSS model, see Figure 3.

To accurately define the OPSS model, the following names are given to the reels
at different welding stages: (1) Unwelded reel refers to the reel that has not undergone
longitudinal seam welding; (2) Longitudinally welded reel refers to the reel that has
undergone longitudinal seam welding but not circumferential seam welding; (3) Reel refers
to all reels that do not need to be specified for a particular stage. To facilitate understanding,
the mathematical symbol explanations are added as follows:

n: The quantity of reels that have completed longitudinal seam welding.
m: The number of welding machines.
Aj: The remaining quantity of reels that have completed longitudinal seam welding, i.e.,
the quantity of reels that can undergo circumferential seam welding.
Pj: The number of circumferential seam welding operations.
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The objective function for OPSS is as follows:
(1) Minimizing total completion time.

f5 = min(
n
∑

j=1

m
∑

m=1
(tp

j + ta
j )xj,o,m)

(2) Minimizing machine total load.

f2 = min(
m
∑

m=1
∑

o∈O

n
∑

j=1
(tj,o,m · xj,o,m))

(3) Minimizing maximum completion time.

f1 = min(maxj∈Jmaxo∈O(cj,o,m))

The constraint conditions are specified based on the characteristics of OPSS and the
production situation of longitudinal seam welding and circumferential seam welding
as follows:

s.t.



n
∑

j=1
xj,o,m ≤ 1, ∀m ∈ M

Aj ≥ 2Pj, ∀j ∈ J
Aj = Aj′ − 2n, ∀m ∈ M, j, j′ ∈ J, j′ 6= j
Aj = Aj′ + n, ∀m ∈ M, j, j′ ∈ J, j′ 6= j

n
∑

j=1
xj.o.m ≤ 1, ∀m ∈ M

ta
j ≤ tp

j , ∀j ∈ J

m < n
Aj ≥ Pj, ∀j ∈ J

(1) Each welding machine can only participate in the welding of one reel at a time;
(2) Circumferential welding can only be carried out when there are at least 2 surplus reels
(Aj ≥ 2) after longitudinal seam welding has been completed. Here, Pj represents the
number of circumferential welds; (3) After each circumferential welding operation, the
number of reels that have completed longitudinal seam welding will be reduced by 2 (j′

represents the ID of another reel different from j); (4) After each longitudinal seam welding
operation, the number of reels that have completed longitudinal seam welding will be
increased by 1; (5) The welding machines can be reused in cycles, and any reel at any
stage can be welded by a free welding machine; (6) The time required for longitudinal
seam welding is different from the time required for circumferential seam welding, and
the time required for longitudinal seam welding is less than that for circumferential seam
welding; (7) There are welding machines available, and there are a large number of reels to
be welded, far more than the number of welding machines available; (8) Longitudinal seam
welding and circumferential seam welding are different processes in the production of the
workpiece, and circumferential seam welding can only be carried out after longitudinal
seam welding.

3. Analysis and Processing of Production Data for OWTSPP

To facilitate reading of this chapter, the abbreviated names and meanings of production
processes and unit symbols are listed in Part (b) of Nomenclature Section. The production
process of OPW is shown in the schematic diagram below (refer to Figure 4), which can be
aided by Part (b) of Nomenclature Section for better understanding.
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Figure 4. Diagram of Key Production Processes for OWTSPP.

The enterprise has provided production data for a certain type of OWTSPP. Table 1 has
processed the production data. It should be pointed out that the internal and external group
welding method is often used in the longitudinal and circumferential seam welding stages.

Table 1. Production Information Table for a Certain Type of OWTSPP.

ShortHand SPS SPC RP LW CW

W.H (h/day) 20 22 20 20 20
WCM-1 (kg/m) 15 - - 15 15
WCM-2 (kg/h) 7.5 - - 7.5 7.5

MPC (m) 810 607.5 675 675 810
Workstation (WS) 5 2 2 3 4

WH 5.4 2.7 2 5.4 8.4
SW Pro.E (mm/min) - 200 120 - -

OWTSPPPF 34 34 34 34 17
SW Prod. E
(m/h/WS)

0.5 12 132 0.5 0.5

Analyzing the data in Table 1 provides detailed production information for the OWT-
SPP. Due to space limitations, this article does not elaborate on the detailed production
information of other types of OWTSPP. Only key information such as workpiece J, machine
M, process O, and time tx

j , ty
j , tz

j , ta
j , tb

j are given. To simplify the problem difficulty, the steel
pipe pile is treated as one workpiece.

3.1. Processing of OWTSPP Production Data

This chapter records the processing time in hours for five different types of OWTSPP
on different machines (see Table 2). These data provide a basis for further optimizing the
production process.

Table 2. Schedule for OWTSPP Processing.

Type

Process
SPS SPC RP LW CW

OWTSPP-1 5.4 2.7 2 5.4 16.8

OWTSPP-2 4.3 2.2 1.8 4.3 12.4

OWTSPP-3 8.1 4.2 2.5 8.1 17.6

OWTSPP-4 9 4.7 2.4 9 22.4

OWTSPP-5 6.2 2.9 2.2 6.2 18.6
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Based on the production time data of different processes for different types of OWTSPP
in Table 2, a disjunctive graph model is established (see Figure 5). In this model, the
influence of slack time is not considered, and each workpiece is regarded as a path. A
directed acyclic graph is used to represent the order of different steel pipe pile processes.

