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Abstract: Accurate fishing activity detection from the trajectories of fishing vessels can not only
achieve high-precision fishery management but also ensure the reasonable and sustainable develop-
ment of marine fishery resources. This paper proposes a new method to detect fishing vessels’ fishing
activities based on the defined local dynamic parameters and global statistical characteristics of vessel
trajectories. On a local scale, the stop points and points of interest (POIs) in the vessel trajectory are
extracted. Voyage extraction can then be conducted on this basis. After that, multiple characteristics
based on motion and morphology on a global scale are defined to construct a logistic regression
model for fishing behavior detection. To verify the effectiveness and feasibility of the method, vessel
trajectory data, and fishing log data collected from Chinese ocean squid fishing vessels in Argentine
waters in 2020 are integrated for fishing operation detection. Multiple evaluation metrics show
that the proposed method can provide robust and accurate recognition results. Moreover, further
analysis of the temporal and spatial distribution and seasonal changes in squid fishing activities
in Argentine waters has been performed. A more refined assessment of the fishing activities of
individual fishing vessels can also be provided quantitatively. All the results above can benefit the
regulation of fishing activities.

Keywords: fishing behavior; fishery management; statistical features of trajectory sequences; logistic
regression; sliding window

1. Introduction

The local environment will be severely harmed by overfishing and overuse of marine
resources [1], which will have an impact on how nearby communities and the global
community are developed and how food chains are supplied [2]. Overfishing, which is
mostly caused by illicit, unreported, and unregulated (IUU) fishing [3], is the principal
cause of the depletion of marine fisheries resources. IUU fishing is a widespread global
phenomenon that not only endangers the existence of threatened fish populations and
pollutes the ocean with microplastic [4], but it is also a transnational crime [5]. Severe
damage to a nation’s marine rights, resource development, and sustainable development of
marine fish is posed by the decline and scarcity of marine resources, which frequently lead
to disputes between fishing fleets of different countries over marine fishery resources [6,7].
Diverse, relevant conservation policies have been put in place to ensure the healthy and

J. Mar. Sci. Eng. 2023, 11, 1245. https://doi.org/10.3390/jmse11061245 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11061245
https://doi.org/10.3390/jmse11061245
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-9685-1605
https://orcid.org/0000-0002-0001-0351
https://doi.org/10.3390/jmse11061245
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11061245?type=check_update&version=2


J. Mar. Sci. Eng. 2023, 11, 1245 2 of 26

sustainable growth of regional and global fisheries as marine fisheries receive more attention
globally [8]. The growth of people’s livelihoods and ecological protection need to be taken
into account when formulating policies since some permanent fishing ban regulations
have overlooked the influence on the livelihood of fishermen’s families [9]. In order to
support the creation of fishery policies, assure the healthy and sustainable development of
fisheries [10], and achieve high-precision fishery management [11], information technology
must be used.

The demands for fisheries management mainly include tracking the activity footprint
of fishing vessels [12], evaluating fishing efforts, and regulating illegal fishing [5]. Many
studies still rely on survey techniques and mathematical models for estimation [13,14],
but when fishing locations are numerous and dispersed throughout the vast open sea,
it may be impractical to rely solely on on-site law enforcement [15], particularly during
the COVID-19 pandemic, which exacerbated illegal fishing activities [16]. The Automatic
Identification System (AIS) was originally designed as a navigational safety tool to avoid
collisions [17]. Due to its ability to record information, such as the real-time position and
speed of a ship, AIS is now widely used for the regulation of ship traffic. The question
of how to automatically identify fishing operations on fishing vessels using AIS data has
grown in importance.

Most studies employ a coarse-grained speed threshold to determine the operational
status of the vessel because the speed range that the fishing vessel maintains during fishing
operations is lower than that during normal sailing [18]. As fishing vessels are subject to
special navigation legislation, statistical analysis of the speed distribution that follows a
bimodal distribution can be used to precisely determine the speed distribution in the AIS
data of fishing vessels [19]. By splitting the speed range of fishing vessels, statistical results
can increase detection accuracy, but they still fall short of more complex requirements for
fishery management. Recently, researchers started using machine learning techniques to
refine the detection model based on the distribution of fishing vessel speed [20,21]. This is
due to the rapid growth of machine learning and artificial neural networks. A number of
multi-feature models based on AIS trajectory points are also suggested to further increase
detection accuracy [22–24].

In the above studies, the feature construction between individual track points or
continuous track points is used to determine whether a certain track point belongs to
fishing activities. The point-by-point detection method has limitations, as some high-
speed track points in fishing activities may be misjudged as non-fishing points, and some
low-speed track points in normal sailing activities may be misjudged as fishing trajectory
points. Moreover, the detection results of the above methods cannot obtain complete
spatiotemporal information for each independent fishing behavior, so they cannot provide
accurate data support for fisheries management and fishing activity regulation. This
article takes squid fishing vessels as an example and proposes a new fishing behavior
detection method based on AIS data. By combining the local dynamic parameters and
global statistical characteristics of trajectories defined in this paper, the traditional sliding
window algorithm is optimized, a candidate fishing trajectory extraction method based on
POI is proposed, and a discriminative model of fishing behavior based on logical regression
is proposed. Compared with the point-by-point detection model, the recognition results are
transformed from a single point to a trajectory segment, which improves the transparency
and traceability of fishing activities and can prevent the reduction in detection accuracy
caused by some solitary locations during fishing operations.

The rest of the article is structured as follows: Multiscale trajectory characteristics
of squid fishing vessels are described in Section 2. In Section 3, the specific models and
procedures for identifying fishing behavior and calculating fishing effort are described. The
AIS data of squid fishing vessels in Argentinean waters are analyzed using the proposed
model and method in Section 4, which also presents a summary of the detailed information
on individual fishing activities of fishing vessels and the overall distribution of spatial and
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temporal characteristics of fishing activities over the course of the year. In Section 4, the
main conclusions are finally presented.

2. Multiscale Trajectory Characteristics of Squid Fishing Vessels

A fishing vessel’s trajectory carries a number of useful properties, including Mar-
itime Mobile Service Identity (MMSI), longitude, latitude, speed over ground, course over
ground, etc. In this paper, the AIS data has been parsed, so the timestamp is also important
information in the subsequent study. A fishing vessel’s trajectory characteristics change
depending on whether it is actively fishing. Even though fishing vessels have different oper-
ation types, when they are fishing, they will frequently change their course and speed [25].
Therefore, changes in local dynamic parameters and global statistical characteristics can
reflect the characteristics of fishing activities.

2.1. Local Dynamic Parameters of Squid Fishing Vessel

The collection of all fishing vessel trajectories is denoted by TAIS = {T1, . . . , Tm, . . . , TM},
where m represents different fishing vessels, and M is the total number of all fishing vessels.
The equivalent trajectory for fishing vessel m can be written as Tm = {p1, . . . , pi, . . . pN},
where N is the number of discrete track points in the AIS trajectory. Each trajectory
point pi contains the ship’s motion and spatial parameters, which are written as pi =
{loni, lati, utci, vi, ci}. These parameters are the fishing vessel’s longitude and latitude
coordinates (loni, lati), timestamp (utci), speed over ground (vi), and course over ground
(ci). More local dynamic parameters can be discovered by examining the spatiotemporal
relationships between consecutive track points.

Latitude and longitude coordinates and a timestamp can be first used to establish the
time step ∆utc and space step ∆d between two discrete track locations. The semi-positive
vector formula is used to calculate the geospatial distance between two consecutive track
points.

