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Abstract: In the intelligent engine room, the visual perception of ship engine room equipment is
the premise of defect identification and the replacement of manual operation. This paper improves
YOLOv5 for the problems of mutual occlusion of cabin equipment, an unbalanced number of different
categories, and a large proportion of small targets. First, a coordinate attention (CA) mechanism is
introduced into the backbone-extraction network to improve the ability of the network to extract main
features. Secondly, this paper improves the neck network so that the network can learn a relatively
important resolution for feature-fusion and enrich the semantic information between different layers.
At the same time, this paper uses the Swin transformer as the prediction head (SPH). This enables
the network to establish global connections in complex environments, which can improve detection
accuracy. In order to solve the problem of cabin equipment covering each other, this paper replaces
the original non-maxima suppression (NMS) with Soft-NMS. Finally, this paper uses the K-means
algorithm based on the genetic algorithm to cluster new anchor boxes to match the dataset better.
This paper is evaluated on the laboratory’s engine room equipment dataset (EMER) and the public
dataset PASCAL VOC. Compared with YOLOv5m, the mAP of CBS-YOLOv5m increased by 3.34%
and 1.8%, respectively.

Keywords: engine room equipment detection; EMER dataset; coordinate attention; Swin transformer;
soft-NMS

1. Introduction

With the development of science and technology, ships are made to be large-scale,
modernized and intelligent. At the same time, the number of crew members is simul-
taneously being reduced, which makes the intelligent engine room the current research
hotspot of intelligent ships. At present, the unmanned and intelligent engine room mainly
depends on the engine room’s intelligent monitoring and alarm system. The engine room
monitoring and alarm system can monitor the operating status of each system of the ship
in real-time to ensure the regular operation of the ship. When a fault occurs, the system
will send out an audible and visual alarm and record the operating and system status data
at the same time, which is convenient for the engineer when carrying out maintenance.
However, nowadays, the monitoring system still needs improvement. For the appearance
defects of equipment, leaking, and valve operation, engineers still need to go to the engine
room to conduct inspections—for example, if the engine room is unoccupied and a pipe
suddenly leaks. If not found immediately, the consequences may be fatal.

If the ship’s equipment defects during navigation cannot be found in time, this will
result in pipeline leakage, which will cause unnecessary losses; if the ship is in stormy
weather, casualties are likely to occur when engine room personnel operate valves. There-
fore, visual sensors are used to identify the appearance status of the equipment, and the
information is integrated into the monitoring system so that faults and defects can be found
early, thereby helping engineers to deal with hidden dangers in advance. Similarly, robots,
which can operate instead of the engineer, utilize visual sensors to identify the valves in
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the engine room. Realizing these ideas mainly depends on technologies such as computer
vision, and applying computer vision and other technologies to the engine room plays an
important role in realizing the intelligent engine room.

However, few visual perception technologies are currently used in the engine room.
The primary purpose of this paper is to use computer vision technology to identify ship
engine room equipment, thereby replacing the eyes of the engineer to identify the equip-
ment when no one there is on duty. At the same time, it provides potential guidance for
the subsequent inspection of the appearance of equipment and operations, in place of
engineers. Although the convolutional neural network has achieved good results in the
stability and accuracy of object detection, the equipment monitoring task in the actual
engine room still faces various difficulties and challenges, including the following aspects:

1. There are no datasets available for ship engine rooms.
2. The number of meters and valves in the equipment accounts for a large proportion.

However, the proportion of other equipment is tiny. Valves and meters are generally
small and medium objects in images. Therefore, there are problems of class imbalance
and the dense distribution of small targets in the cabin.

3. The scale of equipment is enormous, from large diesel engines to tiny valves. Moreover,
the environment of the engine room is complex, the arrangement of equipment is compact,
and the distribution of pipelines is dense, resulting in many concealment problems.

In response to the above challenges, this paper proposes an improved equipment-
detection model based on YOLOv5m to achieve the detection accuracy requirements in
engine room equipment. These are the paper’s contributions:

1. Use the laboratory 3D virtual engine room team to select the obtained engine room
pictures and establish the ship engine room equipment datasets (EMER), in which
the equipment categories include engine, separator, cooler, reservoir, pump, valve,
and meter.

2. This paper uses the improved CSPDarknet53 network base on coordinate attention
(C3CA) to improve the ability of the backbone network to extract important features
to improve the detection ability. The neck network uses the Weighted Bidirectional
Feature Pyramid structure of Vertical and Horizontal connections (VH-BiFPN) that
we designed, which enriches the semantic information of different resolutions and
achieves the goal of improving the detection ability. We design the Swin transformer
detection head to obtain the global information of the feature map and the connection
of the context to enhance the model’s ability to detect small targets.

3. According to the engine room’s distribution characteristics, soft-non-maxima suppres-
sion (Soft-NMS) reduces the mutual masking problem in the engine room, reduces
missed detection in the engine room, and enhances the recall and accuracy of equip-
ment detection in the engine room.

