
Citation: Jiang, T.; Yan, Y.; Yu, S.-H.

Adaptive Sliding Mode Control for

Unmanned Surface Vehicles with

Predefined-Time Tracking

Performances. J. Mar. Sci. Eng. 2023,

11, 1244. https://doi.org/10.3390/

jmse11061244

Academic Editor: Alessandro Ridolfi

Received: 18 May 2023

Revised: 11 June 2023

Accepted: 15 June 2023

Published: 17 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Adaptive Sliding Mode Control for Unmanned Surface Vehicles
with Predefined-Time Tracking Performances
Tao Jiang, Yan Yan * and Shuang-He Yu

College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China;
sevenjtao@163.com (T.J.); shuanghe@dlmu.edu.cn (S.-H.Y.)
* Correspondence: y.yan@dlmu.edu.cn

Abstract: This paper is concerned with the trajectory tracking control of unmanned surface vehicles
(USVs) subject to input quantization, actuator faults and dead zones. In scenarios with dense marine
facilities, there are constraints on the tracking performance and convergence time of USVs. First,
the designed control signal is quantized by a hysteresis quantizer to reduce the transmission rate.
Second, to guarantee the transient and steady-state tracking performance of the USV, a prescribed
performance control technology with a predefined settling time is employed. Third, a predefined-time
adaptive sliding mode control (SMC) method is designed by integrating the auxiliary function and
the barrier function. Moreover, the lumped uncertainties caused by quantization, actuator faults, and
dead zones are simultaneously processed using control gain based on barrier function. The proposed
control method guarantees that the tracking error and sliding variable converge to the corresponding
predefined bounds within a predefined time. The predefined bounds are independent of the upper
bound on the lumped uncertainty. The stability of the controlled system is proven via the Lyapunov
theorem. Finally, the effectiveness of the designed controller is verified by numerical simulations.

Keywords: unmanned surface vehicle; predefined-time stability; adaptive sliding mode control;
input quantization; actuator fault; dead zone

1. Introduction

Due to the great practical value of unmanned surface vehicles (USVs) in scientific re-
search, marine resource exploration and the military, the problem of motion control of USVs
has received extensive attention. Trajectory tracking control, as an important component of
USV motion control, plays a vital role in vehicle navigation [1,2]. However, due to the in-
herent complex dynamics of USVs, such as modeling uncertainties, the design of trajectory
tracking controllers for USVs has always been a major challenge for researchers [3].

In order to overcome the above challenges, many robust control methods have been
proposed, such as adaptive control [4], model predictive control [5], backstepping control [6]
and sliding mode control (SMC) [7]. Among these methods, SMC is widely used due to
its strong robustness to lumped disturbances [8]. Generally speaking, when designing a
sliding mode controller, it is necessary to select a design parameter that is sufficiently larger
than the upper bound of the lumped disturbance to achieve the stability of the controlled
system. However, prior knowledge of the upper bound of the lumped disturbance in
practical systems is often not available. Therefore, there exists a problem of control gain
overestimation in SMC [9]. Undoubtedly, a large control gain will aggravate the chattering
phenomenon in SMC. Recall that adaptive techniques enable the accurate estimation of
unknown parameters without a priori knowledge of their boundedness. In order to reduce
chattering, adaptive technology was introduced to participate in the design of sliding
mode controllers. In view of this, an adaptive SMC algorithm with both robustness and
adaptability has been developed, which can adapt to lumped disturbances without knowing
its upper bound. In [10], a barrier-function-based adaptive SMC method was designed to
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realize the trajectory tracking of USVs. In [11], a SMC algorithm combined with adaptive
technology without prior knowledge of the upper bound of the lumped disturbance was
proposed for USVs. In [12], a robust SMC strategy with gain adaptation was proposed to
solve the trajectory tracking problem of USVs. It should be pointed out that in the design
of the above SMC scheme, the upper bound of the lumped uncertainty is assumed to be
an unknown constant in the stability analysis. In fact, the upper bound on the lumped
uncertainty varies with the state of the controlled system. Thus, the constant boundedness
assumption is equivalent to presupposing that the state is bounded. To eliminate this
conservative assumption, in [13], a state-dependent upper bound structure was proposed
for the lumped uncertainty and an adaptive sliding mode tracking control algorithm was
designed for USVs. Furthermore, in order to ensure that the sliding variable converges to
a predefined boundary, a barrier function was introduced into the control design. In [14],
a barrier-function-based adaptive sliding mode tracking control method was designed for
lumped uncertainties with state-dependent upper bound structures. Based on the above,
the barrier-function-based adaptive SMC method is introduced to deal with the lumped
uncertainty in state-dependent upper bound structures in this paper.

In ocean engineering, there exist strong constraints on the convergence time of state
motions. Thus, the research on the settling time of the controlled system has become a
frontier hotspot. At present, asymptotic stability [15], finite time stability [16] and fixed
time stability [17] have been extensively studied. Finite time stability gives an expression
for the upper bound of the settling time. In particular, this upper bound requires the
initial conditions of the controlled system a priori. However, the initial conditions of the
controlled system may not be available in practice [18]. To get rid of this requirement,
the concept of fixed time control was developed. It is worth noting that there exists an issue
of conservative estimation of the upper bound of the settling time in fixed time control. That
is, one cannot directly predefine the upper bound of the settling time by designing control
parameters. For certain time-critical control tasks, such as trajectory tracking control, it is
necessary to constrain the settling time of the controlled system.