Figure 5. Disjunctive Graph Models for Different Types of OWTSPP.

In the Figure 5, O11, O12, O13, O14, O15 represent the five processes involved in OWTSPP
production, namely splicing, cutting, coiling, longitudinal seam welding, and circumferen-
tial peak welding.

3.2. Flexible Flow Shop Scheduling Stage Data Processing

It is known that this stage includes three steps: O11, O12, O13, as shown in Figures 6 and 7.
The reel can be regarded as a finished workpiece j, so the processing time of workpiecej
on the three steps in the FFSS is tj = ta + tb + tc. Table 3 records the number of processing
machines and corresponding processing times required for five different types of OWTSPP
in the first three processes.

Table 3. FFSS Stage Production Time Information Table.

Job Operation m1–5,10–12 m6–7 m8 m9

j1
o11 5.4 - - -
o12 - 2.7 - -
o13 - - 2 3

j2
o11 4.3 - - -
o12 - 2.2 - -
o13 - - 1.8 2.7

j3
o11 8.1 - - -
o12 - 4.2 - -
o13 - - 2.5 3.8

j4
o11 9 - - -
o12 - 4.7 - -
o13 - - 2.4 3.6

j5
o11 6.2 - - -
o12 - 2.9 - -
o13 - - 2.2 3.3

Figure 6 represents the distribution of processing times on different machines. It
showcases the processing times of these five types of OWTSPP in different processes using
a 3D surface plot and a 3D scatter plot.
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3D colormap surface Image 3D scatter Image

Figure 6. Machine Distribution Image for Different Workpiece Processes in the FFSS Stage.

Assign the processing time of the first three stages to the diagram in Figure 5, and we
get the disjunctive graph with the processing time of the first three stages. Figure 7 clearly
represents the production time for each production process.

Figure 7. FFSS Stage Disjunctive Graph Model.

3.3. Open Parallel Shop Scheduling Data Processing

According to Figures 8 and 9, this stage includes two production processes, O14,O15,
with the recording of the production time for the last two processes. Table 4 records the
processing time for different types of OWTSPP on different machines during longitudinal
seam welding and circular seam welding processes.

Table 4. OPSS Stage Production Time Information Table.

Job Operation m1–5,10–12 m1–5,10–12

j1
o14 5.4 -
o15 - 16.8

j2
o24 4.3 -
o25 - 12.4

j3
o34 8.1 -
o35 - 17.6

j4
o44 9 -
o45 - 22.4

j5
o54 6.2 -
o55 - 18.6
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Figure 8 illustrates the distribution of different types of steel pipe pile processes,
machines, and production times during the OPSS stage.

3D Colormap Surface Image 3D Scatter Image

Figure 8. Machine Distribution Image for Different Workpiece Processes in the OPSS Stage.

By adding the processing time of the last two processes in the OPSS stage to Figure 5,
we obtain the disjunctive graph model shown in Figure 9. The figure clearly illustrates the
production process of OWTSPP and the production time for processes 4 and 5 of different
types of OWTSPP.

Figure 9. OPSS Disjunctive Graph Model.

3.4. Slack Time Analysis

During the production process, uncertainties such as machine efficiency, labor effi-
ciency, and transfer time in each production process can lead to situations of early comple-
tion or delays. Therefore, based on the production times provided in Tables 3 and 4, it is
necessary to consider production slack time tsi. In order to cope with possible production
delays, a certain slack time is allocated for each production process. The processed ranges of
slack time for different types of OWTSPP and different production processes are presented
in Table 5.
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Table 5. Slack Time Table.

Type

Process
Step-1 Step-2 Step-3 Step-4 Step-5

OWTSPP-1 0.2–0.4 h 0.4–0.8 h 0.4–0.6 h 0.4–0.8 h 0.4–0.8 h

OWTSPP-2 0.2–0.4 h 0.4–0.8 h 0.4–0.6 h 0.4–0.8 h 0.4–0.8 h

OWTSPP-3 0.2–0.4 h 0.4–0.8 h 0.4–0.6 h 0.4–0.8 h 0.4–0.8 h

OWTSPP-4 0.2–0.4 h 0.4–0.8 h 0.4–0.6 h 0.4–0.8 h 0.4–0.8 h

OWTSPP-5 0.2–0.4 h 0.4–0.8 h 0.4–0.6 h 0.4–0.8 h 0.4–0.8 h

The Table 5 includes information about the slack time for each production stage. When
considering slack time, the total production time for the entire process is tj, in which case
the critical path is C = tj.

tj = tx
j + 4ts1 + ty

j + 4ts2 + tz
j + 2ts3 + ta

j + 2ts4 + tb
j + ts5

To ensure the uncertain characteristics of slack time, for each circumferential seam
welding, 4 cutting operations, 8 splicing operations, 2 rolling operations, and 2 longitudinal
seam weldings are required. After adding the production slack time to the production time
of each process, all possible production times for this process are obtained. The sum of
the production times for all processes is the total production time of the OWTSPP, which
results in the disjunctive graph model for the entire production process with slack time, as
shown in Figure 10.

