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Abstract: Variable‑condition fish recognition is a type of cross‑scene and cross‑camera fish re‑identification
(re‑ID) technology. Due to the difference in the domain distribution of fish images collected under
different culture conditions, the available training data cannot be effectively used for the new iden‑
tification method. To solve these problems, we proposed a new method for identifying large yellow
croaker based on the CycleGAN (cycle generative adversarial network) and transfer learning. This
method constructs source sample sets and target sample sets by acquiring large yellow croaker im‑
ages in controllable scenes and actual farming conditions, respectively. The CycleGAN was used as
the basic framework for image transformation from the source domain to the target domain to real‑
ize data amplification in the target domain. In particular, IDF (identity foreground loss) was used
to optimize identity loss judgment criteria, and MMD (maximum mean discrepancy) was used to
narrow the distribution between the source domain and target domain. Finally, transfer learning
was carried out with the expanded samples to realize the identification of large yellow croaker un‑
der varying conditions. The experimental results showed that the proposed method achieved good
identification results in both the controlled scene and the actual culture scene, with an average recog‑
nition accuracy of 96.9% and 94%, respectively. These provide effective technical support for the next
steps in fish behavior tracking and phenotype measurement.

Keywords: fish recognition; CycleGAN; foreground mask loss; maximum mean discrepancy;
transfer learning

1. Introduction
The large yellow croaker (Larimichthys crocea) is marine migratory fish of the Pacific

Northwest [1]. In recent years, due to its high economic value, large yellow croaker has be‑
come one of themost commercially valuable marine fishery species in China’s aquaculture
production [2]. Accurate identification of large yellow croaker under variable conditions
is of great significance to improve the ability of the high‑throughput detection of fish phe‑
notypes in genetic breeding and aquaculture production [3]. Affected by differences in
sampling methods [4,5], illumination [6], and the farming environment [7,8], the images
obtained in different farming scenarios have different a domain distribution, which limits
the effect of data interoperability and increases the difficulty associated with the industrial
application of identification technology. In recent years, with the development of transfer
learning [9,10] and person re‑ID [11,12], a possible solution for the accurate identification
of fish targets under variable working conditions has been provided.

With the progress of information technology such as artificial intelligence and deep
learning, the identification technology of production objects, diseases, and behaviors in
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the agricultural field has been continuously developed and has been widely used in differ‑
ent fields of the industry [13,14]. However, compared with static objects such as rice and
plants [15,16], and large land‑based animals such as cattle and sheep [17,18], the develop‑
ment of underwater freestyle moving‑target recognition technology is slow, and relevant
studies have mostly focused on application scenarios where specific working conditions
and training data are easy to obtain [19]. To solve this problem, transfer learning technol‑
ogy has been introduced into the field of fish identification. For example, Zhang et al. [6]
proposed a transfer learning method based on a residual network to realize unconstrained
swimming fish identification. Yuan et al. [20] used a metric learning network based on
a residual structure to realize 5‑way, 15‑shot fish target recognition, and the recognition
accuracy was higher than 90%. The method based on small samples and transfer learning
can effectively improve the accuracy of fish identification. However, the application of this
method has certain limitations when targeting unconstrained swimming fish under obvi‑
ous actual farming conditions with relatively different backgrounds and postures. This
is mainly due to: (1) the variation in sampling device and scene leading to a difference in
domain distribution between the target domain and source domain, which results in the in‑
effective use of available training data in the new recognition domain; and (2) the change
in fish swimming posture leading to the dispersion of target features, and a single data
source cannot cover all feature spaces, which reduces the adaptability of the algorithm to
different features.