Recently, a so-called predefined time stability theory has received attention. In short,
the upper bound of the settling time of the controlled system can be predefined by adjusting
a certain control parameter [19]. As far as the authors know, there are two design methods
for the realization of predefined-time stability. One of them is to realize the predefined-time
stability of the controlled system by constructing a special Lyapunov function. Based on
this idea, a series of predefined-time sliding mode manifolds were developed [20]. The
other is to establish a predefined-time sliding mode manifold based on the terminal time
regulator [21]. Then, a predefined-time sliding mode controller can be designed by con-
structing auxiliary functions. A new barrier-function-based predefined-time adaptive SMC
method was proposed in [22]. The virtue of this method is that it can ensure that the system
trajectory converges to a predefined boundary within a predefined time and the boundary
is not affected by disturbances. In [23], by constructing a time-varying non-singular termi-
nal sliding mode manifold, the trajectory tracking of USVs was realized within a predefined
time. In addition, to realize the constraints on the transient and steady-state tracking per-
formance of the controlled system while taking into account the predefined-time stability,
a predefined-time prescribed performance control technology was developed [24]. In [25],
a novel prescribed performance function with a user-defined settling time and control preci-
sion properties was presented, which ensures the predefined-time tracking performance of
USVs. In [26], an extended state observer based on a predefined-time performance function
was constructed to observe the lumped disturbance and velocity signals of USVs within a
predefined time. Inspired by [24–26], the predefined-time prescribed performance control
is used to simultaneously achieve the tracking performance and convergence time con-
straints of USVs in this paper. Furthermore, by integrating the barrier function given in [14]
and the auxiliary function proposed in [21] into the control design, the predefined-time
predefined-bounded control of USVs is achieved for the first time.
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Due to factors such as external disturbances and mechanical wear, USVs may suffer
from actuator faults, resulting in a degraded control performance and even task failure [27].
Fault-tolerant control (FTC), as an effective method to deal with actuator faults, has been
vigorously developed. To realize the finite time fault-tolerant trajectory tracking control
of USVs, an adaptive SMC method was designed in [28]. In [29], a predefined-time SMC
strategy was proposed to solve the trajectory tracking problem of autonomous underwater
vehicles with actuator faults. In [30], the FTC problem of USVs was solved by using the
integral sliding mode method. In addition, the actuator dead zone is a classical actuator
nonlinearity and always occurs in real actuators. It will seriously affect the performance of
the control system and cause the weakening of the capability of the USV to perform complex
maritime tasks [31]. Therefore, it is necessary to consider the effect of the actuator dead
zone in the design of the controller for USVs. In [32], the tracking control problem of an
autonomous underwater vehicle subject to dead zones was solved by designing an adaptive
sliding mode controller. In [33], a fixed-time control method was proposed to guarantee
the global exponential stability of underactuated surface vessels with actuator dead zones.
In [34], the semi-global uniformly ultimately bounded stability of a marine ship system
was achieved while considering both actuator faults and dead zones. However, the above
results do not take signal quantization into account; thus, further research is needed.

With the development of network communication technology, the networked con-
trol problem of USVs has increasingly become an international research hotspot [35,36].
The components in different spatial positions in the network control system can exchange
information through wireless channels, so as to efficiently achieve the control objective.
However, the transmission bandwidth of the communication network channel is limited,
which greatly affects the control effect. Generally, a quantizer is adopted to reduce the
transmission rate of signals in the control system, so as to relax the requirement on the
transmission bandwidth [37]. However, the quantization error introduced by the quan-
tizer brings great challenges to controller design and stability analysis. In [38], a new
sensitivity-tunable dynamic uniform quantizer was modeled to reduce the transmission
rate. Furthermore, a sliding mode FTC scheme was designed for USVs based on the con-
structed unified fault model. For controlled systems with input quantization and actuator
faults, the predefined-time tracking performance was considered in [39]. In [40], an adap-
tive quantized SMC law was designed for a controlled system with external disturbances
and actuator dead zones. In [41], a predefined-time adaptive quantized control strategy
was proposed for nonlinear systems, which could improve the robustness of closed-loop
systems. Note that the above results do not consider the sliding mode tracking control
problem under the mixed effects of quantization, actuator faults and dead zones.

In this paper, we focus on designing an adaptive sliding mode tracking controller for
USVs with predefined-time performance. For the USV, the system uncertainties, external
disturbances, actuator faults and dead zones are simultaneously considered. Meanwhile,
in order to reduce the transmission rate, a hysteresis quantizer is used to quantize the
control signal. In particular, a state-dependent upper bound is constructed for lumped
uncertainties including system uncertainties, external disturbances, input quantization,
actuator faults and dead zones. Predefined-time prescribed performance control technology
is applied to make the tracking error fall within a predefined boundary within a predefined
time and to guarantee the transient and steady-state tracking performance of the USV.
In the control design, adaptive control gains are established based on barrier functions.
Furthermore, by introducing an auxiliary function, a predefined-time adaptive SMC scheme
is proposed. Under the proposed control scheme, the sliding variable can converge to a
user-defined bound within a predefined time. More importantly, the predefined bounds for
both the tracking error and the sliding variable are independent of the upper bound of the
lumped uncertainty. Finally, numerical simulations are carried out to show the effectiveness
of the designed control scheme.
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This paper is organized as follows. Section 2 presents the problem formulation and
preliminaries. Section 3 gives the main results, including the controller design and stability
analyses. Section 4 exhibits the simulation results. Section 5 states the conclusion.

Notation: The set of real numbers and the real m× n matrices are represented as R
and Rm×n, respectively. Let ·mn represent the nth element of the vector ·m. ‖ · ‖ is the
Euclidean norm.