Figure 10. Disjunctive Graph Model for Production Process with Possible Production Time.

The figure includes the possible production times for each stage, dividing all pos-
sible production times into three groups, as indicated by the time shown in each of the
three paths in the figure. From Figure 10, it can be seen that the numbers on the directed
line segments represent the production times of the processes considering the slack time.
The critical path is the longest path in terms of time duration in the production process and
represents the minimum time required to complete the production, and the critical path C
considering slack time is as follows: C = 10.6 + 7.9 + 4.8 + 9.8 + 23.2 = 56.3.
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4. Research on Improving Pythagorean Hesitant Fuzzy Method

The Pythagorean hesitant fuzzy method usually uses a ternary array A = {< x, ΓA(x),
ΨA(x) > |x ∈ X} to represent the attribute information of decision alternatives, where
ΓA(x) and ΨA(x) are non-empty finite subsets belonging to [0, 1]. It also satisfies
µ2

A(x) + ν2
A(x) ≤ 1, where ∀x ∈ X and ∀µA(x) ∈ ΓA(x),∀νA(x) ∈ ΨA(x)correspond

to the weights of different attributes under different decision alternatives. According
to the decision matrix, the score function of each alternative is calculated, and finally,
the alternatives are ranked according to the size of their score functions for selection
and optimization [42,44].

This article uses a multivariate array < t, t′, x, f1, f2, f3, gn, gm > to replace the ternary
array under hesitant fuzzy sets. Among them, t, t′ and x are the parameters involved
in the target function optimization process, while f1, f2, and f3 represent the objective
functions that need to be optimized. At the same time, considering multiple constraints
gi(x), when conducting multi-objective optimization, weight factors are ignored, and
the Lagrange multiplier method with penalty terms is used to handle different objective
functions and constraints, which is transformed into the Lagrange objective function
Li(t, t′, x, λ, ε). Finally, the Lagrange objective function matrix X, is solved, and the Pareto
front solution set is found according to Algorithm 1 and 2.

Algorithm 1 Pareto Front Algorithm with Simulated Annealing

1: Input:
2: - X: Objective function vector matrix
3: - T0: Initial temperature
4: - Tend: Termination temperature
5: - α: Cooling rate
6: Output:
7: - PF: Pareto front set
8: PF = Pareto-Front-Algorithm(X)

9: while T0 > Tend do
10: Q= ∅
11: for each x in PF do
12: y = SA(x, T0) // apply SA for vector optimization
13: add-to-Q(y, Q) // add optimized solution to Pareto front
14: end for
15: PF = merge (PF, Q)
16: T0= α ∗ T0 // cooling down
17: end while
18: return PF

Algorithm 1 serves as the main framework for filtering Pareto front solutions, includ-
ing the starting and stopping conditions, optimization process, and secondary screening of
optimal solutions. Algorithm 2, on the other hand, represents the classical Pareto front al-
gorithm, primarily comparing the distance between objective function vectors to determine
non-dominated solutions and conducting a primary screening of Pareto front solutions.

4.1. Processing of Constraint Conditions in the Production Stage of OWTSPP

When processing the constraint conditions in the scheduling stage of a FFSS, the
constraint conditions are added to the objective function, and the augmented Lagrangian
multiplier method is used to convert multiple equality and inequality constraints into
unconstrained optimization problems [45–47]. By introducing the Lagrangian multi-
plier vector λ = (λ1, . . . , λm)> and penalty term ε, the constraint conditions are trans-
formed into equality constraints [48,49]. Multiple constraint conditions are represented as
L(x, λ) = f (x) + λ>g(x) after being processed by the Lagrangian multiplier. Here
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f : Rn → R1, g : Rn → Rm, g(x) = [g1(x), g2(x), . . . , gm(x)]>, and ε > 0 is the penalty
term. The augmented Lagrange objective function with penalty terms is defined as follows:

Algorithm 2 Pareto-Front-Algorithm

1: Input:
2: - d: Euclidean distance
3: - ω: Distance weight factor
4: -X: Objective function matrix
5: Output:
6: - PF: Pareto front set
7: PF =()

8: for i = 1 to N do
9: p = the i-th solution

10: flag = True
11: for j = 1 to |PF| do
12: q = the j-th solution in the PF
13: d =

√
(Xij(t, t′, x)− Xi′ j′(t, t′, x))2

14: if d <= ω * w(j) then
15: flag = False
16: break
17: end if
18: end for
19: end for
20: return PF

L(tj,o,m, cj,o,m, sj,o,m, xj,o,m, λ, ε) = f (x) + λ>g(x) + ε||g(x)||2

Here, x represents the variables in the constraint conditions and objective function
during production, which are not further elaborated. For ease of reading, sj,o,m and cj,o,m,
which represent the start and end times of processing, are denoted as t′, while tx

j , ty
j , tz

j
and tj,o,m, which represent the processing time, are denoted as t, and substituted into
the formula.