Re‑identification (Re‑ID) is a technology that unifies images from different source do‑
mains into the feature space of the target domain through image domain‑to‑domain con‑
version to achieve data enhancement. It is mainly used to solve the limitations of super‑
vised methods in the application of real scenes, and has made significant progress in the
field of pedestrian re‑identification. For example, Wang et al. [21] used attribute features
to transfer the model to an unlabeled dataset; Deng et al. [22] embedded a twin network
into the CycleGAN [23] to realize image transmission from the source domain to the target
domain. Ye et al. proposed RACE (robust anchor embedding) [24] and DGM (dynamic
graph co‑matching) [25] to solve the video‑based unsupervised person re‑identification
problem. Tang et al. [26] used the CycleGAN and MMD methods to strengthen the reten‑
tion of pedestrian identity information and narrow the distribution of the domain.

Inspired by this image domain transfer method, we proposed a large yellow croaker
recognition method based on cyclic adversarial networks and transfer learning. In this
study, large yellow croaker images were collected as source samples in controlled scenes
in a specific environment to provide basic image samples for fish recognition in different
scenes. The large yellow croaker in the scene to be identified was collected as the target
domain sample. The CycleGAN was adopted as the basic model for the transfer from the
source domain to the target domain. The foregroundmask self‑evaluationmethod [27]was
used to optimize the evaluation effect of themodel’s identity loss. MMDwas introduced as
the loss function to improve themodel’s ability to adapt to the distribution of pull and push
domains. Then, the expanded samplewas used for transfer learning to reduce the influence
of uneven distribution of transfer learning sample data on the recognition accuracy, and
realize the recognition of a free‑swimming large yellow croaker. Finally, the ablation test
and comparison test were used to verify the effectiveness of the proposed method.

2. Proposed Method
2.1. Method Overview

In this study, the ReID method was mainly used to unify the style of fish images ob‑
tained from different scenes, increase the number of target samples to be identified in the
application scene and improve the adaptability of the algorithm. Therefore, in order to
preserve identity information and extract the distribution between different domains, we
embedded a foreground mask loss and a MMD layer in the CycleGAN to enable image
domain‑to‑domain transfer. In addition, transfer learning has been shown to have advan‑
tages in feature reuse, but due to the uneven distribution of pre‑trained samples, the perfor‑
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mance of the models varies significantly in different recognition tasks. Therefore, in order
to increase the recognition ability of the fish features of the transfer learning pre‑trained
model, we optimized the knowledge transfer process by expanding the fish dataset. The
overall framework of the proposed method is shown in Table 1.

Table 1. The results of fish ablation test to source and target. We evaluated the source and target
with protocol recall, specificity and mAP (%).

Method
Target to Source Source to Target

Recall Specificity mAP Recall Specificity mAP

No Transfer 52 86 56.2 24.2 90.9 57.6

Direct Transfer 47.5 100 73.8 30.3 100 65.2

CycleGAN 57.5 100 78.8 18.2 97.5 61.7

CycleGAN + IDF 60 100 80 12.1 97.5 58.9

CycleGAN + MMD 65 95 81 24.3 100 65.8

CycleGAN + IDF + MMD 77.5 100 88.7 69.5 97.5 85

As shown in Figure 1, in our algorithm, source domains (specific breeding scenarios)
and target domains (ship farming scenarios) were input into the CycleGAN to generate
false target domains and false source domains. In a large‑scale water mass, due to the
relatively sparse spatial distribution of fish, it is easy to obtain background images with‑
out fish, and common foreground extraction algorithms can segment the foreground and
background more accurately. Therefore, in the conversion process, using the difference
in foreground image changes to calculate identity loss, the false source domain identity
information could be pulled to the target domain identity information. At the same time,
the distribution of the false target domain will be pulled towards the target domain. After
the translation was completed, the tagged fish source domain image was transferred to the
target domain image to realize the expansion of the fish sample set in the culture scene. Fi‑
nally, the transfer model was trained with the expanded data to further improve the target
recognition accuracy.