2. Problem Formulation and Preliminaries
2.1. Problem Formulation

The dynamics model of the USV is given by [1]{
η̇ = R(ψ)ν
Mν̇ = −C(ν)ν− D(ν)ν + τ + d

(1)

where η = [x y ψ]T is the position (x,y) and heading (ψ) of the USV in an earth-fixed
reference frame, ν = [u v r]T are the surge, sway and yaw velocities of the USV in the
body-fixed reference frame, d = [d1 d2 d3]

T is the disturbance from the marine environment
and τ = [τ1 τ2 τ3]

T is the actual control input.
R(ψ) ∈ R3×3 denotes the rotation matrix between the earth-fixed reference frame and

the body-fixed reference frame. Its expression is

R(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

. (2)

Furthermore, it possesses the properties of RT(ψ)R(ψ) = I, ‖R(ψ)‖ = 1 and
Ṙ(ψ) = R(ψ)S(r) with

S(r) =

 0 −r 0
r 0 0
0 0 0

. (3)

The positive definite inertia matrix M ∈ R3×3 is given by

M =

 m11 0 0
0 m22 m23
0 m32 m33

 (4)

with m11 = m− Xu̇, m22 = m− Yv̇, m23 = mxg − Yṙ, m32 = mxg − Nv̇ and m33 = Iz − Nṙ.
The Coriolis and centripetal matrix C(ν) ∈ R3×3 is given by

C(ν) =

 0 0 −m22v−m23r
0 0 m11u

m22v + m23r −m11u 0

. (5)

The matrix D(ν) ∈ R3×3 denotes the damping matrix, given as

D(ν) =

 d11(ν) 0 0
0 d22(ν) d23(ν)
0 d32(ν) d33(ν)

. (6)

where d11(ν) = −Xu − X|u|u|u|, d22 = −Yv − Y|v|v|v| − Y|r|v|r|, d23 = −Yr − Y|v|r|v| −
Y|r|r|r|, d32 = −Nv − N|v|v|v| − N|r|v|r| and d33 = −Nr − N|v|r|v| − N|r|r|r|. In particular,
in (4)–(6), m denotes the mass of the USV, Iz denotes the moment of inertia about the yaw
rotation, xg is the distance of the center of gravity of the vehicle along the body-fixed
reference frame and symbols X(·), Y(·) and N(·) refer to the hydrodynamic derivatives.
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Assume that the USV has model uncertainties, i.e.,{
C(ν) = C0(ν) + ∆C
D(ν) = D0(ν) + ∆D

(7)

where C0(ν) and D0(ν) are the known parts and ∆C and ∆D are the unknown parts.
In actual navigation, the USV is in a complex time-varying ocean environment, and un-

predictable actuator faults may occur due to various reasons. The expression for actuator
faults is given as

τ(t) = κτf (t) + τb(t), (8)

where τf (t) ∈ R3 is the output signal of the controller, τb(t) ∈ R3 is the unknown
bounded bias fault and κ = diag{κ1, κ2, κ3} is the actuator fault parameter with 0 < κj ≤ 1
(j = 1, 2, 3).

Remark 1. As shown in (8), κj = 1 and τbj = 0 indicate that the USV is fault free and 0 < κj < 1
and τbj 6= 0 indicate that the jth actuator of the USV has a partial loss of effectiveness fault and a
bias fault. In this paper, the classical partial loss of effectiveness faults and bias faults are considered,
since the controllability of the controlled system cannot be guaranteed when only τb is used as the
control input. Note that the actuator fault parameter is unknown here. Moreover, all actuators are
allowed to have a partial loss of effectiveness fault and a bias fault simultaneously.

It should be noted that the actuator dead zone is a common nonlinearity phenomenon
and occurs frequently in actuators. It can be given by the following mathematical expression

τf (t) = ρτz + φ(τz), (9)

where τz ∈ R3 is the dead zone input and ρ > 0 and φ(τz) ∈ R3 are the unknown bounded
parameters [42]. Specifically, the signal φ(τz) is given by

φ(τz) =


−ρdl if τz ≥ dl
−ρτz if dr < τz < dl
−ρdr if τz ≤ dr

(10)

where dr ∈ R3 and dl ∈ R3 are the unknown dead zone parameters.
A hysteresis quantizer is used to reduce the transmission rate of the control signal

and to avoid chattering in the control signal. Let u(t) ∈ R3 be the control signal and
u(t) = [u1(t) u2(t) u3(t)]T . Denote τz = q(u(t)), where q(u(t)) is the quantized value of
u(t) and q(u(t)) = [q(u1(t)) q(u2(t)) q(u3(t))]T . The modeling of the hysteresis quantizer
is given by

q(uj) =



zjisgn(uj),
zji

1+δj
<
∣∣uj
∣∣ ≤ zji, u̇j < 0,

or zji < |ui| ≤
zji

1−δj
, u̇j > 0

zji(1 + δj)sgn(uj), zji <
∣∣uj
∣∣ ≤ zji

1−δj
, u̇j < 0,

or
zji

1−δj
<
∣∣uj
∣∣ ≤ zji(1+δj)

1−δj
, u̇j > 0

0, 0 ≤
∣∣uj
∣∣ < zj min

1+δj
, u̇j < 0,

or
zj min
1+δj

≤ |uj| ≤ zj min, u̇i > 0,

q(uj(t−)), u̇j = 0, j = 1, 2, 3,

(11)
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where δj =
1−γ̄j
1+γ̄j

, zji = γ̄1−i
j zj min, (i = 1, 2, ...), 0 < γ̄j < 1 is the quantization density

measurement and sgn(·) is the sign function. From (11), it follows that q(uj) is in the set
U = {0,±zji,±zji(1 + δj)}. The parameter zjmin indicates the dead zone of the quan-
tizer (11). The quantization error of the hysteresis quantizer (11) is ehj = q(uj) − uj,
which satisfies

q(uj)− uj ≤ |ehj| ≤ δj|uj|+ zj min, j = 1, 2, 3 (12)

Considering (7)–(9) and (12), the dynamic equation of the USV (1) can be rewritten as{
η̇ = R(ψ)ν
Mν̇ = −C0(ν)ν− D0(ν)ν + f1 + κρu + κ(ρeh + φ(τz)) + τb

(13)

where f1 = −∆C(ν)ν− ∆D(ν)ν + d.