The constraint conditions are processed as follows:

s.t.



g1(x) = ∑n
j=1 xj,o,m − 1 = 0 ∀o ∈ O, ∀m ∈ M

g2(x) = ∑m
m=1 xj,o,m − 1 = 0 ∀j ∈ J, ∀o ∈ O

g3(s, t) = sj,o,m + tj,o,m − sj,o+1,m ≤ 0 ∀j ∈ J, ∀o + 1 ∈ O, ∀m ∈ M
g4(c) = cj,o,m − cj+1,o,m ≤ 0 ∀o ∈ O, ∀m ∈ M

g5(c, s) = cj,o,m − sj,o+1,m ≤ 0 ∀j ∈ J, ∀o + 1 ∈ O, ∀m ∈ M
g6(s) = sj,o,m = 0 ∀j ∈ J

g7(s, t) = sj,o,m + tj,o,m − sj,o+1,m ≤ 0 ∀j ∈ J, ∀o ∈ O, ∀m ∈ M
g8(t) = tj,o,m − tj′ ,o,m 6= 0 ∀j 6= j′, ∀j, j′ ∈ J, ∀o ∈ O, ∀m ∈ M

g9(x) = ∑M
m=1 xj,o,m − 2 ≥ 0 ∀j ∈ J, ∀o ∈ O

g10(x) = xj,o,m − xj,o,m′ = 0 ∀j ∈ J, ∀o ∈ O, ∀m, m′ ∈ M

In the FFSS problem, the augmented Lagrangian multiplier method is used to combine
the 10 constraints and the objective function into an unconstrained optimization problem.
The Lagrangian function can be obtained by combining the objective function (1) with
corresponding constraint conditions (1)–(10) as follows:

L
t′
(t′,

10
∑

i=1
λi,

10
∑

i=1
εi) = f1(t′) +

10
∑

i=1

10
∑

i=1
λigi(t′) +

10
∑

i=1

10
∑

i=1
εi||gi(t′)||2
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Similarly, the Lagrangian objective function formed by combining the objective func-
tions (2) and (3) with constraints (1)–(10) is as follows:

The processed result of the objective function (2) is as follows:

L
t,x
(t, x,

10
∑

i=1
λi,

10
∑

i=1
εi) = f2(t, x) +

10
∑

i=1

10
∑

i=1
λigi(t, x) +

10
∑

i=1

10
∑

i=1
εi||gi(t, x)||2

The processed result of the objective function (3) is as follows:

L
t,x
(t, x,

10
∑

i=1
λi,

10
∑

i=1
εi) = f3(t, x) +

10
∑

i=1

10
∑

i=1
λigi(t, x) +

10
∑

i=1

10
∑

i=1
εi||gi(t, x)||2

The objective function above shows the constraints treated with penalty terms using
the Lagrange multiplier method, and the objective function, objective function vector,
processed constraints, and other information are unified into the improved fuzzy method
for subsequent normalization and scaling of the objective function in the FFSS Stage.

Similarly, the constraint conditions for the OPSS problem are organized and unified
into functional forms of equations or inequalities for ease of handling. The summarized
constraint conditions are as follows:

s.t.



k1(x) =
n
∑

j=1
xj,o,m − 1 ≤ 0 ∀m ∈ M

k2(A, P) = Aj − 2Pj ≥ 0 ∀j ∈ J

k3(A) = Aj − Aj′ + 2n = 0 ∀m ∈ M, j, j′ ∈ J, j′ 6= j

k4(A) = Aj − Aj′ − n = 0 ∀m ∈ M, j, j′ ∈ J, j′ 6= j

k5(x) =
n
∑

j=1
xj.o.m − 1 ≤ 0 ∀m ∈ M

k6(t) = ta
j − tp

j ≤ 0 ∀j ∈ J

k7(m, n) = m− n ≤ 0 ∀j ∈ J, ∀o ∈ O, ∀m ∈ M

k8(A, P) = Aj − Pj ≥ 0 ∀j ∈ J

The Lagrangian objective function formed by handling the objective function and
constraints of the OPSS stage is as follows.

Minimize total completion time:

L
t,x
(t, x,

8
∑

i=1
λi,

8
∑

i=1
εi) = f1(t, x) +

8
∑

i=1

8
∑

i=1
λiki(t, x) +

8
∑

i=1

8
∑

i=1
εi||ki(t, x)||2

Minimize total machine load:

L
A,P

(A, P,
8
∑

i=1
λi,

8
∑

i=1
εi) = f1(A, P) +

8
∑

i=1

8
∑

i=1
λiki(A, P) +

8
∑

i=1

8
∑

i=1
εi||ki(A, P)||2

Minimize maximum completion time:

L
t′
(t′,

8
∑

i=1
λi,

8
∑

i=1
εi) = f1(t′) +

8
∑

i=1

8
∑

i=1
λiki(t′) +

8
∑

i=1

8
∑

i=1
εi||ki(t′)||2

Similarly, the same method is used here to integrate the objective function, objec-
tive function vector, processed constraints, and other information into the improved
fuzzy method for subsequent normalization and scaling of the objective function in the
OPSS stage.