∆di = d(pi, pi+1) = 2R sin−1

(√
sin2

(
lati+1 − lati

2

)
+ cos(lati+1) cos(lati) sin2

(
loni+1 − loni

2

))
(1)

∆utci = utci+1 − utci (2)

where pi and pi+1 represent two consecutive track points, respectively. R stands for the
earth’s radius (6.3771 × 106 m), utc represents the reported timestamp corresponding to
the track point, and lon and lat are the longitude and latitude in the WGS-84 coordinate
system.

By combining these factors with fishing vessel velocity, it is possible to further deter-
mine the velocity differential ∆v and acceleration a.

∆vi = vi+1 − vi (3)

ai =
∆vi

∆utci
(4)

The position information in the AIS data uses the WGS-84 coordinate system, which
is a geocentric spatial right-angle coordinate system. The WGS-84 coordinate system is
converted to Mercator projection coordinates in order to calculate the vector angle between
two successive track points because the WGS-84 coordinate system is not an equiangular
coordinate system. The transformational formula is as follows. xm = πR×lon

180

ym = R× ln
(

tan
(

π
4 + πlat

360

)) (5)
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where xm and ym are the longitude and latitude in the Mercator projection coordinate
system.

Due to significant course loss and significant AIS inaccuracy, the turning angle is
defined and calculated when the longitude and latitude coordinates are converted into the
Mercator projection coordinates. The consecutive track points, pi−1, pi, and pi+1 denoted as
gray circles in Figure 1 form two adjacent track segments. Two vectors, pi−1 pointing to pi,
and pi pointing to pi+1, make up the turning angle αi for pi. The formula for the solution is
as follows:

αi = cos−1

 ⇀
pi−1 pi ×

⇀
pi pi+1

⇀
|pi−1 pi| ×

⇀
|pi pi+1|

 (6)
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Figure 1. Turning angle αi and direction error angle βi.

At the same time, in order to reflect the spatial relationship between the navigation
direction of each track point and the final destination, we define the directional error angle
β of each trajectory point. As shown in Figure 1, the directional error angle βi for each track
point pi is composed of two vectors, pi pointing to pe, and pi pointing to pi+1. The formula
for the solution is as follows:

βi = cos−1

 ⇀
pi pe ×

⇀
pi pi+1

⇀
|pi pe| ×

⇀
|pi pi+1|

 (7)

where pe represents the last track point of the trajectory segment.
To reflect the relative position relationship between each track point and the starting

and ending line of the entire trajectory, we define the distance between each track point
and the starting and ending line of the entire trajectory, called the centerline distance hi.
The related diagram is shown in Figure 2, and the solution formula is as follows:

hi =

⇀
pi ps ×

⇀
pi pe

d(ps, pe)
(8)

where d(ps, pe) represents the geographic distance between the starting and ending points
of the trajectory, and

⇀
pi ps and

⇀
pi pe represent two vectors of track point pi pointing towards

the starting and ending points of the trajectory, respectively.
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Finally, in order to reflect the relative position relationship of each trajectory point to
the entire trajectory center point, we defined the center distance dc,i of each trajectory point
pi. As shown in Figure 2, the formula for calculating the coordinates of the geometric center
point of the trajectory segment and the center distance of each track point is as follows:

lonc =
1
n

n
∑

i=1
loni

latc =
1
n

n
∑

i=1
lati

(9)

dc,i = d(pi, pc) = 2R sin−1

(√
sin2

(
latc − lati

2

)
+ cos(latc) cos(lati) sin2

(
lonc − loni

2

))
(10)

By analyzing the local spatiotemporal features of trajectories, we can extract valuable
information from each track point. This information can be expressed as a set, denoted as Pi,
which includes longitude (loni), latitude (lati), timestamp (utci), velocity (vi), course over
ground (cogi), time step (∆utci), space step (∆di), velocity differential (∆vi), acceleration (ai),
turning angle (αi), direction error angle (βi), centerline distance (hi), and center distance
(dc,i).

Pi = {loni, lati, utci, vi, cogi, ∆utci, ∆di, ∆vi, ai, αi, βi, hi, dc,i} (11)

The trajectory local dynamic parameters mining method takes into account not only
the spatiotemporal relationship between continuous track points but also the relationship
between each point and important spatial nodes of the overall trajectory. This approach
captures both the instantaneous changes in ship motion parameters over a short period
and the spatial position of each point relative to the entire segmented trajectory.

Through further statistical calculation methods, it becomes feasible to develop global
trajectory characteristic models and conduct pattern mining of squid fishing vessel behavior
in subsequent analyses.

2.2. Global Statistical Characteristics of Squid Fishing Vessel

By observing the fishing vessel during its transition from normal sailing to fishing, we
can observe significant changes in its trajectory. Figures 3–5 depict how fishing vessels ex-
perience changes in their dynamic parameters, such as a decrease in speed and fluctuations
in the course, and changes in their trajectory morphology. As a result, we have defined two
types of global statistical characteristics to describe fishing trajectories, taking into account
both motion and morphology perspectives.
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At this juncture, we can represent the set of trajectory points for a potential fishing
trajectory in the following manner:

T = {p1, p2, . . . , pi, . . . , pn} (12)

Figures 3 and 4 show the variations in velocity and turning angle in the trajectories of
a squid fishing vessel’s sea fishing voyage. Based on the start time of squid fishing recorded
in the fishing vessel log, we found that the velocity of the squid fishing vessel during
normal sailing is maintained at an economical speed with little the change in course; during
fishing, the speed is mostly at a low level, and the change in course is more pronounced.

To begin with, two motion statistical characteristics are specified, namely, the propor-
tion of low-velocity and the proportion of course fluctuation, to quantify the amplitude of
speed and course fluctuation of the fishing trajectory.
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Proportion of low-velocity: is the proportion of track points with low speed in the
trajectory T, denoted as Pv. The method of computation is as follows.

Pv =
card({vi|(vi ∈ T) ∩ (vi ≤ vε)})

card(T)
(13)

In Equation (13), card() is the function for solving the number of elements in the
corresponding set; vε is a low-speed threshold that has been established and Pv is the
proportion of low-speed track points in the trajectory T.

Proportion of course-fluctuation: is the proportion of turning track points in the
trajectory T, denoted as Pα. The method of computation is as follows:

Pα =
card({αi|(αi ∈ T) ∩ (αi ≤ αε)})

card(T)
(14)

where αε is a turning angle threshold that has been established and Pα is the proportion of
turning track points in the trajectory T.

Figure 5 visualizes the fishing trajectory of the squid fishing vessel. Compared to
normal sailing trajectories, fishing trajectories have the following characteristics: (1) forming
a more concentrated cluster of track points within a narrower spatial range; (2) the purpose
of navigation is not clear enough; (3) the trajectory has a higher degree of twists and turns;
and (4) navigation efficiency is lower.

Four morphological statistical characteristics, namely, cohesion, sinuosity, straightness,
and navigation efficiency, were specified to quantify the above four features of the fishing
trajectory.

Cohesion: measures the variance in the distance between each track point and the
center of the trajectory T denoted as cT . The method of computation is as follows:

cT =

√√√√√ 1
n

 n

∑
i=1

(
dc,i −

1
n

n

∑
i=1

dc,i

)2
 (15)

In Equation (15), dc,i is the geographic distance between each track point and the center
point of the trajectory T. This statistical indicator reflects the degree of concentration of all
track points in the geographic space of the trajectory.

While fishing, the fishing vessel makes more twists, which causes a more convoluted
trajectory. In order to distinguish between fishing and regular sailing, sinuosity, and
straightness are defined.