The remainder of the paper is structured as follows. Section 2 addresses relevant
object-detection research; Section 3 introduces the improved YOLOv5m based on CA, VH-
BiFPN and the Swin transformer (CBS-YOLOv5m) detection model. In the fourth section,
the model is verified on the PASCAL VOC dataset, and the EMER dataset and ablation
experiments are performed. The fifth section includes the conclusion and discussion.

2. Related Work
2.1. Data Augmentation

Data augmentation can prevent model overfitting and improve the model’s gener-
alization ability. Optical distortion and geometric distortion are frequently used data
augmentation methods. For optical distortion, we make adjustments to the hue of the
image. We perform random scaling, cropping, translation, and rotation for geometric
distortion. In addition to the aforementioned global pixel-enhancement techniques, there
are also unique enhancement methods. Some researchers have proposed methods for data
augmentation by combining multiple images, namely Mixup [1] and Mosaic [2]. Mixup
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randomly selects two samples from the training images and performs a weighted summa-
tion, where the labels of the samples are also weighted for summation. Mosaic randomly
selects four images from the training images, which significantly enriches the background
of the detected object.

In this article, not only traditional methods are used for enhancement, but also Mixup
and Mosaic methods are used.

2.2. Object Detection

Object detection is divided into traditional object t detection and deep learning object
detection. Traditional object-detection algorithms often take a lot of time and manual
processing of datasets, such as Histograms of Oriented Gradients [3] and Scale Invariant
Feature Transform [4]. In contrast, data-driven deep learning detection algorithms can
automatically extract features from data, which greatly reduces the burden of traditional
design and improves detection accuracy.

Currently, there are two methods for object detection: two-stage object-detection
methods and one-stage object-detection methods. The two-stage detection method gen-
erates candidate regions on the image first, extracts feature through a convolutional neu-
ral network, and then performs classification and regression one by one. Region-CNN
(R-CNN) [5] is the first two-stage object-detection algorithm. Although it reduces window
redundancy and algorithm time complexity, it requires a fixed-size input image. In order
to overcome this shortcoming, Ref. [6] proposed the Spatial Pyramid Pooling Network
(SPPNet) network, which can extract features in any area without a specific image size
input and reduce the amount of calculation. Ref. [7] combined the ideas of R-CNN and
SPPNet, and Fast R-CNN was proposed. It improves detection speed and accuracy by
using a special case of SPP, which is the region of interest pooling layer (ROI). Ref. [8]
proposed Faster R-CNN on the basis of Fast R-CNN, which uses a fully convolutional
network to generate candidate regions on the feature map so that it can improve the quality
of candidate regions and thus greatly improve the speed. However, the detection speed of
the above two-stage target algorithm is relatively slow.

One-stage object-detection methods directly predict detection boxes and class proba-
bilities. For example, Single-Shot MultiBox Detector (SSD) [9] predicted using multi-scale
feature maps according to the characteristics of semantic information at different levels
for the first time. However, it is prone to the problem of imbalance between foreground
and background classes. In order to avoid this problem, RetinaNet [10] designed the focal
loss function and used the Feature Pyramid Network (FPN) [11] to improve the detec-
tion performance of different scale targets. Another representative algorithm is You Only
Look Once (YOLO) and its variants. YOLO [12] used a single network, which greatly
improves the speed, but its accuracy and recall are low. YOLOv2 [13] combined a variety
of new modules to improve YOLO and introduced an anchor frame mechanism similar
to Faster R-CNN, which improved the accuracy and recall. Further, YOLOv3 [14] intro-
duced a multi-scale framework, multi-scale feature-fusion and residual structure, which
improved the detection accuracy of small targets. YOLOv4 [2] employed a cross-stage part
based on Darknet-53, reducing the calculation amount. YOLOv7 [15] utilized E-ELAN
as the backbone network to extract image features based on ELAN. Then, an auxiliary
detection head was designed to improve the detection accuracy. In addition, structural
re-parameterization was introduced to improve detection speed. At present, YOLOv5
is the most stable generation of the YOLO series, and it has excellent performance on
different datasets.

In the detection of ship equipment, the scale difference between different pieces
of equipment is too large. There are huge differences in the proportions of different
devices in the same image, and the proportions of the same device in different images are
different. Figure 1a–c shows large objects, medium objects, and small objects, respectively.
Figure 1d is a multi-scale object. Currently, different feature layers are used to predict
different scale targets. For example, YOLOv5 used 80 × 80 feature maps to predict small
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targets, 40 × 40 feature maps to predict medium targets, and 20 × 20 to predict large
targets. Ref. [16] improved various devices’ detection speed and recognition accuracy by
introducing structural re-parameterization and the Neighbor Erasing and Transferring
Mechanism (NETM) in RetinaNet. Ref. [17] improved the detection speed of the device by
using pruning operations on the YOLO algorithm, but their detection accuracy for meters
and valves is low; that is, the detection accuracy for small targets is low.
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Figure 1. Multi-scale example of engine room equipment. In (a), equipment accounted for almost
100%. In (b), equipment accounts for about 10%. (c) shows a small target accounting for 1%, and
(d) shows the multi-scale variation between devices.