2.2. CycleGAN‑Based Translation
The CycleGAN is an image transformation model based on the generative adversar‑

ial network(s), which consists of two pairs of generators and discriminators. G is the map‑
ping function from the source domain to the target domain, and Ĝ is the mapping function
from the target domain to the source domain. DS and DT are style discriminators for the
source and target domains, respectively. S and T represent the source and destination
domains, respectively. The CycleGANmainly realizes the image conversion of two differ‑
ent domains by minimizing the loss function, so as to realize the multi‑modal conversion
between domains. The objective function consists of three parts: adversarial loss, cycle
consistency loss and identity loss. The purpose of the adversarial loss function is to make
the generated image indistinguishable from the real image of the target domain. The ad‑
versarial loss is used to maximize the probability of the discriminator to output the image
to the generator, which is used to improve the quality of the converted image and make it
more realistic. Applying adversarial loss to the two mapping functions, the objectives are
expressed as:

LGANG, DT , S, T = Et∼Pdatat[logDT(t)]+
Es∼Pdatas[log(1 − DTGs)]

(1)

LGANĜ, Ds, T, S = Es∼Pdatas[logDT(s)]+
Et∼Pdatat

[
log

(
1 − DSĜt

)] (2)

where s and t are the source domain image and the target domain image, respectively.
Since the full diversity of the target domain cannot be captured using adversarial loss alone,
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the generator may produce a limited or repetitive output, and the correct mapping from
a single input s to the desired output t cannot be guaranteed. Therefore, the CycleGAN
uses cycle consistency loss so that the learned mapping function has periodic consistency.
The cycle consistency loss improves the generator’s ability to generate images that retain
the original image by minimizing the difference between the original input image and the
cyclic production image, thereby improving the accuracy of image conversion. The cycle
consistency loss is expressed as:

LcycG, Ĝ = Es∼Pdatas
[
∥Ĝ(G(s))− s∥1

]
+

Et∼Pdatat
[
∥G

(
Ĝ(t)

)
− t∥1

] (3)
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Figure 1. The framework for our method. There were two components of our method (i.e., a data
transfer layer and a knowledge transfer layer). The data transfer part was mainly used to achieve
sample expansion in the target domain, including CycleGAN, IDF, andmaximummean discrepancy.
CycleGAN was mainly used to transfer images from the source domain to the target domain. IDF
restricts CycleGAN to retaining fish identity information during the transfer process. Themaximum
mean discrepancy was used to narrow the distribution between the source and destination domains
during transmission. Knowledge transfer was mainly used to improve the ability of the model to
recognize the characteristics of fish, and the amplified data were mainly used to increase the effect
of the transfer model on knowledge transfer.

2.3. Identity Foreground Loss
As part of the CycleGAN loss function, the identity loss forces the generator to not

change the characteristics of the input image, but to maintain its own characteristics. The
CycleGAN identity loss only uses global characteristics to count identity loss, and does not
consider the impact of background noise on identity information, which leads to the mis‑
generation of identity during style transfer. However, under actual farming conditions,
phenomena such as light absorption, scattering and diffraction caused by water turbidity
reduce the feature difference between foreground fish and background noise in the image.
This results in unclear identification of the fish after style conversion, which increases the
risk of misidentification. To solve this problem and ensure the correct identification of
fish as much as possible, we introduced the foreground constraint into the identity loss to
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evaluate the changes in fish before and after migration. Due to the large volume of aqua‑
culture water and the relatively dispersed distribution of fish under actual farming con‑
ditions, the background difference method could be easily used to obtain fish foreground
images [27]. Therefore, the fish foreground images were used as the constraint conditions,
and Formula (4) was used to calculate the loss of fish identity information.

LIDF = Es∼Pdatas[∥(G(s)− s)
⊙

M(s)∥2]
+Et∼Pdatat

[
∥
(
Ĝ(t)− t

)⊙
M(t)∥2

] (4)

whereM(s) andM(t) represent the foreground mask of the fish image with a specific pose,
and ⊙ represents the same or logical operation.