2.2. Preliminaries

Consider the following system

ẇ = f (t, w, ι), w(0) = w0, (14)

where w ∈ Rn is the system state, ι ∈ Rp is the adjustable parameter of system (14) and
f (t, w, ι) : R≥0 ×Rn ×Rp → Rn is the nonlinear function.

Definition 1. The origin of system (14) is fixed-time stable if the settling time function T(w0) of
(14) is bounded by a fixed constant Tmax ([43]).

Definition 2. The origin of system (14) is practically predefined-time stable if it is fixed-time stable
and for any given positive constants ε and Ta, there exists ι ∈ Rp such that ([43])

‖w(t, ι)‖ < ε, ∀t ≥ Ta, ∀w0 ∈ Rn (15)

The assumptions and lemma given below are useful for the subsequent controller
design and stability analysis.

Assumption 1. Define ξ = [η ν]T . For the unknown term f1 in (13), it can be bounded by

‖ f1‖ ≤ l0 + l1‖ξ‖+ l2‖ξ‖2, (16)

where l0, l1 and l2 are unknown positive constants ([13]).

Remark 2. Compared with the assumption of constant boundedness on the unknown term f1, As-
sumption 1 adopted in this paper is more reasonable and avoids the prior bounded constraints on the
system state.

Assumption 2. The desired trajectory ηd ∈ R3 is bounded and differentiable.

Lemma 1. Let X = [x ẋ . . . x(n−1)]T ∈ Rn with any initial value X(0). Define a scalar function
as follows

g(X, t) =
[
ℵT1

]
X, (17)

where ℵ :=
[
ζn−1 (n− 1)ζn−2 . . . (n− 1)ζ

]T with ζ > 0 being a constant. If there exists an
upper bound Φ on g(X, t), the variable X will be asymptotically bounded by
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∣∣∣x(m)
∣∣∣ ≤ (2ζ)m Φ

ζn−1 , (18)

where m = 0, 1, . . . , n− 1 ([44]).

The control objective of this paper is to design a predefined-time adaptive SMC scheme
to drive the USV to track the desired trajectory ηd first. Then, the transient and steady-state
performance of the tracking error can be guaranteed. In addition, both the tracking error
and sliding variable can converge to pregiven bounds within a predefined-time.

3. Main Results
3.1. Controller Design

In this subsection, a sliding mode variable is firstly constructed based on the trans-
formation error, and then an auxiliary function is introduced to design a predefined-time
adaptive sliding mode controller.

To realize the tracking of the desired trajectory, the tracking error is defined as

e1 = η − ηd, (19)

where ηd is the desired trajectory. Defining e2 = ė1, the tracking error equations are given as{
ė1 = Rν− η̇d
ė2 = RSν + RM−1(− C0(ν)ν− D0(ν)ν + f2 + κρu

)
− η̈d

(20)

where f2 = f1 + κ(ρeh + φ(τz)) + τb.
In order to achieve predefined-time convergence for tracking errors, a predefined-time

performance function is introduced as follows [45]

ϕj(t) =

{
[(Tp − t)/Tp]

1
1−bj
(

ϕ0j − ϕ∞j
)
+ ϕ∞j, 0 ≤ t ≤ Tp

ϕ∞j, t > Tp
(21)

where ϕ(t) ∈ R3, ϕj(t) is the j-th element of ϕ(t), bj ∈ (0, 1), Tp is the user-defined constant
and ϕ0j and ϕ∞j are the initial and terminal values of ϕj(t), respectively. Differentiating
(21) with respect to time yields

ϕ̇j(t) =

 − (ϕ0j−ϕ∞j)
1−bj

Tp(1−bj)

(
ϕj(t)− ϕ∞j

)bj , 0 ≤ t ≤ Tp

0, t > Tp

(22)

Furthermore, the second derivative of ϕj(t) is calculated as follows

ϕ̈j(t) =


bj(ϕ0j−ϕ∞j)

2−2bj(ϕj(t)−ϕ∞j)
2bj−1

T2
p(1−bj)

2 , 0 ≤ t ≤ Tp

0, t > Tp

(23)

For the convenience of analysis, only the scalar form of the tracking error is considered
in the following. With the control objective in mind, the tracking error is required to remain
within the preselected behavioral boundaries as

−αj ϕj(t) < e1j(t) < β j ϕj(t), (24)

where ϕj(t) is given in (21) and αj and β j are the parameters to be designed for
j = 1, 2, 3. To guarantee that the tracking error e1j can always remain within the behavioral
boundary (24), it is necessary to map the tracking error to an unconstrained equivalent ver-
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sion. Thus, consider the following smooth, strictly increasing error transformation function

G(θj) =
β j exp

(
θj + ωj

)
− αj exp

(
−θj −ωj

)
exp

(
θj + ωj

)
+ exp

(
−θj −ωj

) , (25)

where ωj =
1
2 ln
(

αj
β j

)
. Performing the inverse transformation on function G(θj), then the

unconstrained transformation error is obtained as follows

θj = G−1(zj
)
=

1
2

ln

(
β jzj + αjβ j

αjβ j − αjzj

)
, (26)

where zj =
e1j
ϕj

represents the normalized tracking error and there exists αj < zj < β j if (24)
holds for j = 1, 2, 3. Taking the time derivative of (26) yields

θ̇j = Γj

(
e2j −

ϕ̇j

ϕj
e1j

)
, (27)

where Γj =
1

2ϕj

(
1

zj+αj
− 1

zj−β j

)
and ϕ̇j is given in (22). To facilitate the subsequent controller

design, the second derivative of θj along (20) is given as

θ̈j =Γj

((
RSν + RM−1(−C0(ν)ν− D0(ν)ν + f2 + κρu)