The Lagrangian objective function after processing the FFSS and OPSS is as follows:
Minimize total completion time for the entire process:

L
t,x
(t, x,

8
∑

i=1
λi,

8
∑

i=1
εi,

10
∑

i=1
λi,

10
∑

i=1
εi) = L(t, x,

8
∑

i=1
λi,

8
∑

i=1
εi) + L(t, x,

10
∑

i=1
λi,

10
∑

i=1
εi)

Minimize machine total load for the entire process:
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L
A,P,t,x

(A, P, t, x,
8
∑

i=1
λi,

8
∑

i=1
εi,

10
∑

i=1
λi,

10
∑

i=1
εi) = L(A, P,

8
∑

i=1
λi,

8
∑

i=1
εi) + L(t, x,

10
∑

i=1
λi,

10
∑

i=1
εi)

Minimize maximum completion time for the entire process:

L
t′
(t′,

8
∑

i=1
λi,

8
∑

i=1
εi,

10
∑

i=1
λi,

10
∑

i=1
εi) = L(t′,

10
∑

i=1
λi,

10
∑

i=1
εi) + L(t′,

8
∑

i=1
λi,

8
∑

i=1
εi)

The objective function above represents the integration of the objective functions
from both the OPSS stage and the FFSS stage, resulting in a complete production process
objective function. This allows for the calculation of the distance between vectors under
different objective functions.

4.2. Normalization and Same-Scale Transformation of the Objective Function

Since the constraints have been processed earlier, the Lagrangian objective functions
L1, L2 and L3 are normalized using normalization method. Let A and P represent the
remaining thickness of the horizontal and longitudinal welds of the welding reel, respectively.
These variables are only used as processing constraints and do not directly participate in time
calculation. Therefore, they can be treated as constants in the Lagrangian objective function.

To map different objective functions to the [0, 1] interval, the following normalization
function is set up:

hi =
Li−Li,min

Li,max−Li,min

i represents the number of objective functions, To normalize the integrated objective
function L1, L2, L3, we obtain:

h1(t, t′, x) = L1(t,x,λ,ε)−L1,min(t,x,λ,ε)
L1,max(t,x,λ,ε)−L1,min(t,x,λ,ε)

h2(t, t′, x) = L2(t,x,λ,ε)− f2,min(t,x,λ,ε)
f2,max(t,x,λ,ε)− f2,min(t,x,λ,ε)

h3(t, t′, x) = L3(t′ ,λ,ε)−L3,min(t′ ,λ,ε)
L3,max(t′ ,λ,ε)−L3,min(t′ ,λ,ε)

Rearranging the above equation yields:

h1(t, t′, x) =

n
∑

j=1

m
∑

m=1
(tx

j +ty
j +tz

j +ta
j +tb

j )xj,o,m−min(
n
∑

j=1

m
∑

m=1
(tx

j +ty
j +tz

j +ta
j +tb

j )xj,o,m)

max(
n
∑

j=1

m
∑

m=1
(tx

j +ty
j +tz

j +ta
j +tb

j )xj,o,m)−min(
n
∑

j=1

m
∑

m=1
(tx

j +ty
j +tz

j +ta
j +tb

j )xj,o,m)

h2(t, t′, x) =

m
∑

m=1

k
∑

o=1

n
∑

j=1
(tj,o,m ·xj,o,m)−min(

m
∑

m=1

k
∑

o=1

n
∑

j=1
(tj,o,m ·xj,o,m))

max(
m
∑

m=1

k
∑

o=1

n
∑

j=1
(tj,o,m ·xj,o,m))−min(

m
∑

m=1

k
∑

o=1

n
∑

j=1
(tj,o,m ·xj,o,m))

h3(t, t′, x) =
cj,o,m(j∈Jo∈O)−min(maxj∈J maxo∈O(cj,o,m))

maxj∈J maxo∈O(cj,o,m)−min(maxj∈J maxo∈O(cj,o,m)

The above formula solves the normalization problem for the three objective functions
L1, L2, L3 mentioned earlier. Meanwhile, To balance and compare objective functions
with different measurement attributes on the same coordinate system, we process them
as follows:

pi(t, t′, x) = 1

hi(t,t′ ,x)+
m
∑

i=1

1
hi(t,t

′ ,x)−m+2

After processing the normalized objective functions h1, h2, h3 using the above equation,
we obtain the same-scale objective functions as follows:
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p1(t, t′, x) = 1
h1(t,t′ ,x)+ 1

h1(t,t
′ ,x)+

1
h2(t,t

′ ,x)+
1

h3(t,t
′ ,x)−1

p2(t, t′, x) = 1
h2(t,t′ ,x)+ 1

h1(t,t
′ ,x)+

1
h2(t,t

′ ,x)+
1

h3(t,t
′ ,x)−1

p3(t, t′, x) = 1
h3(t,t′ ,x)+ 1

h1(t,t
′ ,x)+

1
h2(t,t

′ ,x)+
1

h3(t,t
′ ,x)−1

After normalization and standardization, the final objective functions p1, p2, and p3
are obtained. These objective functions are used to calculate the distance between vectors
and to filter dominated solutions and non-dominated solutions, ultimately yielding the
optimal solution.

4.3. Processing of Objective Function Matrix

From the same-scale objective functions, we obtain the objective function vector
G = (p1, p2, p3), which is used to generate the same-scale objective function matrix X,
by substituting it into the following equation, where xi,j represents the value of the i-th
variable under the j-th objective function:

X =


x11 x12 · · · x1j
x21 x22 · · · x2j

...
...