2.3. Attention Mechanism

The attentions applied in convolutional neural networks (CNNs) include the spatial
transformation network [18] that realizes spatial attention, the Squeeze-and-Excitation Net-
work [19] that realizes channel attention, and the convolutional block attention module that
realizes channel attention and spatial attention (CBAM) [20]. These lightweight attention
modules can be directly applied to a CNN to improve the model’s extraction of crucial
information. The latest research direction of the attention mechanism is self-attention. It
was inspired by the Natural Language Processing (NLP) field, using the self-attention layer
to replace the convolution for image-processing tasks. Refs. [21,22] used pure self-attention
deep networks and obtained state-of-the-art (SOTA) results in the image field, but the
amount of calculation is enormous. This shows that self-attention models have great po-
tential for detection performance. The Swin transformer [23] uses a self-attention method
with shifted windows, achieving many SOTA results in image processing, which shows
the superiority of self-attention-based attention mechanisms in image tasks. Therefore,
combining an attention mechanism and convolution can significantly improve the model’s
performance. For example, Ref. [24] combined the attention mechanism of the Swin trans-
former and the Normalization-based Attention Module (NAM) [25] in the convolutional
neural network and achieved good results in remote sensing images.

In response to the difficulties in related work and cabin equipment image detection,
an improved YOLOv5m cabin equipment-detection model is proposed, which is named
CBS-YOLOv5m.

3. Methodology

In this section, we first provide an overview of the structure of YOLOv5 and discuss
its application’s shortcomings in the engine room. Then, we introduce structures such
as the Swin transformer, coordinate attention (CA), Soft-NMS, and improved Weighted
Bidirectional Feature Pyramid (BiFPN) to optimize the dense scene in the engine room.
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3.1. YOLOv5

Up to now, YOLOv5 is the most stable version of the YOLO series in different datasets.
According to different network depths and widths, it can be divided into five types of
networks: n, s, m, l, and x. Due to the limited number of datasets used in this paper,
YOLOv5m is adopted as the benchmark network. Figure 2 shows the original YOLOv5
network structure.
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Figure 2. Original YOLOv5 Network Structure.

In the input, YOLOv5 uses the enhanced function of Mosaic to randomly combine
four pictures in the dataset into a 640 × 640 picture, which can enhance the complexity
of the dataset. The first part of this structure is the backbone network. It consists of
BottleNeckCSP and Spatial Pyramid Pooling (SPP) modules. Compared with ResNet [26],
BottleNeckCSP reduces a 1 × 1 convolution kernel calculation to reduce computational
complexity and extract depth information from features more effectively. The SPP module
can increase the network’s accepted domain by pooling in different ranges. The second part
is the neck network combines the operations of the Path Aggregation Network (PANet) and
FPN. High-level feature-dense localization employs the PANet framework. Meanwhile,
FPN provides underlying semantic features through up-sampling. By combining the
two structures, semantic features of different scales can be better integrated, which can
enhance the detection performance. Finally, the head network classifies feature maps of
different scales. The output includes category probability, confidence score, and bounding
box information.

YOLOv5 has an excellent detection performance, but it also has certain limitations:

1. It is mainly applicable to COCO datasets but cannot necessarily be applied to datasets
in certain specific scenarios.

2. The PANet structure focuses less on information between non-adjacent levels, result-
ing in a decrease in information during each fusion process.

3. For dense scenarios, the NMS processing mechanism is simple and rough, which can
easily lead to missed detections and lower recall rates.

4. It lacks the ability to capture global and contextual information and cannot effectively
utilize the positional and spatial information of feature maps.

3.2. Proposed Structural Improvements

We propose to improve the original YOLOv5 model for detecting small targets in
the engine room. To further improve accuracy without significantly increasing model
complexity, we introduce several improvements and propose a network structure, as
shown in Figure 3.
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3.2.1. Improved Backbone

In order to prevent the loss of important information in the extracted features, we
add the coordinate attention structure [27] to the backbone network, which obtains the
importance of each coordinate on the image by averaging pooling in different directions
of the image. This allows more focus on important features when extracting features,
thereby overcoming the loss of important features. The coordinate attention mechanism is
a lightweight attention mechanism that does not increase computational overhead. The C3
module is crucial for extracting feature information in the backbone network. Therefore,
this paper adopts a design that combines C3 and CA modules to enhance the ability to
extract image features.

The CA mechanism performs average pooling in different directions of the image,
then encodes through operations such as convolution, and finally finds the importance of
each coordinate and then multiplies it with the original feature so that it focuses on the
important feature. The CA module is shown in Figure 4.
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Figure 4. CA Module.

This article compares commonly used attention mechanisms and verifies the ability
of the model through mAP, a common indicator of object detection, which reflects the
coverage ability and recognition accuracy of the classifier for positive samples. The mAP
used in this paper is calculated when the IOU threshold is 0.5. In Table 1, CA, CBAM, and
SE are compared. The experimental results show that CA performs better in the engine
room dataset and can effectively extract features in the engine room dataset. Therefore, this
paper adopts the method of CA binding to C3.
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Table 1. Comparison of different attention mechanisms.