2.4. Maximum Mean Discrepancy
For large yellow croaker images collected under different working conditions, the Cy‑

cleGAN only transferred the background style of each image from the source domain to
the target domain, ignoring the intra‑domain distribution differences. The distribution
difference provides different reference features for target recognition, which is very im‑
portant in the task of target recognition with variable characteristics. Maximum mean
discrepancy is mainly used to evaluate whether the distribution of two datasets is similar,
and in the field of style transfer, it is mainly used to minimize the distribution difference
between two networks. Therefore, the maximum mean discrepancy was used to measure
the distribution difference between different sampling scenarios to solve the problem of
fish sample enhancement.

LMMD =

[
1

m(m − 1)∑
m
i ̸=j k

(
si, sj

)
+

1
n(n − 1)∑

m
i ̸=j k

(
ti, tj

)
− 2

mn∑m,n
i,j=1 k

(
si, tj

)] 1
2

(5)

where k is the kernel function, m and n are the number of samples in the source and target
domains, respectively, and i and j represent the coordinates of samples in specific domains.
As is shown in Formula (6), the Gaussian kernel function was chosen in this paper to cal‑
culate the inner product between feature graphs.

k
(
s, s′

)
= exp

(
−∥s − s′∥

2σ2

)
(6)

2.5. Full Objective Function
By combining theCycleGAN, foregroundmask loss andmaximummeandiscrepancy,

we could achieve the full objective of CGAN‑TM as:

L = LGANG, DT , S, T + LGANĜ, Ds, T, S + λ1LcycG, Ĝ + λ2LIDF + λ3LMMD (7)

The λ2 and λ3 control the weights of foreground mask loss and maximum mean dis‑
crepancy during the translation process, respectively. Detailed analysis of the parameter
sensitivity is presented in Section 4.7.

2.6. Transfer Learning
According to the actual farming conditions, it is difficult to construct a sufficient field

sample set according to the change in the farming environment, so the identification of
large yellow croaker becomes a small‑sample recognition situation. In order to simplify the
complexity of the model integration application, this study adopted VGG‑16 as the basic
transfer learning framework, and used the CIFAR‑10 dataset (open dataset, 10 categories,
60,000 images) to pre‑train the model. The new training samples composed of the original
small‑sample data and the migrated data were used to optimize the pre‑trained model
parameters, and the optimized model was used to realize fish target recognition.
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3. Experiments
3.1. Datasets and Evaluation Protocol

In order to evaluate the effectiveness of the method proposed in this paper, we con‑
structed two image sample datasets: source domain and target domain. The source do‑
main samples were collected in a recirculating aquaculture system with a controlled sam‑
pling environment, and the target domain samples were collected in an actual farming
environment on an aquaculture ship. We took the source domain and the target domain
as the identification scenes and verified each one.

Source area image: A total of 360 large yellow croakers with different specifications
were placed in the temporary rearing tank. An underwater camera was used and the un‑
derwater depth of the camera was 40 cm. The camera was parallel to the water’s surface
during sampling, and the sampling was continuous for 24 h. A total of 600 images of large
yellow croakers in different swimming states were selected to construct a source sample
set, including 480 large yellow croaker images for training and 120 images for testing.

Target area image: We selected the “Guoxin 1” aquaculture ship, No. 1 warehouse,
to collect the actual farmed fish images. The warehouse is 15 m deep and 8 m in diameter,
with a total of approximately 10,000 large yellow croakers. In order to avoid the impact
of fish and the influence of circulating water during sampling, a sliding rail was used to
conduct continuous sampling at a depth of 4 m underwater for 1 h. A total of 300 images
of large yellow croakers were obtained, of which 240 images were used for training and
the remaining 60 images were used for testing.

We used VGG‑16 as the core framework to verify the effect of fish image transfer and
the effectiveness of transfer learning in different domains. We used recall, specificity and
the mean average precision (mAP) to evaluate the performance of data transfer on the
source domain and target domain. Meanwhile, we selected the recall and mean average
precision (mAP) to evaluate transfer learning effects.