)
j
− η̈dj

)
+ γj − ΓjΛj,

(28)

where Γj =
1

2ϕj

(
1

zj+αj
− 1

zj−β j

)
, γj = Γ̇j

(
e2j −

ϕ̇j
ϕj

e1j

)
and Λj =

ϕj ϕ̈je1j+ϕj ϕ̇je2j−ϕ̇2
j e1j

ϕ2
j

, with ϕ̈j

given in (23).
Next, based on (26) and (27), the sliding variable is given as

s = θ̇ + c1θ, (29)

where c1 > 0 is a contant. Furthermore, to achieve the predefined-time convergence of the
sliding variable, another variable needs to be constructed as

σ = s + v, (30)

where the auxiliary function v = [v1 v2 v3]
T with vj given by [21]:

vj =

{
− sj(0)

TQ
s
(t− Ts)

Q, 0 ≤ t < Ts

0, t ≥ Ts
(31)

where Q ∈ N+ and vj is the j-th element of v for j = 1, 2, 3. The time derivative of σ along
(27) and (28) is calculated as

σ̇ =θ̈ + c1θ̇ + v̇

=Γ
(

RSν−Λ + RM−1(−C0(ν)ν− D0(ν)ν + u)− η̈d

)
+ c1θ̇ + v̇ + γ + Γ

(
RM−1( f2 + (κρ− 1)u)

)
,

(32)

where γ ∈ R3×1, Γ = diag{Γ1, Γ2, Γ3} and Λ ∈ R3×1.
According to (32), the SMC law is designed as follows

u = ueq + uro, (33)
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where
ueq =C0(ν)ν + D0(ν)ν−MR−1(RSν−Λ− η̈d

)
−MR−1Γ−1(c1θ̇ + v̇ + γ

) (34)

is the equivalent control term and

uro = −MR−1Γ−1ksgn(σ) (35)

is the robust control term with k = diag{k1, k2, k3} being the adaptive control gain. The ex-
pression of k j is given as [14]

k j =
aj|σj|

ε j − |σj|
, j = 1, 2, 3 (36)

where aj is a positive contant and ε j > 0 is the design parameter.
In order to facilitate readers to better understand the design process of the controller

(33)–(35), the control block diagram of the USV is shown in Figure 1. Firstly, a behav-
ioral boundary (24) of the tracking error is given based on the performance function (21).
Second, an error transformation function (25) is used to map the tracking error into an
unconstrained version of the transformation error θ. Then, by introducing an auxiliary
function v and a barrier function (36), a predefined-time adaptive sliding mode controller
is proposed. Note that the mixed effects of input quantization, actuator fault and dead
zones are simultaneously considered for the USV.

Figure 1. The structure diagram of the controlled system.

Remark 3. In accordance with (21), it can be observed that β j ϕ0j denotes the upper bound of
the overshoot, αj ϕ0j denotes the lower bound of the undershoot, bj adjusts the decay rate of the
performance function ϕj and ϕ∞j is the predefined ultimate bound. Thus, the transient and steady-
state performance of the tracking error can be predefined by tuning the parameters αj, β j, ϕ0j
and ϕ∞j. It should be pointed out that the appropriate parameters αj, β j, ϕ0j and ϕ∞j need to
be preselected so that the inequality condition −αj ϕj(0) < e1j(0) < β j ϕj(0) is satisfied. If the
boundedness of the transformation error is guaranteed under the designed controller (33)–(35),
the predefined-time prescribed performance control of the tracking error is realized. That is, the preset
behavioral boundary (24) holds for ∀t > 0.
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Remark 4. The barrier function k j is an even function that is continuous in the interval (−ε j, ε j).
It has the property of strictly increasing in the interval [0, ε j), namely lim

|σj|→ε j

k j = ∞. In addition,

it can be observed from (33)–(36) that the designed control signal u is continuous, which effectively
reduces chattering.

Remark 5. From (29) and (30), σ(0) = 0 is available and σ(t) = s(t) for ∀t ≥ Ts. Furthermore,
the introduction of the auxiliary function relaxes the requirements for the initial value of the sliding
variable and facilitates the incorporation of the barrier function (36) into the control design.

3.2. Stability Analysis

The stability analysis of the controlled system (1) under the designed adaptive SMC
law (33)–(36) is given now.

Theorem 1. Let Assumptions 1 and 2 hold and the initial condition of the tracking error satisfy (24).
Consider the USV (1) subject to actuator faults, dead zones and input quantization. If the adaptive
SMC scheme is selected as (33)–(35) and the control gain is selected as (36) with the sliding variable
given in (29), then the tracking error e1 and the sliding variable s converge to predefined bounds
|e1j| < ϕ∞j and |sj| < ε j within a predefined-time, respectively. In addition, the variable σj
always remains in the predefined region |σj| < ε j and the unconstrained transformation error θj is
asymptotically bounded by

ε j
c1

for j = 1, 2, 3.

Proof. By substituting (33)–(35) into (32), we have

σ̇ = h− ksgn(σ), (37)

where h = ΓRM−1( f2 + (κρ− 1)u) are the lumped uncertainties. Based on Assumption 1,
a state-dependent upper bound structure can be established for the unknown term h
as follows

‖h‖ ≤ l3 + l4‖ξ‖+ l5‖ξ‖2, (38)

where l3 > 0, l4 > 0, l5 > 0 are unknown optimal values and ξ is given in (16). In the light
of (36) and (38), the upper bound of the unknown term h holds

σl j = ε j
l3 + l4‖ξ‖+ l5‖ξ‖2

l3 + l4‖ξ‖+ l5‖ξ‖2 + aj
, (39)

and it follows that 0 < σl j < ε j.
From (30) and (31), we have σj(0) = 0 < σl j. According to (36) and (37), the variable

σj cannot remain at zero. That is, |σj| starts to increase. Considering (38) and (39), if the
variable σj is located in the domain |σj(t)| ≤ σl j, then |σj| continues to increase. Now
consider that variable σj has moved into region σl j < |σj(t)| < ε j. The following hypothesis
is given: the variable σj will converge to the region |σj(t)| ≤ σl j again within a finite time.
In summary, the variable σj remains inside |σj(t)| < ε j for ∀t ≥ 0.