Model mAP (%)

YOLOv5m 83.73
YOLOv5m+SE 84.53 (+0.8)

YOLOv5m+CBAM 84.33 (+0.6)
YOLOv5m+CA 84.71 (+0.98)

The article combines the C3 module with the CA module and adds the CA module to
the BottleNeck module in C3 to better extract important image features and locate targets
more accurately. The designed C3CA module is shown in Figure 3.

3.2.2. Improved PANet Structure

The Neck network is to fuse the features extracted by the backbone network so
that the head can detect targets with different proportions according to different reso-
lutions. It usually consists of top-down and bottom-up paths to achieve the purpose
of passing shallow semantic information to deep layers [11] and deep semantic infor-
mation to shallow layers. This avoids the problem of the loss of feature information as
the convolutional network deepens. However, this approach relies on the aggregation
of adjacent layer features and pays less attention to the information exchange of non-
adjacent layers. So, with each aggregation, the spatial information of non-adjacent layers is
continuously reduced.

The research in [28] shows that the upper and lower parts of the middle layer, as shown
in Figure 5a, have little effect on the overall feature-fusion effect, so they can be removed,
which can reduce the computational overhead. As shown in Figure 5b, we increase the
cross-layer connection (B1) in the horizontal direction, which can solve the problem of
missing original feature information caused by the information-fusion process from the
C-N part. In order to solve the problem of less information exchange in non-adjacent
layers, this paper adds a vertical cross-layer connection (B2), which can enrich semantic
information to the greatest extent.
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Figure 5. Improved Neck comparison.

In the YOLOv5m feature-fusion stage, the channels are directly spliced, which can
quickly fuse information at different levels [29]. Inspired by [28], the contributions of
feature channels at different resolutions should be different [30]. Therefore, we assign
learnable weights to different resolutions and find the optimal weight ratio through
continuous updating.

The formula for rapid normalization is expressed as:

O = ∑
i

wi
ε + ∑

j
wj
· Ii (1)
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The learnable weights are thus expressed as follows:

Ptd
i = Conv

w1Pin
i + w2Resize

(
Ptd

i+1

)
w1 + w2 + ε

 (2)

Pout
i = Conv

w′1Pin
i + w′2Resize

(
Ptd

i
)
+ w′3Resize

(
Pout

i−1

)
w′1 + w′2 + w′3 + ε

 (3)

where wi is a learnable weight that represents the importance of input features, and ε is set
to 0.001 to prevent the denominator from being set to 0. Ptd

i represents the intermediate
features of level i on the top-down path, and Pout

i represents the output features at the level
of i on the top-down path. All features are established using this similar method.

3.2.3. Improved Head Structure

This section is focused on the problem of the loss of detailed information in the
complex scene YOLOv5 feature-extraction process in the cabin image. Inspired by the vision
transformer, this paper uses the global information capture capability of the transformer
encoder block to improve network-detection capabilities. However, if the transformer is
in the visual field, the amount of calculation will be greatly increased. At the same time,
Microsoft Research Asia proposed the Swin transformer, which significantly reduces the
amount of calculation compared with the vision transformer. The computational complexity
of the two is as follows:

Ω(MSA) = 4hwC2 + 2(hw)2C (4)

Ω(W−MSA) = 4hwC2 + 2M2hwC (5)

The former is the computational complexity of the vision transformer, which is the
quadratic curve of hw. The latter is the computational complexity of the Swin transformer,
and M is a constant 8, which is a linear function of hw. This dramatically reduces the
computational complexity.

The Swin transformer module is shown in Figure 6. It consists of Layer Normalization
(LN), Window-based Multi-head Self-Attention (W-MSA), Shifted Window-based Multi-
head Self-Attention (SW-MSA) and two layers of Multilayer Perceptron (MLP). After
attention and MLP, there is a layer of dropout [23]. Since the window-based self-attention
connections are localized in the partitioned windows, it limits the capability of the model.
The multi-head self-attention based on the shifted window can connect across windows,
so the two modules are used in pairs in Swin transformer to indirectly achieve global
information comparison.
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In the Swin transformer, multi-head self-attention is used for computation in the
window to achieve the ability to capture information globally and obtain contextual rela-
tionships. This is shown in Figure 7.
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When calculating self-attention, relative position bias encoding is used for the calcula-
tion, as follows:

Attention(Q, K, V) = So f tMax(QKT/
√

d + B)V (6)

(S)MSA(Q, K, V) = Concat(head1, . . . , headh)WO (7)

where headi = Attention(QWi
Q, KWi

K, VWV
i ); Q, K, V ∈ RM2×d are query, key, and value

matrices, respectively; d is the dimension of the query/key. Since the relative positions of
each axis are within the range of [−M + 1, M− 1], we parameterize the smaller size of the
bias matrix B̂ ∈ R(2M−1)×(2M−1), and the value of B is taken from B̂ [23].