3.2. Implementation Details
Our method was implemented using the Pytorch framework. For the CycleGAN, we

used foreground mask loss instead of the identity loss function. We calculate the MMD
losses using five Gaussian cores with different σ values (0.25, 0.5, 1, 2, 4) and trained them
with theCycleGAN. InEquation (7), λ1, λ2 andλ3 were set as 10, 5 and (0.6, 0.8), respectively.

In order to reduce the complexity of the model framework, VGG‑16, which is con‑
sistent with the CycleGAN, was selected as the transfer learning backbone network and
pre‑trained on the CIFAR‑10 dataset. We used SGD to optimize the model, and the SGD
momentum parameter set to 0.9, the weight attenuation parameter was set to 0.0005, and
the learning rate was set to 0.0002. In the transfer learning stage, the original data, the gen‑
erated fake data and the amplified data were used for transfer learning. Due to the small
number of model parameters, freezing specific convolution layers had no obvious effect
on reducing the training time, so all weight parameters were updated for transfer learning.
We set the learning rate of the full connection layer to 0.01, the output dimensions to 2, the
batch_size to 16, and the epoch to 60.

The GPU used was RTX A5000, the system used was Windows10, and the Pytorch
version used was 1.0. Several randomly selected generated images are shown in Figure 2.
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4. Evaluation
The main goal of fish data domain transfer was to expand the training samples, while

the goal of transfer learning was to improve the fish recognition rate of a specific sample
number. In order to verify the validity of this algorithm, we verified the effect of domain
transfer from the source domain to the target domain, and from the target domain to the
source domain.

4.1. Performance of Direct Transfer
Due to the insufficient number of samples, themodel demonstrated poor performance

in the source domain and the target domain. As is shown in Table 1, the recall rate of
52% and 24.24% and the mAP of 56.17% and 57.58%, in the source domain and the target
domain, respectively, were achieved. However, in order to expand the number of samples,
the performance of the model was slightly improved when the source domain and the
target domain were directly migrated. For example, the recall rate of the data migrated
to the target domain was 30.3%. Furthermore, due to the poor quality of the data in the
target domain, the recall rate decreased by 4.5% after direct transfer to the source domain,
and the performance decreased significantly. The main reason for this was that the source
domain and target domain samples were collected under different settings, resulting in
different domain distributions.

4.2. Effectiveness of the CycleGAN
As the source and target datasets are often collected in different environments, the

CycleGAN is able to efficiently generate images with similar styles of datasets. Therefore,
we used the CycleGAN to transfer the source domain and target domain image styles to
each other, obtain fake source and fake target data. We combined the fake data with the
original training data for training. As is shown in Table 1, after adding pseudo‑training
samples, the recall rate and mAP value of the model in the source domain increased by
10% and 5%, respectively. However, the model recall dropped to 18.2 percent in the target
domain, andmAPdropped to 61.65 percent. Thiswasmainly due to the poor quality of the
target domain samples and the unsupervised transmission process of the CycleGAN, so
the generated images contained a lot of noise and did not take into account the distribution
of different datasets.

4.3. Necessity of Identity Foreground Loss
In order to enhance the transfer effect of fish feature information, we introduced iden‑

tity foreground loss (IDF) into the CycleGAN. As is shown in Figure 2, by supervising the
process of identity transfer, IDF reduces the interference of similar background features
on the foreground transfer and eliminates the noise in the process of image generation.
Finally, it improves the performance of the transfer model in the task of fish sample ex‑
pansion. As is shown in Table 1, CycleGAN + IDF can increase the source domain recall
rate to 60% and the mAP value to 80%. However, the target domain recall rate dropped
to 12.1 percent and the mAP value dropped to 58.9 percent. As can be seen from Figure 2,
due to the poor image quality of the target domain, the difference between the foreground
and background was reduced. However, the CycleGAN + IDF was only concerned with
the image difference between two different domains, but did not take into account the
image difference between a specific domain, which reduced the transfer effect from the
source domain to the target domain, resulting in an obvious loss of fish features in the
generated images.