To confirm the above hypothesis, we consider that the variable σj has moved into the
region |σj(t)| > σl j from the initial state. Choose the following Lyapunov function

V1 =
3

∑
j=1

V1j =
3

∑
j=1

(1
2

σ2
j +

1
2

k2
j (t, σj(t))

)
. (40)

The first derivative of V1j is described as follows

V̇1j = σjσ̇j + k j(t, σj(t))k̇ j(t, σj(t)). (41)
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Note that k̇ j(t, σj(t)) in (41) can be expressed as

k̇ j(t, σj(t)) =
∂k j
(
t, σj(t)

)
∂σj(t)

∂σj(t)
∂t

. (42)

Considering (36) and the properties of the barrier function described in Remark 4,
the following two cases need to be discussed.

Case I: σl j < σj < ε j. Taking into account (36), (38) and the scalar form of (37), we have

∂k j
(
t, σj(t)

)
∂σj(t)

∂σj(t)
∂t

=
ajε j(

ε j − σj(t)
)2

(
hj − k j

(
t, σj(t)

))
≤

ajε j(
ε j − σj(t)

)2

(
l3 + l4‖ξ‖+ l5‖ξ‖2 − k j

(
t, σj(t)

))
.

(43)

Case II: −ε j < σj < −σl j. Similarly, the following inequality holds

∂k j
(
t, σj(t)

)
∂σj(t)

∂σj(t)
∂t

=
−ajε j(

ε j − |σj(t)|
)2

(
hj + k j

(
t, σj(t)

))
≤

ajε j(
ε j − |σj(t)|

)2

(
l3 + l4‖ξ‖+ l5‖ξ‖2 − k j

(
t, σj(t)

))
.

(44)

Substituting (37), (43) and (44) into (41) yields

V̇1j ≤σj(hj − k jsgn(σj))

+ k j(t, σj(t))
ajε j(

ε j − |σj(t)|
)2

(
l3 + l4‖ξ‖+ l5‖ξ‖2 − k j

(
t, σj(t)

))
≤− |σj|

(
k j(t, σj(t))− (l3 + l4‖ξ‖+ l5‖ξ‖2)

)
− k j(t, σj(t))

ajε j(
ε j − |σj(t)|

)2

(
k j(t, σj(t))− (l3 + l4‖ξ‖+ l5‖ξ‖2)

)
=− Ξj|σj| − χjΞjk j(t, σj(t)),

(45)

where Ξj = k j
(
t, σj(t)

)
− (l3 + l4‖ξ‖+ l5‖ξ‖2) and χj =

ajε j

(ε j−|σj|)2 .

In view of σl j < |σj(t)| < ε j and (36), we get

k j(t, σj(t)) > k j(σl j) = l3 + l4‖ξ‖+ l5‖ξ‖2, (46)

which leads to Ξj > 0 and χj > 0.
Then, V̇1j can be described as

V̇1j ≤− Ξj|σj| − χjΞjk j(t, σj(t))

=− Ξj
√

2
( |σj|√

2
+ χj

k j(t, σj(t))√
2

)
≤− Ξj

√
2 min{1, χj}

( |σj|√
2
+

k j(t, σj(t))√
2

)
≤− Ξj

√
2 min{1, χj}V1/2

1j .

(47)
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It follows that the variable σj converges to the region |σj| ≤ σl j in a finite time. Thus, we
can conclude that the variable σj remains within the region |σj| < ε j for ∀t ≥ 0. Moreover,
according to the definition of the auxiliary function, σj = sj when t ≥ Ts. Therefore, one can
further deduce that the sliding variable sj converges to the region |sj| < ε j at the predefined
time Ts.

On the basis of the above analysis, the following conclusions can be made further.
According to Lemma 1 with n = 2, the transformation error θj is asymptotically bounded by

|θj| ≤
|sj|
c1

<
ε j

c1
, j = 1, 2, 3 (48)

It follows that the transformation error θ is bounded. Note that G(θj) is a strictly in-
creasing function satisfying lim

θj→−∞
G
(
θj
)
= −αj and lim

θj→∞
G
(
θj
)
= β j. Thus, zj ∈

(
−αj, β j

)
and −αj ϕj(t) < e1j(t) < β j ϕj(t) hold. In other words, the tracking error e1j satisfies the
inequality condition (24) for ∀t > 0 and converges within the bound |e1j| < ϕ∞j within
a predefined time (j = 1, 2, 3). In addition, according to Definition 2, the solution of the
tracking error system (20) is practically predefined-time stable.

Remark 6. As shown in (37) and (38), the mixed effects of input quantization, actuator faults and
dead zones are treated as uncertainties and handled by the adaptive control gain k.

Remark 7. For the sake of simplicity of design, this paper uses a linear sliding surface as shown
in (29). In application, it can be further extended to other types of sliding surface according to the
control objective, such as integral sliding surfaces and non-singular terminal sliding surfaces.

Remark 8. Note that the quadratic Lyapunov function given in (40) is used to analyze the system
stability. To achieve a better tracking performance, non-quadratic Lyapunov functions can be further
considered. In [46,47], it is expounded how to achieve an excellent tracking performance by tuning
the parameter α in the Lyapunov function. In particular, the quadratic Lyapunov function V1 can be
regarded as a special form when α = 1.

4. Simulations

In this section, numerical simulations based on CyberShip II [1] are conducted to
verify the effectiveness of the designed controller. CyberShip II is a 1:70 scale replica of
a supply ship. The ship has a length of 1.225 m and a breadth of 0.29 m. Furthermore, it
is fully driven by two main propellers, one bow thruster and two aft rudders. The main
parameters of CyberShip II are given in Table 1.