. . .
...

xi1 xi2 · · · xij


Substituting the above matrix, we obtain the same-scale objective function vector

matrix as follows: p11 p12 p13
p21 p22 p23
p31 p32 p33


⇓

1

h1(t)+
3
∑

i=1

1
hi(t)
−2

1

h2(t)+
3
∑

i=1

1
hi(t)
−2

1

h3(t)+
3
∑

i=1

1
hi(t)
−2

1

h1(t′)+
3
∑

i=1

1
hi(t
′)−2

1

h2(t′)+
3
∑

i=1

1
hi(t
′)−2

1

h3(t′)+
3
∑

i=1

1
hi(t
′)−2

1

h1(x)+
3
∑

i=1

1
hi(x)−2

1

h2(x)+
3
∑

i=1

1
hi(x)−2

1

h3(x)+
3
∑

i=1

1
hi(x)−2


Evaluating the distance between different objective function vectors using Euclidean

distance:
dt,t′ =

√
(p11(t)− p21(t′))2 + (p12(t)− p21(t′))2 + (p13(t)− p31(t′))2

dt,x =
√
(p11(t)− p31(x))2 + (p12(t)− p32(x))2 + (p13(t)− p33(x))2

dx,t′=
√
(p31(x)− p21(t′))2 + (p32(x)− p22(t′))2 + (p33(x)− p23(t′))2

In the given equation, dt,t′ represents the distance between vectors t, t′ that represent
the three objective functions. dt,x represents the distance between vectors t, x that represent
the three objective functions. dt′ ,x represents the distance between vectors t′, x that represent
the three objective functions. To determine whether a solution is non-dominated based on
the calculated distance and subsequently filter it into the Pareto solution set.

4.4. Selection of Optimal Solution Based on TOPSIS

In the multi-objective optimization of steel pipe pile production scheduling, the same-
scale objective function matrix X, Euclidean distance d, and adjusting parameter distance
weight factor ω are used. The distance weight factor w(j), between the solution vector and
the existing solution vector in the Pareto front set PF is compared to determine whether
the solution should be added to the set PF. Then, the simulated annealing algorithm is
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used to further search and optimize the solution set PF to improve the search effectiveness
and result quality, and finally obtain a set of optimal Pareto solutions (see Figure 11). The
solution set in the figure represents the optimal solution set under the condition of objective
balance, which has been normalized and scaled and obtained through algorithmic filtering.
A set of balanced optimization Pareto solution sets for total completion time, total machine
load, and maximum completion time are obtained (see Algorithms 1 and 2 for details).

Pareto Front Pareto Optimal Solution

Figure 11. Pareto Optimal Solution.

The TOPSIS method is an effective way to comprehensively evaluate different Pareto
front solutions. By obtaining the positive and negative ideal solutions and combining them
with the weight vector, we can calculate the distance between each solution in the front
set and the positive/negative ideal solutions. Then, by calculating the relative closeness of
each solution and sorting them, we can obtain the optimal solution.

Based on the actual production situation of OWTSPP, enterprise decision-makers as-
sign weights to three objective functions: total completion time, maximum completion time,
and machine utilization rate, represented as ω = (0.5, 0.3, 0.2). The weighted standardized
matrix V is calculated as follows:

vij = wj × xij

The positive and negative ideal solutions are then calculated as follows:

x+j = max(vij), x−j = min(vij)

Calculate the distance between each solution vector and the positive/negative
ideal solutions:

s+i =
m

∑
j=1
|vij − x+j |

s−i =
m

∑
j=1
|vij − x−j |

The relative closeness of each solution vector is then calculated as follows:

Ci =
s−i

s+i + s−i

We obtain the positive ideal solution x+ = (0.144, 0.31, 0.225), and negative ideal
solution x− = (0, 0, 0). Sorting all solution vectors according to their relative closeness Ci,
we select the top-ranked solution vector as the optimal solution, see Table 6.
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Table 6. Ranking of Evaluation Solutions Using TOPSIS.

Serial Number s+i s−i Ci Ranking

1 0.144 0.535 0.787 1
2 0.349 0.33 0.486 2
3 0.463 0.216 0.318 3

4.5. Optimal vs. Empirical Scheduling: A Comparative Analysis

A certain heavy industry enterprise schedules the production of OWTSPP in the
workshop based on expert experience. The effect of the experience schedule is shown in
Figure 12, and the production completion time is about 56 h. Managers allocate personnel to
operate machines based on experience, with fixed personnel operating designated machines
to process designated processes. In case of urgent production needs, temporary personnel
may be recruited or transferred for production (mathematical symbols and interpretation
are shown in Part (a) of Nomenclature Section).

Empirical Scheduling Plan for Five
OWTSPP Production

Empirical Scheduling Plan Time
Consumption

Figure 12. Results of the Empirical Scheduling Plan.