Sinuosity: is the average distance between each track point’s centerline distance hi,
denoted as sinuosityT . The method of computation is as follows:

sinuosityT =
1
n

n

∑
i=1

hi (16)

This statistical indicator reflects the degree of twists and turns in the trajectory.
Straightness: is the average cosine of each track point’s direction error βi, denoted as

straightnessT . The method of computation is as follows:

straightnessT =
1
n

n

∑
i=1

cos βi (17)

This statistical indicator reflects whether the navigation purpose of the trajectory is
clear.
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Navigation efficiency: is the ratio of the distance between the starting and finishing
points of the trajectory to the overall distance covered by the trajectory. The formula for
calculation is as follows:

e f f iciencyT =
d(ps, pe)

n−1
∑

i=1
d(pi, pi+1)

(18)

In Equation (18), d(ps, pe) is the geographic distance between the starting and ending

points of the trajectory,
n−1
∑

i=1
d(pi, pi+1) is the navigation mileage of the trajectory. This

statistical indicator reflects the navigation efficiency of the trajectory.

3. Detection Method of Fishing Behavior Based on Trajectory Characteristics

Before fishing behavior detection, track quality inspection should be completed since
false alerts and missing track points can be found in real AIS data. First, the abnormalities
in parameters, such as longitude, latitude, speed, acceleration, and direction, in the AIS data
will be identified and fixed [26]. It is of little importance to determine the fishing behavior
of fishing vessels in locations with major missing track points because a fishing activity
typically lasts for 3 to 15 h. In this study, the boxplot method’s use of the interquartile
range to identify outliers is utilized. First, determine the top and lower quartiles of the
time difference between two successive points on a ship’s trajectory by measuring and
counting the time difference. The time threshold for detecting missing AIS data is therefore
defined as the top thousandth point of the box plot plus 1.5 times the difference between
the upper thousandth point and the lower thousandth point. It is considered that AIS data
is significantly deficient whenever the time difference between two track locations exceeds
the time threshold or the minimum fishing time, which is generally set at 3 h.

As shown in Figure 6, the workflow of the fishing behavior detection algorithm is as
follows:

1. Input the AIS trajectory of fishing vessels, and the trajectory is preprocessed.
2. Use a density-based clustering iterative approach to extract the center point coordi-

nates of fishing ports. Based on this, the single voyage trajectory is divided.
3. Traverse every voyage’s trajectory. If there are POI that change from high speed to

low speed, take all POI as the starting point of the sliding window.
4. Starting from each POI, the minimum time length of the sliding window is determined

by the shortest fishing time and the minimum number of track points. The sliding
window is extended every half hour, and the trajectory within the window will be
considered a suspicious fishing trajectory.

5. Extract six global statistical characteristics defined in this paper from the suspi-
cious fishing trajectories, including proportion of low-velocity, proportion of course-
fluctuation, direction constancy, cohesion, sinuosity, straightness, and navigation
efficiency.

6. Use the logistic regression model trained by the training samples to distinguish
whether the suspicious fishing trajectory is a fishing trajectory. Select the trajectory
with the highest probability as the final fishing trajectory.
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3.1. Voyage Trajectory Extraction

Squid fishing is primarily completed in one of two ways in the Argentinean seas. One
spends a few days fishing, then returns to port to relax on rest days. Another one goes
an entire year without returning to port while fishing. A fishing vessel’s trajectory could
consist of a lengthy, intricate geometric path with a variety of mobility patterns. Some of
the fishing vessels operating on the high seas are engaged in fishing operations at sea all
year round and hand over to transshipment vessels after the catch is full and do not return
to the fishing port to deal with the catch, so the movement mode is mainly divided into two
states of fishing and normal sailing; however, the movement mode of most fishing vessels
is mainly divided into three states of fishing port anchor, fishing, and normal sailing.

The “Stop-Move” conceptual model is first employed to separate the raw ship trajec-
tory into a collection of stops and a set of continuous sub-trajectories between stops for
the purpose of detecting fishing activity. Mobility patterns for sailing and fishing between
various anchorages may be present in each sub-trajectory. In this paper, a density-based
clustering iterative approach is used to swiftly recover fishing vessel stops from a large
number of AIS track points. First, any track locations in the AIS data that had a velocity of
less than 0.5 knots were filtered out and treated as stop points [27]. A few stops within a
short period of time during the process of fishing vessels leaving the port can be classified
as noise spots since the stop points in the port are more intensive in general. In the process
of stop point clustering, the first iteration allows for the extraction of the longitude and
latitude coordinates of the central point and the berthing area of a single ship. The berthing
areas of several ships may be found in the second iteration, and center locations’ longitude
and latitude coordinates can be gleaned. The anchorages’ longitude and latitude coordi-
nates are then obtained in the third iteration. The raw AIS trajectory of each vessel can be
divided by the anchorage to get the single voyage sub-trajectory, as shown in Figure 7.
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3.2. Suspicious Fishing Trajectory Extraction Based on Variable Length Sliding Window

The fishing behavior defined in this paper is the trajectory segment produced by the
fishing activities of fishing vessels. In order to detect the fishing behavior of fishing vessels
from their voyage sub-trajectories, this paper proposes a two-staged detection method.
The initial phase involves identifying possible fishing trajectory segments that are called
candidate fishing tracks. In order to ascertain whether fishing vessels are engaged in fishing
operations in the second stage, the overall statistical characteristics of the suspicious track
segments are calculated and input into a fishing behavior detection model.

There are hundreds of AIS track locations on the single voyage sub-trajectory of a
fishing vessel, yet sometimes only 10 to 20 fishing activities take place. It takes time to
identify candidate fishing trajectories point by point using the traditional sliding window
algorithm. This study uses a dynamic window approach based on points of interest (POI)
to find candidate fishing tracks. The squid fishing vessel will maintain an economic speed
while sailing from one fishing location to the next and will reduce the speed for prep work
after reaching the fishing location. Additionally, by comparing the parameter changes
of the AIS track speed around the netting time interval recorded in the logbook of the
fishing vessel, it was found that all the speed decreases occurred. Further statistical research
revealed that fishing vessel speed distributions comply with a bimodal distribution [28].
As shown in Figure 8, if the stop track points are divided by 0.5 knots, the remaining track
points’ sailing speed basically obeys the bimodal distribution.

As a result, this paper separates vessel speeds into two categories: high-speed and
low-speed. The speed variations that occur before and after each track point in the single
journey trajectory are computed and used to locate the POI. A point is regarded as the
POI if there is a change in speed range (from a high-speed portion to a low-speed section).
It means that reducing speed quickly will have no effect on POI recognition. For each
travel sub-trajectory, only the portion starting at the POI will be recognized, considerably
improving processing efficiency, as shown in Figure 9.
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The dynamic window technique is utilized to find suspicious fishing trajectories after
POI determination. The dynamic window’s initial duration is 2 h, and each incremental
step is 30 min. For each extended window length, the trajectories within the window will
be considered suspicious trajectories. Six global statistical indicators for each suspicious
trajectory are calculated and input into the fishing trajectory determination model based
on logistic regression. The detection is over once the dynamic window duration exceeds
24 h. By comparing the output probabilities of different determined fishing trajectories,
the suspicious trajectory corresponding to the highest probability value is selected as the
final detected fishing trajectory. The schematic diagram of the relevant process is shown in
Figure 10.
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3.3. Fishing Trajectory Determination Model Based on Logistic Regression

Global properties of each suspicious fishing trajectory, such as the proportion of course-
fluctuation, the direction constancy, cohesion, sinuosity, straightness, and navigational
effectiveness, are further computed and used as input variables in the logistic regression
classification model. The model will produce the fishing vessel’s behavior state with 1
denoting the fishing state and 0 denoting the sailing state. In general, the logistic regression
model is a generalized linear regression analysis method that has the same mathematical
structure as multiple linear regression analysis with wTx + b, where w and b are the
parameters to be solved. In contrast to multiple linear regression, logistic regression
translates the dependent variable wTx + b to a hidden state p using an activation function
L(x) and calculates its value based on the magnitude of p or 1 − p. Formula (19) illustrates
the form of the activation function L(x), where µ is the position parameter and γ is the
shape parameter. In this study, the sigmoid function which is the special form of the Logistic
distribution function with µ = 0 and γ = 1 is employed to build the logistic regression
model. Equation (19) can be changed into Equation (20) and the Loss function used is
shown in Equation (21). The logistic regression model will be solved using the random
gradient descent method after L2 regularization to prevent overfitting.