The Swin transformer achieves the effect of global attention in another way—by con-
necting two different modules in series and reducing the computational complexity—but
the computational complexity is still enormous. Therefore, we only apply it to the head,
forming the Transformer Prediction Head (SPH). This is due to the low resolution of the
feature maps in the head network. Using SPH on low-resolution feature maps can reduce
computational complexity. The S-Trans Block after replacing the Bottleneck with the Swin
transformer model is shown in Figure 3.

3.2.4. Soft-NMS

According to research on the dataset, there are various pieces of equipment covering
each other in the ship engine room, such as similar equipment obstacles, different types
of equipment blocking each other, and non-equipment obstacles. Taking the first case
as an example, the real boxes of two adjacent devices will generate a series of detection
boxes, which obtain different confidence levels compared with the real boxes. In the NMS
processing mechanism, these boxes are sorted to select the bounding boxes with the highest
confidence, and the rest are deleted. At this time, the detection box generated by similar
devices adjacent to it may be mistakenly deleted, resulting in the loss of the detection
box of the neighboring devices. As shown in Figure 8, the two separators have the same
characteristics. When the two separators overlap, for the separator (S2), the detection
frame B1 of the separator (S1) will obtain the highest confidence level of the two separators.
Therefore, the real detection frame B2 of the separator (S2) will be deleted, which will lead
to the missed detection of the separator (S2).
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Figure 8. Shows an example where the equipment in the engine room is obscured.

To avoid this omission, we change the original NMS [31] of YOLOv5m to Soft-
NMS [32]. That is, boxes with low confidence are not deleted directly but have reduced
confidence and are retained. The pseudo-code is shown in Figure 9.
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In this paper, the Soft-NMS method is used to replace the NMS method, and the low
confidence score is not directly set to 0. Instead, the confidence score is reduced so that it
has the opportunity to participate in the selection of candidate-detection regions, which can
reduce the occurrence of missed detection. The Soft-NMS method is calculated as follows:

si =

si, iou(M, bi) < Nt

sie−
iou(M,bi)

2

δ , iou(M, bi) ≥ Nt
(8)

The above function multiplies the corresponding confidence level that is higher than
the IOU threshold by a Gaussian function, so the detection far away fromM will not be
affected. In contrast, detection boxes that are very close will be assigned a greater penalty.

3.2.5. Anchor Box Clustering

In the target-detection task, the model not only needs to learn the category of the target
but also needs to learn the position and size of the target. However, there are objects with
different aspect ratios in each image. This makes it more difficult for the model to learn the
object’s shape. Therefore, the prior box mechanism proposed in [8] divides the space of
objects with different scales and aspect ratios into several. It is applied to SSD, YOLOv3,
RetinaNet, etc. In YOLOv5, the K-means algorithm based on the genetic algorithm is used
to cluster the training set to obtain nine prior boxes as the initial anchor boxes. Because the
K-means algorithm easily falls into the local optimal solution, the genetic algorithm applies
the “survival of the fittest” principle to make the solution move in a good direction. It can
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seek the optimal solution globally. Therefore, the two are combined to improve the quality
of clustering.

The default anchor box of YOLOv5 is obtained by clustering the COCO dataset, so
this paper uses the K-means algorithm based on the genetic algorithm to re-cluster the
dataset. In the PASCAL VOC dataset, the new anchor boxes are: 80 × 80 anchor boxes
are [[30, 52], [78, 63], [63, 138]], 40 × 40 anchor boxes are [[146, 125], [120, 224], [198, 303]],
20 × 20 anchor boxes are [[389, 207], [324, 411], [536, 394]]. In the EMER dataset, the new
anchor boxes are: 80 × 80 anchor boxes are [[9, 9], [13, 14], [19, 19]], 40 × 40 anchor boxes
are [[26, 26], [37, 35], [50, 51]], 20 × 20 anchor boxes are [[76, 79], [107, 152], [234, 231]].

4. Experiments

In this part, the effectiveness of the improved YOLOv5 model is verified on the EMER
dataset. In Section 4.1, the paper introduces the dataset construction process, as well as
the equipment used in the experiment. Finally, in Section 4.2, the paper validates the
model through the public dataset PASCAL VOC2012+2007 and EMER dataset and makes
an intuitive comparison of some detection results of the EMER dataset. The schematic
diagram of engine room equipment-detection training is shown in Figure 10.
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4.1. EMER Dataset

With the resources of the laboratory team, we screened 1725 images from 4 different
ship types. Most of the images were taken with Canon digital cameras, while others were
captured via engine room surveillance. Due to some problems, such as different shooting
angles, complex cabin environment, changes in cabin lighting, and the unbalanced number
of different devices, in order to enhance the generalization ability of the model, we used
Gaussian noise, mirroring, rotation, translation, color change, cutout, etc., to expand
the dataset. We expanded the original dataset from 1725 to 8625, including 7 types of
instruments such as cooler, engine, meter, pump, reservoir, separator, and valve. The ratio
of the training set, verification set, and test set is 7:2:1.