4.4. Importance of Maximum Mean Discrepancy
We embedded the MMD into the CycleGAN with IDF, trying to narrow the distri‑

bution by reducing the maximum mean discrepancy between the foreground in different
domains. As can be seen from Table 1, the recall rate and mAP value of the model in‑
creased to 65% and 81%, respectively, after the transfer of the target domain to the source
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domain. Furthermore, the increase was 24.25% and 65.75%, respectively, after the transfer
of the source domain to the target domain. The results show that embedding MMD loss
in the CycleGAN can successfully minimize the distribution differences between different
foreground samples, which makes fish target feature extraction more efficient in different
datasets. However, it can be seen from Figure 2 that the image generated by adding only
MMD loss function for low‑quality image data transfer still had local identity feature loss.

4.5. Practicability of Our Method
We verified the practicability of the proposed method by migrating from the source

domain to the target domain and from the target domain to the source domain. Obviously,
with the CycleGAN, IDF,MMD, the recall rate andmAP accuracy of the final identification
results were the highest, reaching 77.5%, 88.75%, 69.5%, and 84.95%, respectively. These
results increased by 30%, 15%, 39.2%, and 19.8%, respectively, compared with direct trans‑
fer. Since only 300 samples of the target set were selected, the results further prove the
practicability of the proposed method in terms of its practical application.

4.6. Parameter Sensitivity
In this study, three parameters, λ1, λ2 and λ3, control the relative importance of three

target losses. We evaluated their influence on the mutual transfer between the source and
target domains. λ1 is the original parameter in the CycleGAN, and parameter 10 has been
proved to be the optimal choice in the literature [23,26]. In this study, the foreground
mask loss was used to optimize the identity loss function in the CycleGAN, so λ2 could
learn from the original parameters. λ3 is a key parameter controlling MMD loss weight,
so this section mainly compared the sensitivity of λ2 and λ3; the comparison results are
shown in Tables 2 and 3. It is clear that both the foreground identity loss and MMD loss
have been proven to be effective compared to the case of λ2 = 0 and λ3 = 0. FromTable 3, we
can see that foreground identity loss was positive when the target domain was transferred
to the source domain. However, due to the poor image quality of the target domain, the
features of the target to be recognized were not obvious. When the image was transferred
from the source domain to the target domain, the transfer effect was poor. As can be seen
from Table 4, when the weight was small, MMD loss had a significant impact on the recog‑
nition effect, and when the weight was large, the recognition effect changed slowly with
the weight. Therefore, for different datasets, the values of λ2 and λ3 should be carefully
selected due to the difference in data quality and domain distribution.

Table 2. The recall and mAP (%) results of different λ2 values on source and target. λ1 and λ3 and
are fixed at 10 and 0, respectively.

λ2
Target to Source Source to Target

Recall mAP Recall mAP

0 57.5 78.75 18.2 61.65

2.5 58.5 79.5 12 58.8

5 60 80 12.1 58.9

7.5 58.75 78.3 11.6 58.3

10 58 70.75 11.2 58.1

Table 3. The recall and mAP (%) results of different λ3 values on source and target. λ1 and λ2 and
are fixed at 10 and 5, respectively.

λ3
Target to Source Source to Target

Recall mAP Recall mAP

0 60 80 12.1 58.9

0.2 65.3 84 30.3 65.2
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Table 3. Cont.

λ3
Target to Source Source to Target

Recall mAP Recall mAP

0.4 70.5 85.5 54.2 77.3

0.6 77.5 88.7 60.1 80.9

0.8 77 88.4 69.5 85

1 76 88.1 69.2 84.8

Table 4. Comparison with the state‑of‑the‑art unsupervised methods for source and target. Recall
and mAP(%) were selected as the metric protocols. First results are annotated by bold type.