L(x) =
1

1 + e
−(wT x+b−µ)

γ

(19)

L(x) =
1

1 + e−(wT x+b)
(20)

loss(y, ŷi) = −
m

∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi)) (21)

3.4. Fishing Effort Estimation Method

The fishing behavior identification model based on POI can be used to extract the
annual fishing activities from the AIS data of squid fishing vessels in worldwide waters.
Each fishing activity is represented as a set of consecutive track points.

Tf ishing = {ps, . . . , ps+k, . . . , pe} (22)
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In Equation (22), ps and pe represent the starting and ending points of AIS trajectories
corresponding to fishing activities, respectively. The start time and end time of fishing
activity can be easily obtained from track points, which provides the possibility to evaluate
the fishing activity intensity of fishing vessels. To determine the regional and temporal
distribution of fishing effort by fishing vessels, a spatial-temporal grid model is used.

The steps for fishing effort calculation have three steps, including division of spa-
tial grids, grid-based trajectory segmentation and fishing effort calculation, as shown in
Figure 11.
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Figure 11. Diagram of fishing effort calculation. Different colored tracks correspond to different
fishing activities.

1. Division of spatial grids: Divide the research sea area into a series of closely arranged
spatial grids, with a spatial size of 5000 m × 5000 m for each grid set in this article;

2. Grid based fishing trajectory segmentation: As shown in Figure 10, black dots rep-
resent the track points of the AIS fishing trajectory, and red dots represent the inter-
section point of the fishing trajectory and the spatial grid. By segmenting the fishing
trajectory through the intersection point between the spatial grid and the fishing
trajectory, a set of fishing trajectories for different fishing vessels within each spatial
grid is obtained, denoted as Sgrid.

Sgrid =
{

T1,grid, . . . , Tn,grid, . . . , TN,grid

}
(23)

In Equation (23) n represents different fishing vessels and Tm,grid represents the corre-
sponding fishing trajectory fragments within the spatial grid of fishing vessel n;

3. Calculate fishing effort: calculate the total number of fishing attempts or fishing
duration of all fishing trajectories in each spatial grid and evaluate the fishing intensity
in each spatial grid. The calculation method is as follows:

FEg = ∑N
i=1 ∑M

j=0 tij (24)

In Equation (24), FEg represents the fishing intensity of the grid, tij represents the jth
fishing duration of the fishing vessel i in the spatial grid, when tij = 1, the final result is the
statistics of the number of fishing. N represents the number of fishing vessels performing
fishing operations in the grid, and M represents the number of fishing trajectory fragments
of the fishing vessel i in the spatial grid.

4. Experiment and Result Analysis
4.1. Experimental Area and Data

Since squid fishing vessel data is more abundant among the provided fishing vessel
AIS data, all of the AIS data used in this study originated from Chinese squid fishing vessels
that fished offshore in the Argentine seas in 2020. AIS data, fishing vessel logbooks, and
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vessel file lists are the main data sources for this study. We mainly write the code in python
to implement the relevant algorithm.

A range of dynamic and static data is recorded in the AIS data of fishing vessels. MMSI,
position coordinates, reporting time, speed, and course are all included in the dynamic
information. MMSI, ship name, call sign, IMO, ship length (m), and ship breadth (m) are
among the static information. The information in the fishing logbook comprises the name
of the vessel, its type, its behavior status, the time the net or hook was set, its latitude and
longitude, and the fish that were caught. Project name, project type, ship name, MMSI, and
gear type are all included in vessel file lists. The suggested journey extraction approach is
validated by comparing the worldwide port index data with the experimental findings. It
is worth adding that the worldwide port index data cannot fully cover all port information
in the world, which is why we proposed to identify fishing ports based on AIS data. Table 1
displays the data utilized for the experiments in this paper and its format.

Table 1. Static and dynamic information of fishing vessel.

Data Type Dynamic Data Static Data Note

AIS
Latitude, longitude,

speed (knots), course
(degree)

mmsi, ship name, call
Sign, IMO, ship
length (m), ship

width (m)

The AIS data in this
paper is parsed to

include the reporting
time (utc)

information.

Fishing vessel
logbook

Operation status,
start time (utc),

latitude of start point,
longitude of start

point, fish catch (Kg),
reporting time (utc)

log_type, ship name Operation status:
fishing, nomal sailing.

Vessel file list Null
project name, project

type, ship name,
mmsi, gear type

Project type: high
seas project,

transoceanic project.

World Port Index Null

Index_no, Region_no,
Port name, Country,
Latitude, Longitude,

Harbor size, etc.

With a wealth of
geographical

information and
attributes of each port,

this table does not
enumerate too much.

The AIS data of the fishing vessels did not show any indication of fishing operations.
The fishing vessel log records the cast net time, denoted as utcf. However, it has been
discovered that the actual catch volume occasionally varies from the data in the logbook
and that many fishing operations are not documented consistently, which is one of the
main reasons why estimating the catch by the logbook can lead to an underestimation of
the fishing effort.

Therefore, this article extracts the fishing trajectories and normal sailing trajectories of
fishing vessels through visualization, combining fishing vessel logs and expert knowledge.
The visualization results are shown in Figure 11. The velocity of the fishing vessel is divided
into five intervals and displayed in five different colors in the image, thus intuitively
representing the velocity changes and spatial structure of the ship’s trajectory. It is easy to
see that a single voyage trajectory may involve one or more intensive fishing operations,
and such areas are referred to as fishing areas. There are short-distance normal sailing
routes and a range of fishing chances at the different fishing areas, which are connected by
long-distance normal sailing routes.

In summary, as shown in Figure 12, this article extracts trajectory samples in two steps.
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1. Visualize the voyage trajectories of fishing vessels and extract the main fishing areas.
2. Extracting fishing trajectory samples from fishing areas by combining the cast net

time recorded in fishing vessel logs with expert knowledge.

This article randomly selected 120 voyage trajectories from AIS data and extracted
1000 fishing trajectories samples and 1000 normal sailing trajectories samples of squid
fishing vessels, jointly composed of 2000 trajectory sample datasets.

As shown in Figure 13, the distribution probabilities of the duration and navigation
mileage of 2000 trajectory samples were first calculated. Even though the duration of
most fishing trajectory samples is longer than normal navigation trajectory samples, the
navigation distance of normal navigation trajectory samples is much higher than fishing
trajectory samples.
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At the same time, we calculated six global statistical characteristics for all trajectory
samples.