By using the TOPSIS method to rank the Pareto optimal solutions obtained from
multi-objective optimization, it was found that Solution 1 had the highest score of 0.787
and was identified as the best solution. Figure 13 displays the scheduling plan where
the production completion time is 48 h under the optimal schedule, which is 8 h shorter
compared to the production time under the empirical scheduling approach. This results in
a 14.29% increase in production efficiency. The comparison of the total production time
between the empirical scheduling approach and the optimal solutions for the 5 steel pipe
pile scheduling is shown in Figure 14. The blue line represents the possible shortest total
completion time under the empirical scheduling approach, while the orange line represents
the possible shortest total completion time under the optimal scheduling condition.

In order to verify the practicality of the method in large-scale scheduling, the produc-
tion quantity of each type of steel pipe pile was increased to 5, totaling 25 OWTSPP. The
production situation under empirical scheduling and optimal scheduling was compared
(see Figures 15 and 16). It can be seen in Figure 17 that under the empirical scheduling
approach, the production completion time for the 25 OWTSPP was 201 h, while under the
optimal scheduling plan, the production completion time was reduced to 166 h, resulting
in a reduction of 35 h and an increase in production efficiency by 17.41%. This shows that
the method has more advantages in solving large-scale production problems.
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Optimal Scheduling Plan for Five
OWTSPP Production

Optimal scheduling Plan Time
Consumption

Figure 13. Results of the Optimal Scheduling Plan.

Figure 14. Comparison of Production Time: Empirical vs. Optimal.

The comparison of the production completion time between the empirical scheduling
approach and the optimal solution obtained from the improved method for large-scale
scheduling is shown in Figure 18. The blue line in the figure represents the possible shortest
total completion time under the empirical scheduling approach; The orange line represents
the possible shortest total completion time under the optimal scheduling condition.
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Therefore, in practical manufacturing, this method can effectively improve production
efficiency, reduce production costs, and bring more economic benefits to enterprises. The
data content is shown in Tables 3–5. The algorithm for extracting data and generating a
scheduling Gantt chart can be found in Appendix A.

Figure 15. Mass Production: Empirical Scheduling Scheme.

Figure 16. Mass Production: Optimal Scheduling Scheme.

Empirical Scheduling Plan Time
Consumption

Optimal Scheduling Plan Time
Consumption

Figure 17. Production Time for Empirical Scheduling and Optimal Scheduling in Large-scale Production.
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Figure 18. Empirical vs. Optimal: Total Production Time in Large-Scale Scheduling.

5. Disscussion

In this section, we discuss the advantages and disadvantages of the proposed method.
Firstly, we divide the entire production process into two stages, FFSS and OPSS, according
to the characteristics of different production Stages. In each stage, we optimize the schedul-
ing process and objective functions separately, which simplifies the problem handling.
We also consider the slack time and incorporate it into the production processes along
with the disjunctive graph model, greatly facilitating the modeling of the production pro-
cesses. Secondly, for the constraints and objective functions, we use the extended Lagrange
multiplier method with penalty terms to handle them effectively. Lastly, we introduce
the hesitant fuzzy approach, extending it to a multi-dimensional method that includes
vectors, objective functions, and constraints, This makes the handling of constraints and
objective functions more convenient. Moreover, this method is not affected by the initial
weights of the objective functions during the screening of Pareto front solutions. Instead,
the weighted values are assigned to the filtered Pareto solutions, enabling better selection of
the optimal solution. We do not provide initial weights for the objective functions, ensuring
the normalization and scaling conditions during the objective function processing. As a
result, we obtain a set of well-filtered Pareto front solutions.

However, this method also has some issues in terms of solution filtering. For example,
some potential solutions may be eliminated through the screening process, leading to a set
of solutions that appear to be a Pareto front, but in reality, some solutions may have been
lost during the filtering process.
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6. Conclusions and Future Works

In this paper, we analyze the multi-objective scheduling optimization problem in steel
pipe pile production and propose an improved hesitant fuzzy method. We extend the
dimensions in the model to include objective functions, objective function vectors, and
constraints, considering all relevant important condition parameters. To handle multiple
constraints and multiple objective functions, we utilize the Lagrange multiplier method
with penalty terms to process the multiple constraints and generate the Lagrangian objective
function. Additionally, we map the actual production process onto a disjunctive graph
model, providing a clear visualization of the production timeline. By combining the Pareto
front algorithm with the simulated annealing algorithm, we filter and obtain the Pareto
front solution set and rank the obtained solutions using the TOPSIS method. Ultimately,
we derive the optimal solution along with its corresponding scheduling plan.

Compared to previous multi-objective scheduling optimization methods, the approach
proposed in this paper introduces a novel way of handling objective functions and con-
straints. By utilizing hesitant fuzzy method and calculating the normalized and scaled
Euclidean distance of objective function vectors, this method can more accurately eliminate
dominated solutions and improve the quality of Pareto front solutions.

This paper demonstrates that under the production data of 5 different types of OWT-
SPP, the optimal solution obtained using the improved method proposed in this paper
reduces the production time by about 8 h and improves the production efficiency by approx-
imately 14.29% compared to the empirical scheduling approach. In large-scale production,
the production time is reduced by approximately 35 h, and the production efficiency is
increased by about 17.41%.