Methods
Target to Source Source to Target

Recall mAP Recall mAP

PTGAN [27] 60 80 12.1 58.9

CamStyle [28] 71.79 80.3 33.12 70.62

StarGAN [29] 82.05 88.39 24.03 66.95

Our Method 77.5 88.7 69.5 85

4.7. Comparison with State‑of‑the‑Art Methods
We compared the proposed method with state‑of‑the‑art methods, including inter‑

domain comparative transfer [27] and multi‑domain joint transfer [28,29], etc. The exper‑
imental results are shown in Table 4. PTGAN (person transfer generative adversarial net‑
work) mainly considers domain differences between datasets without considering identity
information loss caused by intra‑domain deformation. This is similar to themethod of only
considering IDF loss function in the ablation experiment in this study, resulting in poor
performance. CamStyle (camera style) uses label smooth regularization (LSR) to reduce
the overfitting risk caused by noisy generated samples, and achieves a good effect in the
target domain. However, since the loss of identity difference is not considered, the feature
loss of transfer samples seriously reduces the performance of source domain recognition.
StarGAN uses the mask vector to optimize the feature differences in different datasets
and improve the algorithm’s transfer effect among features. However, in the field of un‑
derwater free‑swimming fish recognition, especially the transfer learning when the fea‑
tures of acquired fish images are seriously lost, the algorithm’s transfer recognition effect
is poor. In the target domain, recall and mAPwere 24.03% and 66.95%, respectively. After
the destination domain was transferred to the source domain, the mAP reached 88.39%.
Compared with the above methods, this study preserved the identity information in the
transmission process by introducing IDF loss, thus eliminating the background noise to
a certain extent. Meanwhile, the MMD layer was adopted to learn the distribution of un‑
labeled datasets, thus successfully reducing the distribution difference between different
foreground samples.

4.8. Effectiveness of Transfer Learning
From Table 5, we can see that the recognition accuracy of the original data was higher

than that of the fake data, and the recognition accuracy of the amplified data was the high‑
est, with recall reaching 96.5% and 87%, respectively. Overall, the recognition accuracy of
fish in the source domain was higher than that in the target domain. On the whole, the fish
identification accuracy in the source area was higher than that in the target area. This was
mainly due to the low image quality of the target domain, resulting in more loss of iden‑
tity information during data migration. By comparing the overall recognition accuracy
and fish recognition accuracy, we found that, although the recall of false source domain
data was low, the mAP value was high. This proves that the background recognition rate
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was high. It was further demonstrated that data migration effectively distinguished be‑
tween background and foreground features. On the whole, the transfer learning method
effectively improved the target recognition accuracy. The recognition accuracy after the
amplification of the source domain and the target domain reached 96.9% and 94%, re‑
spectively, which reflects the effectiveness of the combination of data amplification and
transfer learning.

Table 5. The results of transfer learning test to source and target. We evaluated the source and target
with protocol recall and mAP(%).

Training Data Recall mAP

Source 80.3 89.6

F (Target) 36.4 44.3

Source + F (Target) 96.5 96.9

Target 79.2 85

F (Source) 31.8 70.3

Target + F (Source) 87 94

5. Conclusions
In this paper, we proposed an improved CycleGAN and transfer learning method

to recognize the large yellow croaker (Larimichthys crocea) in a factory ship farming scene.
There are still many problems associated with a variable scene recognition task (e.g., the
distribution of different datasets cannot be pulled closer during the translation process and
a large number of learning samples are difficult to obtain under production conditions).
To solve the first problem, we introduced the foreground ID loss and maximummean dis‑
crepancy into the CycleGAN framework. Meanwhile, to enhance the practicality of the
technology, we used transfer learning to improve recognition accuracy. We conducted ex‑
tensive experiments and the results have validated the effectiveness of our method. When
compared with state‑of‑the‑art methods, the improved CycleGAN method can achieve
competitive performance with a simple framework, and the final test results show that
the data amplification method of domain transfer can improve the recognition accuracy of
small‑sample transfer learning.
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