The global statistical characteristics of motion and morphology between fishing trajec-
tory samples and normal sailing trajectory samples are presented, respectively.
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1. As shown in Figure 14, the statistical results indicate that the fishing behavior of fishing
vessels does maintain lower speeds and generate more frequent turns compared to
normal sailing behavior. At the same time, it is explained that the Pv and Pα defined
from the perspective of motion can effectively distinguish between fishing trajectories
and normal sailing trajectories.
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2. As shown in Figure 15, the statistical results indicate that the four statistical charac-
teristics cT , sinuosityT , straightnessT , and e f f iciencyT defined from the perspective of
trajectory morphology can also distinguish fishing trajectories from normal sailing
trajectories from different aspects.

4.2. Method Evaluation

This article verifies the effectiveness of the proposed method for detecting the fishing
behavior trajectory of squid fishing vessels from three aspects.

Voyage extraction verification: this article uses the voyage extraction method pro-
posed in this article to identify the main fishing ports of squid fishing vessels in Argentine
waters from AIS data and compares it with the port information in the global port index
dataset to verify the effectiveness of this method.

The World Port Index, which is freely accessible from the National Geospatial-Intelligence
Agency’s website (https://msi.nga.mil/Publications/WPI, accessed on 1 December 2021),
is where the list of ports is compiled. The Global Port Index (Pub 150) is a table-based
resource that lists the locations, physical qualities, amenities, and services provided by the
world’s major ports and terminals (about 3700 entries).

Using data comparison, it can be determined that PUERTO MADRYN, LA PLATA,
PUERTO DESEADO, and MAR DEL PLATA are the principal fishing ports where the target
fishing vessels in this study dock. The name and locations information for the fishing ports,
which are scattered over Argentina’s east coast, and were identified from AIS data are
shown in Table 2.

https://msi.nga.mil/Publications/WPI
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Table 2. Coordinates of the center point of anchorages.

Port Name LON LAT

MAR DEL PLATA −57.516008 −38.022194
LA PLATA −57.890093 −34.822192

PUERTO DESEADO −65.898126 −47.765125
PUERTO MADRYN −65.027862 −42.738157

Not Matched −65.658333 −44.860000

As seen in Figure 16, the blue dot represents the ports recorded in the World Port
Index, and the red circle represents the stopping fishing ports identified from the AIS data.
By comparing and analyzing the results of fishing vessels with the ports recorded in the
World Port Index, four fishing ports identified from AIS data matched the corresponding
ports recorded in the Global Port Index. A fishing port identified from AIS data is located
at 44.86◦ W and 65.66◦ S, but it is not recorded in the World Port Index. It proved that the
voyage extraction method proposed in this article can still identify every fishing port in the
absence of port data.
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Points of Interest Verification: This paper verifies the correlation between the transition
from normal sailing to fishing operation status of squid fishing vessels and the occurrence
of speed decreases by combining the AIS trajectory with the fishing start moment recorded
in the fishing vessel logbook. The specific implementation methods are:

1. If the fishing logbook records the fishing start moment as utcf, set the time interval as
[utcf − tε, utcf + tε].

2. Extract the AIS trajectory of the fishing vessel in this time interval.
3. Judge whether the trajectory has experienced a change in speed interval (from a

high-speed portion to a low-speed section).
4. Calculate the proportion of the fishing log records that satisfy the condition to the

total number of fishing log reports, Ppoi.

Table 3 shows that although the starting point of the fishing trajectory of fishing vessels
cannot be accurately judged by speed drop, it still proves that there is a strong correlation
between the transition from normal sailing to fishing operation state and speed drop.

Table 3. The changes of Ppoi corresponding to different time intervals tε.

tε Ppoi

0.1 h 66.3%
0.2 h 81.8%
0.5 h 88.4%
1 h 97.5%

1.5 h 100%
2 h 100%

Fishing behavior detection model verification: the confusion matrix is typically pro-
duced for the binary model test, and fishing behavior is used as a positive example. The
following calculation formulas are used to evaluate the recognition model according to its
calculation accuracy, precision, recall rate, and specificity.

Accuracy =
TP + TN

TP + TN + FP + FN
(25)

Precision =
TP

TP + FP
(26)
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Recall =
TP

TP + FN
(27)

Speci f icity =
TN

TN + FP
(28)

In Equations (25)–(28), TP stands for the number of fishing behaviors that were
correctly identified, FP for those that were wrongly identified, TN for the number of normal
sailing behaviors that were correctly identified, and FN for those that were incorrectly
identified.

The F1-Score and Kappa coefficient were generated to assess the model’s resilience
and classification accuracy, respectively, in order to fully validate the model’s validity. The
following are the calculating Equations (29)–(31):

pe =
(TP + FN)× (TP + FP) + (FP + TN)× (FN + TN)

N2 (29)

Kappa =
A− pe
1− pe

(30)

F1 =
2TP

2TP + FN + TN
(31)

In order to compare the effectiveness of the fishing behavior trajectory detection model
proposed in this article with the point-by-point fishing behavior detection model, two
experiments were conducted separately.

1. In experiment 1, 75% of the data sets were used to test the logistic regression model,
and 25% of the data sets were randomly chosen to train the model’s parameters.

2. In experiment 2, a point-by-point detection model based on speed threshold was
adopted. The sample object was transformed into track points, so 2000 trajectory
datasets were further decomposed to obtain 194,356 fishing track point samples and
177,364 normal sailing track points. This article randomly selects 5000 fishing track
point samples and 5000 normal sailing track point samples as the test dataset for
Experiment 2 and set the speed threshold at 4 m/s.

Table 4 displays the confusion matrix of two experiments, sometimes called an error
matrix. Calculate the relevant evaluation indicators based on the experimental results in
Table 2. The relevant evaluation indicators for the two experiments are as follows:

(1) The accuracy of the test data set in Experiment 1 was 78.83%, the precision was 80.72%,
the recall rate was 77.78%, the specificity was 79.96%, the Kappa coefficient was 0.5766,
and the f1-Score was 0.7922.

(2) The accuracy of the test data set in Experiment 2 was 99.20%, the precision was 98.93%,
the recall rate was 99.46%, the specificity was 98.94%, the Kappa coefficient was 0.9840,
and the f1-Score was 0.9920.

Table 4. Confusion table of the testing dataset.

Experiments Real Type Label
Predict Classification Results

Fishing Normal Sailing

Experiment 1 Fishing 4036 964
Normal sailing 1153 3847

Experiment 2 Fishing 1484 16
Normal sailing 8 1492
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4.3. Results Analysis

This article takes the AIS data of 12 squid fishing vessels in Argentine waters as an
example to calculate and discuss the overall and individual fishing activities of squid
fishing vessels. (1) The spatial distribution and variation patterns of annual and quarterly
fishing activities, AND (2) A detailed evaluation of individual fishing activities.