The proposed method in this paper provides a reference for integrating the objective
function and its constraints to find Pareto non-dominant solutions and serves as a screening
tool during the process. However, due to space limitations, the superiority of the proposed
method over various multi-objective algorithms in terms of evaluation indicators has not
been verified as a completely new algorithm. The reliability of the method under more
than three objective functions has not been tested in the steel pipe pile scheduling example.
Further research is needed to test the reliability of this method when it includes more
solution vectors for multi-objective optimization. These aspects will be the focus of future
research. It is hoped that this paper can promote the development and application of the
proposed method in industrial production through academic research.
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Nomenclature

(a) Mathematical Symbols and Interpretation
Symbols Explanation
J Job set, J = j1, j2, . . . , jn
M Machine set, M = m1, m2, . . . , mm
Mai Welder Set, Ma = m1, m2, m3, m4, m5, m10, m11, m12
Mbi Cutter Set, Mb = m6, m7
Mci Rolling Mill Set, Mc = m8, m9
O Process set, O = o1, o2, . . . , oo
bj,m,t The load of machine m at time t
xj,o,m Whether welding machine j is idle or not, with a value of 1 indicating that the

machine has a welding task and a value of 0 indicating no task.
Ej The maximum allowable lead time indicator for workpiece j which represents

the expected completion time.
Dj The delivery time of workpiece j.
Cj The total completion time of workpiece j.
sj,o,m The start time of operation o of workpiece j on machine m.
cj,o,m The completion time of operation o of workpiece on machine m.
tj,o,m The processing time of the oth operation of workpiece j on machine m.
tx
j The time required for workpiece j during the steel plate splicing operation.

ty
j The time required for workpiece j during the steel plate cutting operation.

tz
j The time required for workpiece j during the steel plate rolling operation.

ta
j The time required for longitudinal welding of workpiecej.

tb
j The time required for circumferential welding of workpiece j.

tj The total processing time of workpiece j in all operations.
tc1 The time required for the first intermediate transfer.
tc2 The time required for the second intermediate transfer.
tc3 The time required for the third intermediate transfer.
tc4 The time required for the forth intermediate transfer.
tc The total time required for intermediate transfers.
n Number of jobs
m Number of machines
j,j′ Different workpiece numbers.
m,m′ Different machine numbers.
(b) Symbol and Interpretation Information Table
Acronym Definition
SPS Steel plate splicing
SPC Steel plate cutting
RP Rolling pipe
LW Longitudinal welding
CW Circumferential welding
B.Crane Bridge crane
C.Crane Cantilever crane
O.Crane Overhead crane
WCM Wire consumption per meter
MPC Monthly production capacity
WS Workstation
WH Processing time for each step
OUT Output
M/W Qty Machine/Workstation quantity
SW Pro. E Single workstation production efficiency
W.H Working hours
OWTSPP-PF OWTSPP processing frequency
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Appendix A. Here Is the Algorithm for Extracting Data and Drawing a Scheduling
Gantt Chart

Algorithm A1 Scheduling Gantt Chart Generation Algorithm

1: FUNCTION Scheduling(n, m, pi, data)
2: sjom, tjom, tdx, O, tom = data[1], data[2], data[3], data[4], data[5]
3: FUNCTION create-job()
4: job < − RANDOMLY PERMUTE O INTO A 1D ARRAY AND
5: RESHAPE TO SHAPE (1, length of O)
6: M <- RANDOMLY SELECT VALUES FROM sjom ACCORDING TO job
7: tjom <- RANDOMLY SELECT VALUES FROM tjom ACCORDING TO job
8: RETURN job, M, tjom
9: FUNCTION calculate(job, M, tjom)

10: tmm <- ZERO MATRIX OF SHAPE (1, m)
11: listM, listS, listW <- EMPTY LISTS
12: FOR i IN range(length of job) DO
13: svg <- job[i]
14: sig <- M[i] - 1
15: startime <- MAXIMUM VALUE IN tmm[0, sig]
16: tmm[0, sig] <- startime + tjom[i]
17: ADD M[i] TO listM
18: ADD startime TO listS
19: ADD tjom[i] TO listW
20: cjom <- MAXIMUM VALUE IN tmm[0]
21: RETURN cjom, listM, listS, listW
22: FUNCTION draw(job, M, tjom)
23: cjom, listM, listS, listW <- calculate(job, M, tjom)
24: RETURN None

Algorithm A2 Data Extraction Algorithm

1: DataDeal(self, n, m):
2: self.n= n
3: self.m = m
4: def read-data(self):
5: data = np.loaddata(’./data’, skiprows=1)
6: return data
7: def calculate-schedule(self):
8: data = self.read-data()
9: sjom = np.zeros((self.n, self.m))

10: tjom = np.zeros((self.n, self.m))
11: O = []
12: tdx = []
13: tom = []
14: for i in range(self.n):
15: M, tjom = data[i][1::2], data[i][2::2]
16: sjom[i][:len(M)] = M
17: tmm[0, sig] <- startime + tjom[i]
18: tjom[i][:len(tjom)] = tjom
19: O.extend([i] * len(M))
20: curr-tdx = []
21: for j in range(len(M))
22: curr-tdx.append(sum(sjom[i][0:j + 1]))
23: tdx[−1] = curr-tdx
24: tom.append(curr-tdx)
25: return sjom, tjom, O, tdx, tom
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