Table 1. Main parameters of CyberShip II.

m = 23.8 Iz = 1.76 xg = 0.046 Xu = −0.07225
X|u|u = −1.3274 Xuuu = −5.8664 Yν = −0.8896 Y|ν|ν = −36.4728
Y|r|ν = −0.805 Y|ν|r = −0.845 Y|r|r = −3.45 N|r|r = −0.75

Yr = −7.25 Nν = 0.0313 N|ν|ν = 3.9564 Xu̇ = −2
Yν̇ = −10 Yṙ = 0 Nν̇ = 0 Nṙ = −1

N|r|ν = 0.13 Nr = −1.9 N|ν|r = 0.08

In the simulation, the initial conditions of the model ship are designated as
η(0) = [−1.3 1.6 0.75]T and ν(0) = [0 0 0]T . The desired trajectory is chosen as
ηd = [2 sin(0.2t + π/5) 1.5 cos(t − π/6) cos(0.5t)]T . The unknown parts of the model
of the USV are assumed to be ∆C(ν) = 1%C0(ν) and ∆D(ν) = 1%D0(ν). Here, partial loss
of effectiveness faults and bias faults are considered simultaneously to verify the robustness
of the proposed control method. Note that the USV has had an actuator fault since Tf = 20 s.
The actuator fault parameter is specified as κ = [0.5 0.3 0.3]T and the bias fault is selected
as τb = [0.8 sin(t) 0.5 cos(t) 0.8 sin(t) + 0.5 cos(t)]T . The actuator dead zone parameters
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in (10) are selected as ρ = 1.2, dl = [0.5 0.5 0.5]T and dr = [−0.5 − 0.5 − 0.5]T , respec-
tively. The parameters of the hysteresis quantizer (11) are selected as zmin = [0.1 0.1 0.1]T

and δ = [0.1 0.1 0.1]T . The parameters of the performance function (21) are chosen as
ϕ0 = [2 2 1.5]T , ϕ∞ = [0.5 0.5 0.3]T , Tp = 5 s and b = [0.6 0.6 0.6]T . The parameters of
(24) are selected as α = β = [1 1 1]T . The parameters of the control gain are selected as
k(0) = [7 7 1]T , a = [2 2 2]T and ε = [0.012 0.012 0.012]T . The parameters of the auxiliary
function (31) are chosen as Ts = 1 s and Q = 2. To demonstrate the performance of the
proposed predefined time adaptive SMC method, a comparison with the state-of-the-art
adaptive SMC method [12] is performed.

The actual motion trajectory and desired trajectory of the USV are shown in Figure 2.
It can be seen that the USV can track the desired trajectory ηd under the designed control
method. The tracking performance of the USV in directions x, y and ψ is shown in Figure 3.
Further, Figures 4–6 exhibit the variation curves of the tracking error of the USV in the x, y
and ψ directions, respectively. It can be seen that the tracking error curves are all within the
predefined behavior boundary, which verifies that the prescribed performance control on
the tracking error is achieved. In addition, the tracking errors all converge to the preset
bound ϕ∞ = [0.5 0.5 0.3]T within the predefined time Tp = 5 s.
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Figure 2. The desired trajectory and actual trajectory of the USV.
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The behavior of the sliding variables for the proposed method and the method in [12] is
shown in Figure 7. It is observed from Figure 7 that under the proposed method, the sliding
variable converges to the preset bound ε = [0.012 0.012 0.012]T within the predefined time
Ts = 1 s and does not escape for ∀t ≥ Ts. On the other hand, when the actuator fault occurs
at Tf = 20 s, the method in [12] cannot guarantee that the sliding variable remains within
the previous ultimate bound. In contrast, the ultimate bound of the sliding variable under
the proposed method is independent of the upper bound of the lumped uncertainty. Thus,
the sliding variable will not leave the predefined bound even if the actuator fault occurs. It
should be noted that the selection of the time constant Ts and the predefined bound ε is
a trade-off between the actual situation and the control objective. The smaller the value
selected, the larger the control torque will be, which is unrealistic. The variation curves
of the adaptive control gain are shown in Figure 8. From (37), the effect of the actuator
fault is treated as a disturbance and handled by the control gain. This is why the control
gain increases for a short time after Tf = 20 s. Figure 9 shows the designed control signal
u and quantized signal q(u). The quantization effect of the hysteresis quantizer can be
clearly seen from the partially zoomed-in area. Figure 10 depicts the actual control signals
under the proposed method and the method in [12]. It can be seen from Figure 10 that
compared with the method in [12], the proposed method effectively reduces chattering in
SMC. The reason is that the control signal generated by the proposed method is continuous,
exactly as mentioned in Remark 4.

Method in Jiang et al., 2022
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Figure 7. Sliding variable s [12].
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Figure 8. Adaptive control gain k.
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Figure 9. The control signal u and the quantized signal q(u).

Method in Jiang et al., 2022 Proposed

Figure 10. Actual control input τ [12].

5. Conclusions

In this paper, the trajectory tracking SMC problem of a USV subject to system un-
certainties, external disturbances, input quantization, actuator faults and dead zones is
studied. A hysteresis quantizer is used to relax the transmission bandwidth requirements
from the controller to the actuator while avoiding chattering in the quantized signal. The
introduction of an auxiliary function facilitates the design of an adaptive SMC method
based on a barrier function. Under the designed controller, the boundedness of both the
unconstrained transformation error θ and the variable σ is guaranteed. Then, it is con-
cluded that the predefined transient and steady-state tracking performance is achieved and
the tracking error can converge to the user-defined bound within a predefined time. In
addition, the sliding variable can converge to the user-defined bound within a predefined
time due to the introduction of an auxiliary function. The simulation results demonstrate
the effectiveness of the developed control scheme.