The spatial distribution of the annual fishing activities of 12 fishing vessels is shown
in Figure 17. The 12 fishing vessels spent 48,503 h at sea in 2020, of which 16,596 h were
used for fishing operations, and 919 fishing activities were carried out throughout the year,
with an average length of about 17.5 h. This information was obtained through statistical
analysis of the experimental results. The 12 fishing boats covered 236,067 km during the
fishing trip. The fishing operation covered 46,836 km. Figure 11 displays the results of
the calculation in graphic form. In 2020, we will be able to know where the most popular
fishing spots are located.
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The spatial distribution of fishing activities in the three quarters of January–March,
April–June, and July–September can be determined based on the seasonal division of
the yearly fishing behavior trajectory. As illustrated in Figure 18, it is possible to further
investigate how fishing activity’s geographical distribution changes with the seasons. It
was discovered that during January and March, Chinese squid fishing vessels operating
in the Argentinean Sea were mostly positioned in two zones of active fishing, each with a
space range of 46.2◦ to 44.5◦ S and 61.5◦ to 63.8◦ W. A significant trend in worldwide marine
fisheries governance is the promotion of sustainable fisheries development. Achieving
sustainable fisheries, illegal fishing regulations, compliance and enforcement of monitoring,
control, and surveillance measures, fishing overcapacity, extensive use of pelagic drift nets,
sub-regional and regional cooperation, bycatch, and discards, among other things, are the
top seven issues [29]. Marine fisheries governance now primarily focuses on illegal fishing
practices among these [30].
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The monitoring of fishing vessel activities at sea cannot be narrowed down to specific
fishing vessels because of the limited traceability of the overall evaluation approach to the
footprint of those activities in prior studies. The detection method based on track segments
can precisely meet this demand because, in the modern world, we are not only concerned
with the overall spatial and temporal distribution of fishing vessel activities but also with
the changes in fishing activities of each fishing vessel throughout the year. Given that the
detection outcome based on the track segment is a full fishing track segment, it is able
to further extrapolate the spatial and temporal information of each fishing operation and
perform a quantitative analysis of the annual fishing frequency and the annual mileage and
time of fishing activities of each fishing vessel.

Table 5 displays the various indicators for various vessels after statistical calculation,
including six statistical indicators, such as the number of sea trips, total distance traveled,
total distance traveled for fishing, number of fishing trips, total sailing time, and total
distance traveled for fishing. At the same time, more information can be gleaned from the
chart’s data by further mining it. One indicator that may be used to gauge the effectiveness
and intensity of fishing trips is the ratio between the indicators for “number of fishing trips”
and “number of sea trips,” which shows the typical number of fishing trips completed by
fishing vessels. The average total fishing time and single fishing tie time of fishing vessels
can be determined using the number of sea trips, total fishing time, and total sailing time
indicators. These metrics, which to some extent reflect the work intensity of fishing vessel
crews at sea and provide a data foundation for how to protect the legal rights of crews,
can be used to calculate the average total fishing time and single fishing tie time of fishing
vessels.
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Table 5. Single-vessel fishing information statistics.

MMSI
Number

of Sea
Trips

Total
Mileage
Sailed

Total
Fishing
Mileage

Number
of Fishing

Trips

Total
Sailing
Time

Total
Fishing

Time

701 ** 3000 10 16,994 3990 51 3588 1544
701 ** 6788 18 20,296 3599 49 4294 1248
701 ** 6615 7 16,688 5219 60 3761 1851
701 ** 6609 7 13,928 1279 57 3246 450
701 ** 6614 15 16,905 5757 110 4197 2141
701 ** 6000 12 18,759 5366 140 3814 1887
701 ** 4000 8 15,908 4179 41 3036 1347
701 ** 6568 10 15,928 4591 98 3817 1390
701 ** 0674 6 10,150 3564 176 2405 996
701 ** 5000 11 17,373 5231 65 3714 1954
701 ** 6725 14 18,004 4057 72 3842 1783
412 ** 0688 1 55,127 0 0 8783 0

MMSI is hidden with the * symbol.

Table 6 shows how the patterns of fishing frequency change with the months for
different fishing vessels. The table makes it clear that fishing activities by fishing vessels
only took place from January to September and that the overall trend remained stable,
displaying a general decline month by month. After August, we anticipate a four-month
fishing moratorium for all local squid fishing boats. The majority of fishing vessels’ busiest
months for fishing are February and May. The daily change in the number of fishing vessels
can be further adjusted, if necessary, from the monthly variation. By doing so, we can assess
the fishing activities of fishing vessels throughout the course of the entire year and examine
variations in those activities over time, which forms the basis for ongoing monitoring and
oversight of fisheries.

Table 6. Quantitative analysis of the monthly fishing frequency of different squid fishing vessels.

MMSI January February March April May June July August September October November December

701 ** 3000 10 8 10 6 6 7 4 0 0 0 0 0
701 ** 6788 7 1 1 8 13 8 10 1 0 0 0 0
701 ** 6615 9 7 8 9 18 6 3 0 0 0 0 0
701 ** 6609 9 2 0 46 0 0 0 0 0 0 0 0
701 ** 6614 26 36 6 6 11 7 17 1 0 0 0 0
701 ** 6000 14 18 18 22 45 16 7 0 0 0 0 0
701 ** 4000 9 10 8 4 9 1 0 0 0 0 0 0
701 ** 6568 7 6 4 20 41 11 2 0 0 0 0 0
701 ** 0674 39 52 60 0 11 0 0 0 0 0 0 0
701 ** 5000 13 7 9 6 16 6 6 0 0 0 0 0
701 ** 6725 4 6 5 15 13 9 13 7 0 0 0 0
412 ** 0688 0 0 0 0 0 0 0 0 0 0 0 0

MMSI is hidden with the * symbol.

The model and method suggested in this study can accurately determine the ports
from which fishing vessels depart and return for each fishing trip, and the geographic scope
and timing of each fishing operation. Thus, the relevant departments can use the precise
data findings to determine whether the fishing vessels have engaged in illegal behavior, we
can further refine the data supervision of each fishing vessel for each fishing trip.

The statistics pertaining to each of the single voyage sub-trajectories undertaken by
one of the fishing vessels used as an example in this paper are displayed in the Table 7.
The information in the table tells us that MAR DEL PLATA is the fishing port where the
vessel returns after its fishing expedition; however, there are other ports that can be used as
departure points. The Global Port Index list of ports does not include the ship’s departure
port for its third fishing expedition in 2020. Intriguingly, we discovered that on 16 January
2020, at around 5:00 a.m., all the fishing vessels in the research left this fishing port.
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Table 7. Voyage trajectories’ information statistics.

Voyages Departing
Port

Arriving
Port

Departing
Time

Arriving
Time

Number of
Fishing

Trips

Track1 LA
PLATA

MAR DEL
PLATA

2020-01-08
19:37:21

2020-01-09
16:21:32 0

Track2 MAR DEL
PLATA

MAR DEL
PLATA

2020-01-09
18:00:51

2020-01-14
21:30:36 1

Track3 Not Matched MAR DEL
PLATA

2020-01-16
05:09:23

2020-02-10
03:22:56 11

Track4 MAR DEL
PLATA

MAR DEL
PLATA

2020-02-13
12:46:26

2020-03-26
04:28:17 14

Track5 PUERTO
DESEADO

MAR DEL
PLATA

2020-03-28
23:59:51

2020-04-16
01:38:58 6

Track6 MAR DEL
PLATA

MAR DEL
PLATA

2020-04-21
01:14:56

2020-04-29
02:29:29 2

Track7 MAR DEL
PLATA

MAR DEL
PLATA

2020-04-30
10:04:37

2020-05-19
22:45:36 6

Track8 MAR DEL
PLATA

MAR DEL
PLATA

2020-06-05
05:33:07

2020-07-04
16:46:26 10

Track9 MAR DEL
PLATA

MAR DEL
PLATA

2020-07-04
18:11:47

2020-07-05
14:56:48 1

Track10 MAR DEL
PLATA

MAR DEL
PLATA

2020-07-30
22:20:01

2020-07-31
21:02:03 0

Using the fishing detection method for squid proposed in this paper, we can further
obtain the space-time information of each fishing activity. Taking one of the single voyage
sub-trajectories (Track 8) of fishing vessels as an example, the information of each fishing
trajectories is shown in the Table 8:

Table 8. Fishing trajectories’ information statistics.