Then we analyzed the dataset, as shown in Figure 11: (a) shows the distribution of
the position and shape of the label box; (b) represents the normalized target size. It can
be seen from the figure that the size of the target is mainly concentrated at 0~0.1, so most
of the small targets in the dataset; (c) represents the number of labeled boxes for various
types of equipment, of which the number of valves and meters accounts for about 82%.
Engines, coolers, and reservoirs account for only 3%. The number of large targets is small,
but high detection accuracy can still be obtained after data enhancement. This is because
the characteristics of large objects are more obvious. Therefore, this paper mainly focuses
on how to improve the detection ability of small targets.
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The equipment used in the experiment is shown in Table 2. The operating system is
Ubuntu 20.04.1, the graphics processor is NVIDIA GeForce RTX 3090, the CPU is 24-core
AMD 3960X, the memory is 64G, the Integrated development environment (IDE) is Visual
Studio, the model is built with the programming language Python 3.8.10 and the deep
learning framework PyTorch 1.10.0, and CUDA11.3 is used for acceleration during training.

Table 2. Experimental platform.

Configuration Specification

Operating System Ubuntu 20.04.1
GPU NVIDIA GeForce RTX 3090
CPU AMD 3960X 24-core
RAM 64 G
IDE Visual Studio

Framework PyTorch-1.10.0
Toolkit CUDA 11.3

4.2. Model Validation
4.2.1. Criteria

In object detection, representing these detection boxes as true objects and false objects
produces four kinds of predictions: true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). If the original sample is a positive sample and the model
prediction result is also a positive sample, then it is TP. Otherwise, it is marked as FP.
False negative refers to wrongly predicting positive samples as negative samples, and true
negative is the opposite. Mean Average Precision (mAP) is a commonly used indicator
for evaluating the performance of object-detection models, which is related to recall and
accuracy. Usually, Formulas (9) and (10) are used to express precision and recall.

Pr =
TP

FP + TP
(9)

Re =
TP

FN + TP
(10)

In the formula, Pr is the accuracy and Re is the recall. Accuracy and recall are mutually
related, and the two measures are usually combined to obtain a better evaluation of the
model’s capabilities. The recall is plotted as the abscissa, and the precision is plotted as
the ordinate to form an RP curve, which can reflect the classifier’s covering ability and
recognition accuracy of positive samples. The area enclosed by the curve is the Average
Precision (AP) of the current category.
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For the multi-classification problem, we averaged the AP for all categories, which is
called mAP; it is expressed as follows:

AP =
∫ 1

0
p(r)dr (11)

mAP =

c
∑

i=1
AP(Ci)

C
(12)

In the formula, p(r) is RP curve, Ci is category i, and C is the total category of equipment.
In addition to the mAP parameters, the test speed of the model is evaluated by Frames

Per Second (FPS) and the time, which are reciprocal to each other. FPS and time are also
used in this article to evaluate the capability of the model due to the rapid and accurate
requirements of the engine room monitoring system.

4.2.2. Model Validation on the PASCAL VOC Dataset

In this section, in order to verify the validity of the model, this article first conducted
experiments on the common dataset PASCAL VOC. Not only can the validity of the model
be verified by training PASCAL VOC, but also the training weight can be obtained. This
weight can be used in the training of the EMER dataset, and convergence can be achieved
more quickly through transfer learning fine-tuning.

In this research, the model is trained using the training set and verification set from
PASCAL VOC2007++2012, and it is tested using the test set from PASCAL VOC2007. In
terms of training details, we train for 100 epochs on CBS-YOLOv5m. SGD is used as
the optimizer, the learning rate is set at 0.01, the momentum is set at 0.937, the weight
attenuation is set at 0.0005, and the image batch is 32.

In this paper, we compare two typical indicators: FPS and mAP. As shown in Table 3,
the CBS-YOLOv5m proposed in this article is improved. Compared with current main-
stream models, including Faster R-CNN [8], R-FCN [33], YOLO3 [14], YOLOv4 [2],
YOLOX [34], YOLOv7 [15], SSD [9], Deconvolutional Single-Shot Detector (DSSD) [35],
Attentive Single-Shot Multibox Detector (ASSD) [36], RetinaNet [10] and YOLOv8m [37],
our model is improved.

Table 3. Compared with other methods on PASCAL VOC dataset.

Model Input Size Backbone Train Test FPS mAP (%)

Faster R-CNN ~600 × 1000 ResNet-101 VOC07+12 VOC07 2.4 76.4
R-FCN ~1000 × 800 ResNet-101 VOC07+12 VOC07 5.9 80.5

YOLOv3 352 × 352 Darknet53 VOC07+12 VOC07 19.9 75.7
YOLOv4 416 × 416 CSPDarknet53 VOC07+12 VOC07 48.1 85.7
YOLOXm 640 × 640 Darknet53 VOC07+12 VOC07 81.3 88.2
YOLOv7 640 × 640 ELANnet VOC07+12 VOC07 98.02 88.4

YOLOv8m 640 × 640 CSPDarknet53 VOC07+12 VOC07 100.27 87.9
SSD 512 × 512 VGG16 VOC07+12 VOC07 25.2 79.8