Voyages Fishing
Trajectories Lon_Start Lat_Start Start Time Stop Time

Track 8 Fishing1 −64.235245 −44.869124 2020-06-11
23:37:05

2020-06-12
06:02:54

Track 8 Fishing2 −63.612587 −44.987512 2020-06-14
21:08:31

2020-06-15
05:40:16

Track 8 Fishing3 −63.605215 −45.003654 2020-06-15
22:09:35

2020-06-16
07:12:07

Track 8 Fishing4 −62.358074 −44.654007 2020-06-18
23:24:58

2020-06-19
06:45:51

Track 8 Fishing5 −62.312457 −45.215800 2020-06-21
23:55:04

2020-06-22
09:00:54

Track 8 Fishing6 −62.680040 −44.760542 2020-06-24
00:23:12

2020-06-24
07:14:06

Track 8 Fishing7 −62.002415 −45.752023 2020-06-24
22:42:27

2020-06-25
04:59:42

Track 8 Fishing8 −62.841567 −45.741200 2020-06-25
23:37:11

2020-06-26
08:04:31

Track 8 Fishing9 −63.001400 −45.023350 2020-06-27
20:57:08

2020-06-28
08:10:44

Track 8 Fishing10 −64.254100 −45.214740 2020-06-29
22:45:34

2020-06-30
06:56:21

In this single voyage sub-trajectory, the fishing activities are mainly concentrated
from 11 June to 29 June, and the spatiotemporal information of each fishing activity is
completely recorded. In addition to completing the whole activity evaluation of fishing



J. Mar. Sci. Eng. 2023, 11, 1245 24 of 26

vessels by AIS, as demonstrated above, the model and approach suggested in this work
may also enhance the traceability of fishing vessel operations and enable high-precision
fishing vessel monitoring.

The evaluation at various scales shows that the strategy put forth in this study can
be used in a wide range of scenarios when dealing with difficult fisheries management
requirements. It provides a powerful supporting force for monitoring, controlling, and
surveillance of fishing vessels because it not only assesses the spatial distribution of fishing
activities of fishing vessels from a macroscopic perspective but also captures the precise
spatiotemporal information of each fishing trip of fishing vessels.

5. Conclusions

In this study, numerous global statistical aspects of the trajectory segment were estab-
lished using the AIS data and fishing logs of Chinese squid fishing vessels in the Argentine
Sea area as research objects. A methodology for detecting the fishing behavior of squid
fishing vessels was developed based on the logistic regression model. Global statistical
features from motion and form views have been added, and the sliding window has been
optimized. As a result, its accuracy has increased to 99.20%, and its overall evaluation index
is favorable. Comparing the trajectory segment to the detection model with track points as
the minimal expression unit, the trajectory segment may more accurately and extensively
portray the fishing behavior of fishing vessels. By focusing on different studies’ research
topics, we may comprehend the annual average macroscopic intensity of squid fishing
activity, the characteristics of its spatial distribution, and the phenomena of its spatial
migration with changes in fishing grounds every three months. We can simultaneously
track detailed information about every fishing vessel, every journey trajectory, and even
every fishing action.

In the analysis part, this paper describes the analysis of the results of squid fishing tra-
jectories in detail. Unlike the point-by-point fishing detection model, the method proposed
in this paper can extract the start time, end time, and complete fishing trajectory of each
independent fishing behavior. This method improves the transparency and traceability
of the fishing behavior of fishing vessels and provides strong data support for fishing
regulation. In future research, other data sources can be introduced, such as geographical
boundary information of marine environmental protection areas, management rules of
closed fishing seasons, etc., to complete the detection and attack of illegal fishing.

The goal of the study and its scope are illustrated by squid fishing boats operating
in the Argentinean maritime region, but they can be applied to other geographic areas
and even to additional fishing boats engaged in different types of fishing operations. The
long-term development of the world’s pelagic fisheries will receive more thorough technical
support if different types of fishing vessels’ fishing activity can be detected.

Author Contributions: Conceptualization, F.Z. and L.H.; Methodology, B.Y.; Validation, R.S. and
Y.W.; Data Curation, X.Y.; Writing—Original Draft Preparation, B.Y.; Writing—Review & Editing,
P.v.G. and L.H.; Funding Acquisition, L.H. All authors have read and agreed to the published version
of the manuscript.

Funding: The research was supported by the Hainan Provincial Joint Project of Sanya Yazhou
Bay Science and Technology City, Grant No: 2021JJLH0012, the Zhejiang Provincial Science and
Technology Program, Grant No: 2021C01010, and by the National Science Foundation of China
(NSFC) through Grant No. 52072287.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is unavailable due to privacy and related policies.

Conflicts of Interest: The authors declare no conflict of interest.



J. Mar. Sci. Eng. 2023, 11, 1245 25 of 26

References
1. Lira, A.S.; Lucena-Frédou, F.; Lacerda, C.H.F.; Eduardo, L.N.; Ferreira, V.; Frédou, T.; Ménard, F.; Angelini, R.; Le Loc'h, F. Effect

of fishing effort on the trophic functioning of tropical estuaries in Brazil. Estuar. Coast. Shelf Sci. 2022, 277, 108040. [CrossRef]
2. Schartup, A.T.; Thackray, C.P.; Qureshi, A.; Dassuncao, C.; Gillespie, K.; Hanke, A.; Sunderland, E.M. Climate change and

overfishing increase neurotoxicant in marine predators. Nature 2019, 572, 648–650. [CrossRef] [PubMed]
3. Agnew, D.J.; Pearce, J.; Pramod, G.; Peatman, T.; Watson, R.; Beddington, J.R.; Pitcher, T.J. Estimating the worldwide extent of

illegal fishing. PLoS ONE 2009, 4, e4570. [CrossRef] [PubMed]
4. Syversen, T.; Lilleng, G.; Vollstad, J.; Hanssen, B.J.; Sonvisen, S.A. Oceanic plastic pollution caused by Danish seine fishing in

Norway. Mar. Pollut. Bull. 2022, 179, 113711. [CrossRef]
5. Vince, J.; Hardesty, B.D.; Wilcox, C. Progress and challenges in eliminating illegal fishing. Fish. Res. 2021, 22, 518–531. [CrossRef]
6. Fabinyi, M.J.G. Maritime disputes and seafood regimes: A broader perspective on fishing and the Philippines–China relationship.

Globalizations 2020, 17, 146–160. [CrossRef]
7. Shih, Y.-C.; Chang, Y.-C.; Gullett, W.; Chiau, W.-Y. Challenges and opportunities for fishery rights negotiations in disputed

waters–A Taiwanese perspective regarding a fishing boat case incident. Mar. Policy 2020, 121, 103755. [CrossRef]
8. Mangi, S.C.; Kenny, A.; Readdy, L.; Posen, P.; Ribeiro-Santos, A.; Neat, F.C.; Burns, F. The economic implications of changing

regulations for deep sea fishing under the European Common Fisheries Policy: UK case study. Sci. Total Environ. 2016, 562,
260–269. [CrossRef] [PubMed]

9. Wu, H.; Li, Q.; Wang, C.; Wu, Q.; Peng, C.; Jefferson, T.A.; Long, Z.; Luo, F.; Xu, Y.; Huang, S.-L. Bycatch mitigation requires
livelihood solutions, not just fishing bans: A case study of the trammel-net fishery in the northern Beibu Gulf, China. Mar. Policy
2022, 139, 105018. [CrossRef]

10. Ji, J.; Li, Y. The development of China's fishery informatization and its impact on fishery economic efficiency. Mar. Policy 2021,
133, 104711. [CrossRef]

11. Zhou, S.; Smith, A.D.; Knudsen, E.E. Ending overfishing while catching more fish. Fish Fish. 2015, 16, 716–722. [CrossRef]
12. Solarin, S.A.; Gil-Alana, L.A.; Lafuente, C. Persistence and sustainability of fishing grounds footprint: Evidence from 89 countries.