DSSD 513 × 513 ResNet-101 VOC07+12 VOC07 5.5 81.5
ASSD 512 × 512 VGG16 VOC07+12 VOC07 35.9 81.6

RetinaNet 600 × 600 ResNet-50 VOC07+12 VOC07 17.4 79.3
YOLOv5m 640 × 640 CSPDarknet53 VOC07+12 VOC07 87.08 87.0

CBS-YOLOv5m 640 × 640 CSPDarknet53 VOC07+12 VOC07 56.05 88.8

4.2.3. Ablation Study on EMER Dataset

In this paper, the weight of training on the PASCAL VOC2007++2012 dataset is used
as the pre-training weight. As for the training details, 80 epochs are trained with the Adam
optimizer. The learning rate is set to 0.001, the moving average attenuation rate is 0.9, and
the weight attenuation is set to 0.0005. The batch of images is 32. When using the default
anchor box to train the model in this article, the mAP is 83.42%. The model is trained
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using the anchor boxes obtained by clustering, and the obtained mAP is 83.73. Since the
subsequent experiments in this paper are based on the new anchor box, the model trained
by the new anchor box in this paper is used as the baseline.

This article conducts ablation experiments on the EMER dataset to respectively explore
the influence of improved backbone, improved PANet, improved head, and Soft-NMS
on detection accuracy and detection speed. The backbone network’s feature-extraction
capabilities are improved using C3CA; VH-BiFPN is used to replace the original PANET
network; and the Swin transformer is incorporated into the header network to enhance the
capability of extracting global information. Finally, the Soft-NMS processing mechanism
is used for processing. In Table 4, the experimental results are displayed. From the
experimental results of M3 and M4, it can be known that VH-BiFPN is 0.22% higher than
BiFPN. The accuracy of M2, M4, M5, M6, M7, and M8 is improved by 0.98%, 0.83%, 1.27%,
1.59%, 2.4% and 3.34%.

Table 4. EMER dataset ablation experiment. Do an experiment with the added modules here,
and name them according to M1-8, where VH-BiFPN represents the weighted bidirectional feature
pyramid structure of vertical and horizontal connections. SPH represents the detection head based
on Swin Transformer.

Model M C3CA BiFPN VH-BiFPN SPH Soft-NMS Time (ms) mAP (%)

Baseline 1 - - - - - 20.39 83.73

Schemes

2
√

- - - - 22.90 84.71 (+0.98)
3 -

√
- - - 20.79 84.34 (+0.61)

4 - -
√

- - 21.03 84.56 (+0.83)
5 - - -

√
- 22.92 85 (+1.27)

6
√

-
√

- - 23.54 85.32 (+1.59)
7

√
-

√ √
- 25.62 86.13 (+2.4)

8
√

-
√ √ √

29.91 87.07 (+3.34)

It can be known from the experimental results that although the accuracy has increased
by 3.34%, the inference time has increased by 9 ms. The increase in time is due to the
introduction of the attention mechanism and Soft-NMS. This is due to the use of the self-
attention mechanism, which not only requires matrix calculations but also calculates the
correlation between pixels in a fixed window, resulting in an increase in the number of
calculations. Although we only increase the self-attention mechanism on the head, which
has a small feature map, it still brings about a 2 ms time increase. For the lightweight
attention mechanism CA, the inference time is also increased by 2 ms due to the addition
of convolution calculations. Compared with NMS, Soft-NMS increases the calculation of
the decay score, so the post-processing process increases by 4 ms.

Figure 12 shows a comparison of the PR curves of CBS-YOLOv5m and YOLOv5m.
The area contained by the curve is mAP, and the CBS-YOLOv5m area is 0.0334 greater than
that of YOLOv5m.

Figure 13 is a diagram of the confusion matrix results of CBS-YOLOv5m on the EREM
dataset. The results in Figure 13 show that many valves and meters are predicted as the
background, with high FP and FN levels. This is because there are many small targets
of valves and meters, which are difficult to be detected in dense occlusion environments.
There are higher FNs for reservoir, engine, and cooler, which is due to the fact that their
training samples are smaller than other types and feature extraction is limited.

4.2.4. Compared with Mainstream Models

In Table 5, the proposed model achieves a higher mAP compared to other models,
which are 10.94%, 10.86%, 8.01%, 4.78%, 1.26%, 1.37%, 1.94%, 1.35% better than Faster
R-CNN, SSD, ASSD, RepVGG-RetinaNet, YOLOv7, YOLOv8m, YOLOv5l, YOLOv5x and
3.34% higher than the benchmark YOLOv5m. CBS-YOLOv5m has more advantages than
other models in the detection of small objects.
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Table 5. Comparing results with other mainstream models on the EMER dataset.