Sci. Total Environ. 2021, 751, 141594. [CrossRef]
13. Feng, B.; Li, Z.; Lu, H.; Yan, Y.; Hou, G. Estimating the total allowable catch and management of Threadfin porgy (Evynnis

cardinalis) fisheries in the northern South China Sea based on sampling surveys conducted at fishing ports. Aquaculture 2022.
Advance online publication. [CrossRef]

14. Venerus, L.A.; Parma, A.M. An access-point survey approach to estimate recreational boat-fishing effort for stays of variable
length. Fish. Res. 2022, 254, 106429. [CrossRef]

15. Constantino, M.M.; Cubas, A.L.V.; Silvy, G.; Magogada, F.; Moecke, E.H.S. Impacts of illegal fishing in the inland waters of the
State of Santa Catarina–Brazil. Mar. Pollut. Bull. 2022, 180, 113746. [CrossRef]

16. Quimbayo, J.P.; Silva, F.C.; Barreto, C.R.; Pavone, C.B.; Lefcheck, J.S.; Leite, K.; Figueiroa, A.C.; Correia, E.C.; Flores, A.A.V.
The COVID-19 pandemic has altered illegal fishing activities inside and outside a marine protected area. Curr. Biol. 2022, 32,
R765–R766. [CrossRef] [PubMed]

17. Ribeiro, C.V.; Paes, A.; de Oliveira, D. AIS-based maritime anomaly traffic detection: A review. Expert Syst. Appl. 2023. Advance
online publication. [CrossRef]

18. Yuan, Z.; Yang, D.; Fan, W.; Zhang, M. On fishing grounds distribution of tuna longline based on satellite automatic identification
system in the Western and Central Pacific. Mar. Fish. 2018, 40, 649–659.

19. Yan, Z.; He, R.; Ruan, X.; Yang, H. Footprints of fishing vessels in Chinese waters based on automatic identification system data. J.
Sea Res. 2022, 187, 102255. [CrossRef]

20. Ferrà, C.; Tassetti, A.N.; Grati, F.; Pellini, G.; Polidori, P.; Scarcella, G.; Fabi, G. Mapping change in bottom trawling activity in the
Mediterranean Sea through AIS data. Mar. Policy 2018, 94, 275–281. [CrossRef]

21. Natale, F.; Gibin, M.; Alessandrini, A.; Vespe, M.; Paulrud, A. Mapping fishing effort through AIS data. PLoS ONE 2015, 10,
e0130746. [CrossRef]

22. Kroodsma, D.A.; Mayorga, J.; Hochberg, T.; Miller, N.A.; Boerder, K.; Ferretti, F.; Wilson, A.; Bergman, B.; White, T.D.; Block, B.A.
Tracking the global footprint of fisheries. Science 2018, 359, 904–908. [CrossRef]

23. Masroeri, A.; Aisjah, A.S.; Jamali, M.M. IUU fishing and transhipment identification with the miss of AIS data using Neural
Networks. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Sanya, China, 12–14 November 2021;
p. 012054.

24. Zhang, C.; Chen, Y.; Xu, B.; Xue, Y.; Ren, Y. The dynamics of the fishing fleet in China Seas: A glimpse through AIS monitoring.
Sci. Total Environ. 2022, 819, 153150. [CrossRef] [PubMed]

25. Yang, S.-l.; Zhang, S.-m.; Zhang, H.; Fei, Y.-j.; Jin, W.-g.; Wang, G.-l.; Fan, W. Pelagic fishing vessel classification using Bidirectional
long short-term memory networks. Mar. Sci. 2022, 46, 25–35. (In Chinese) [CrossRef]

26. Zhang, L.; Lu, W.; Wen, J.; Cui, J. A detection and restoration approach for vessel trajectory anomalies based on AIS. J. Northwestern
Polytech. Univ. 2021, 39, 119–125. (In Chinese) [CrossRef]

27. Liu, C.; Liu, J.; Zhou, X.; Zhao, Z.; Wan, C.; Liu, Z. AIS data-driven approach to estimate navigable capacity of busy waterways
focusing on ships entering and leaving port. Ocean Eng. 2020, 218, 108215. [CrossRef]

https://doi.org/10.1016/j.ecss.2022.108040
https://doi.org/10.1038/s41586-019-1468-9
https://www.ncbi.nlm.nih.gov/pubmed/31391584
https://doi.org/10.1371/journal.pone.0004570
https://www.ncbi.nlm.nih.gov/pubmed/19240812
https://doi.org/10.1016/j.marpolbul.2022.113711
https://doi.org/10.1111/faf.12532
https://doi.org/10.1080/14747731.2019.1644707
https://doi.org/10.1016/j.marpol.2019.103755
https://doi.org/10.1016/j.scitotenv.2016.03.218
https://www.ncbi.nlm.nih.gov/pubmed/27100006
https://doi.org/10.1016/j.marpol.2022.105018
https://doi.org/10.1016/j.marpol.2021.104711
https://doi.org/10.1111/faf.12077
https://doi.org/10.1016/j.scitotenv.2020.141594
https://doi.org/10.1016/j.aaf.2021.12.003
https://doi.org/10.1016/j.fishres.2022.106429
https://doi.org/10.1016/j.marpolbul.2022.113746
https://doi.org/10.1016/j.cub.2022.06.030
https://www.ncbi.nlm.nih.gov/pubmed/35882192
https://doi.org/10.1016/j.eswa.2023.120561
https://doi.org/10.1016/j.seares.2022.102255
https://doi.org/10.1016/j.marpol.2017.12.013
https://doi.org/10.1371/journal.pone.0130746
https://doi.org/10.1126/science.aao5646
https://doi.org/10.1016/j.scitotenv.2022.153150
https://www.ncbi.nlm.nih.gov/pubmed/35041965
https://doi.org/10.11759/hykx20210708001
https://doi.org/10.1051/jnwpu/20213910119
https://doi.org/10.1016/j.oceaneng.2020.108215


J. Mar. Sci. Eng. 2023, 11, 1245 26 of 26

28. Vermard, Y.; Rivot, E.; Mahévas, S.; Marchal, P.; Gascuel, D. Identifying fishing trip behaviour and estimating fishing effort from
VMS data using Bayesian Hidden Markov Models. Ecol. Model. 2010, 221, 1757–1769. [CrossRef]

29. Fajardo, T. To criminalise or not to criminalise IUU fishing: The EU’s choice. Mar. Policy 2022, 144, 105212. [CrossRef]
30. Zhu, X.; Tang, J. The interplay between soft law and hard law and its implications for global marine fisheries governance: A case

study of IUU fishing. Aquac. Fish. 2023, Advance online publication. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ecolmodel.2010.04.005
https://doi.org/10.1016/j.marpol.2022.105212
https://doi.org/10.1016/j.aaf.2023.04.004

	Introduction 
	Multiscale Trajectory Characteristics of Squid Fishing Vessels 
	Local Dynamic Parameters of Squid Fishing Vessel 
	Global Statistical Characteristics of Squid Fishing Vessel 

	Detection Method of Fishing Behavior Based on Trajectory Characteristics 
	Voyage Trajectory Extraction 
	Suspicious Fishing Trajectory Extraction Based on Variable Length Sliding Window 
	Fishing Trajectory Determination Model Based on Logistic Regression 
	Fishing Effort Estimation Method 

	Experiment and Result Analysis 
	Experimental Area and Data 
	Method Evaluation 
	Results Analysis 

	Conclusions 
	References