Model
AP (%)

FPS mAP (%)
Engine Pump Cooler Separator Meter Reservoir Valve

Faster R-CNN 93.77 82.11 90.96 84.83 43.81 86.95 50.49 8.53 76.13
SSD 100.00 89.46 83.53 91.71 46.22 71.05 51.48 27.99 76.21

ASSD 100.00 90.39 85.85 93.90 49.53 78.57 55.18 17.94 79.06
RepVGG-RetinaNet 100.00 95.30 93.44 97.68 60.26 55.01 74.37 24.98 82.29

YOLOv7 93.50 89.10 88.30 96.20 80.20 74.40 79.00 54.49 85.81
YOLOv8m 93.70 93.10 91.00 95.00 75.00 73.70 78.40 56.46 85.70
YOLOv5l 95.40 88.90 88.80 93.30 77.30 75.60 76.60 39.73 85.13
YOLOv5x 95.90 89.40 88.40 95.10 78.40 75.60 77.30 34.01 85.73

YOLOV5m 94.40 87.50 89.80 94.60 73.40 70.60 75.80 49.04 83.73
CBS-YOLOv5m 96.90 90.40 89.20 96.10 81.20 75.60 80.10 33.43 87.07
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4.2.5. Visualization

This paper selects several typical scenes for visual comparison. As shown in Figure 14,
the YOLOv5m model is compared with the detection results of the CBS-YOLOv5m model
proposed in this paper. In Figure 14a, we show reservoirs. In other figures, we show the
pump (b), meter (b), engine (c), separator (d), valve (e), and cooler (f). Among the six
comparisons, above is the output of the original YOLOv5m, and below is the output of
CBS-YOLOv5m.
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In this paper, the IOU threshold and confidence threshold are set to 0.5 and 0.25, re-
spectively. In Figure 14a, there are reservoirs, valves, and other equipment. CBS-YOLOv5m
detects one more reservoir than YOLOv5m. In Figure 14b, CBS-YOLOv5m detects one
more pump and one more valve than YOLOv5m. In Figure 14c, CBS-YOLOv5m detects
several more valves than YOLOv5m with higher confidence but falsely detects an object
as a valve. In Figure 14d, CBS-YOLOv5m detects one more valve than YOLOv5m, and
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the remaining devices have higher confidence. In Figure 14e,f, the device detected by
CBS-YOLOv5m has higher confidence, but there is a missed valve in Figure 14f. From the
results, the improved model in this paper can alleviate the problems of missed detection
and false detection and can exceed YOLOv5m in the detection of each type of equipment.
However, there are also shortcomings, such as predicting the valve as the background. In
summary, CBS-YOLOv5m has a stronger recognition ability.

In order to verify the generalization ability of the model, we compared the detection
effects of the same device in different lighting environments. As shown in Figure 15,
column a is the detection effect of standard cabin lighting, and column a * is the detection
effect of the cabin after darkening. From the perspective of the confidence of the detection
effect, there is no significant change, but some small targets are missed due to the darkening
of the environment. Overall, the model in this paper has strong generalization.
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5. Conclusions

To develop engine room visual perception technology, we built the EMER dataset. In
order for the ship engine room robot to better identify the engine room equipment and
perform related operations, this paper improves the recognition accuracy and generalization
ability of the ship equipment-detection model, which enables the robot to accurately identify
equipment in different environments. It also proposes an improved YOLOv5m engine
room target-detection algorithm. According to the experimental results, it can be seen that:
(1) The new anchor box obtained by the K-means algorithm based on the genetic algorithm
can effectively improve the ability of the model to recognize the target shape and improve
the detection accuracy by 0.31%. (2) The improved C3CA module can more effectively
extract the main features in the image, thereby improving the detection ability of all devices.
(3) The designed VH-BiFPN feature-fusion network can enhance the fusion of semantic
information at different resolutions, and the mAP is increased by 0.83%. (4) Changing the
convolution prediction head to the SPH detection head can calculate the global correlation,
thereby avoiding the loss of features of devices with small image proportions, and can
improve the problems of false detection and missed detection. (5) The Soft-NMS post-
processing mechanism can effectively solve the problem of missed detection In dense
scenes. The improved CBS-YOLOv5m in this paper is 3.34% higher than the mAP of
YOLOv5m. However, the inference time increased by 9 ms, and the FPS decreased by 16.
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The purpose of this article is for the results to be deployed in engine room monitoring and
with engine room inspection robots. The main task deployed to the robot is to accurately
find the location of the equipment in the complex engine room environment. Therefore,
this paper focuses on the improvement of detection accuracy.

The improved model in this paper can realize the identification of cabin equipment
but has the following shortcomings: (1) The current dataset only has images of equipment
appearance, and images containing equipment defects need to be collected. (2) There is
a problem of data imbalance among different equipment types, which leads to the low
single-class accuracy of reservoirs. (3) The number of meters and valves in the engine room
is large. They are densely distributed, and the targets are small, which leads to meters
and valves having a high FPs. (4) The improved model has the highest mAP, but various
devices’ detection effects and accuracy are not the best. Therefore, multi-model integration
can be considered for device detection. (5) The proposed model only considers the accuracy
improvement, and the speed is lost by nearly 35%. Subsequent work should balance speed
and accuracy. (6) The dataset in this paper uses static images, and it is yet to be possible to
test the effects of vibration and light changes. Relevant videos should be collected in future
work to better approach the real ship environment. In the future, zero-sample detectors
should be studied so that the model can learn autonomously and be deployed in cabin
robots to empower intelligent engine rooms.
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