Author Contributions: Conceptualization, T.J. and Y.Y.; methodology, T.J. and Y.Y.; software, T.J.;
validation, T.J.; formal analysis, T.J.; investigation, T.J.; resources, T.J., Y.Y. and S.-H.Y.; data curation,
T.J.; writing—original draft preparation, T.J.; writing—review and editing, T.J. and Y.Y.; visualization,
T.J.; supervision, Y.Y.; project administration, Y.Y.; funding acquisition, Y.Y. and S.-H.Y. All authors
have read and agreed to the published version of the manuscript.



J. Mar. Sci. Eng. 2023, 11, 1244 17 of 18

Funding: This work was supported in part by the Natural Science Foundation of China under
grants 62173054 and 62073054 and in part by the Natural Science Foundation of Liaoning under
grant 2021-MS-142.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Skjetne, R.; Smogeli, Ø.; Fossen, T. Modeling, identification, and adaptive maneuvering of Cybership II: A complete design with

experiments. IFAC Proc. 2004, 37, 203–208. [CrossRef]
2. Wu, D.; Yuan, K.; Huang, Y.; Yuan, Z.; Hua, L. Design and test of an improved active disturbance rejection control system for

water sampling unmanned surface vehicle. Ocean. Eng. 2022, 245, 110367. [CrossRef]
3. Shen, H.; Yin, Y.; Qian, X. Fixed-time formation control for unmanned surface vehicles with parametric uncertainties and complex

disturbance. J. Mar. Sci. Eng. 2022, 10, 1246. [CrossRef]
4. Wen, G.; Ge, S.; Chen, C.; Tu, F.; Wang, S. Adaptive tracking control of surface vessel using optimized backstepping technique.

IEEE Trans. Cybern. 2018, 49, 3420–3431. [CrossRef] [PubMed]
5. Zhang, Q.; Guo, C. Anti-disturbance lyapunov-based model predictive control for trajectory tracking of dynamically positioned

ships. J. Mar. Sci. Eng. 2023, 11, 281. [CrossRef]
6. Chen, H.; Tang, G.; Wang, S.; Guo, W.; Huang, H. Adaptive fixed-time backstepping control for three-dimensional trajectory

tracking of underactuated autonomous underwater vehicles. Ocean. Eng. 2023, 275, 114109. [CrossRef]
7. Degorre, L.; Delaleau, E.; Chocron, O. A survey on model-based control and guidance principles for autonomous marine vehicles.

J. Mar. Sci. Eng. 2023, 11, 430. [CrossRef]
8. Liu, W.; Ye, H.; Yang, X. Super-twisting sliding mode control for the trajectory tracking of underactuated USVs with disturbances.

J. Mar. Sci. Eng. 2023, 11, 636. [CrossRef]
9. Yu, X.; Feng, Y.; Man, Z. Terminal sliding mode control—An overview. IEEE Open J. Ind. Electron. 2020, 2, 36–52. [CrossRef]
10. Yan, Y.; Zhao, X.; Yu, S.; Wang, C. Barrier function-based adaptive neural network sliding mode control of autonomous surface

vehicles. Ocean. Eng. 2021, 238, 109684. [CrossRef]
11. Wang, D.; Kong, M.; Zhang, G.; Liang, X. Adaptive second-order fast terminal sliding-mode formation control for unmanned

surface vehicles. J. Mar. Sci. Eng. 2022, 10, 1782. [CrossRef]
12. Jiang, T.; Yan, Y.; Wu, D.; Yu, S.; Li, T. Neural network based adaptive sliding mode tracking control of autonomous surface

vehicles with input quantization and saturation. Ocean. Eng. 2022, 265, 112505. [CrossRef]
13. Qiao, L.; Zhang, W. Trajectory tracking control of AUVs via adaptive fast nonsingular integral terminal sliding mode control.

IEEE Trans. Industr. Inform. 2019, 16, 1248–1258. [CrossRef]
14. Chao, L.; Ma, H.; Tian, S.; Li, Y. Adaptive barrier sliding-mode control considering state-dependent uncertainty. IEEE Trans.

Circuits Syst. II Express Briefs. 2021, 68, 3301–3305. [CrossRef]
15. Guo, G.; Zhang, P. Asymptotic stabilization of USVs with actuator dead-zones and yaw constraints based on fixed-time

disturbance observer. IEEE Trans. Veh. 2020, 69, 302–316. [CrossRef]
16. Wang, N.; Zhu, Z.; Qin, H.; Deng, Z.; Sun, Y. Finite-time extended state observer-based exact tracking control of an unmanned

surface vehicle. Int. J. Robust Nonlinear Control. 2021, 31, 1704–1719. . [CrossRef]
17. Zhang, J.; Yu, S.; Yan, Y. Fixed-time velocity-free sliding mode tracking control for marine surface vessels with uncertainties and

unknown actuator faults. Ocean. Eng. 2020, 201, 107107. [CrossRef]
18. Chang, L.; Han, Q.; Ge, X.; Zhang, C.; Zhang, X. On designing distributed prescribed finite-time observers for strict-feedback

nonlinear systems. IEEE Trans. Cybern. 2019, 51, 4695–4706. [CrossRef]
19. Jiménez-Rodríguez, E.; Muñoz-Vázquez, A.; Sánchez-Torres, J.; Defoort, M.; Loukianov, A. A Lyapunov-like characterization of

predefined-time stability. IEEE Trans. Autom. Control. 2020, 65, 4922–4927. [CrossRef]
20. Liang, C.; Ge, M.; Liu, Z.; Ling, G.; Liu, F. Predefined-time formation tracking control of networked marine surface vehicles.

Control Eng. Pract. 2020, 107, 104682. [CrossRef]
21. Shao, K.; Zheng, J.; Wang, H.; Man, Z. Terminal time regulator-based exact-time sliding mode control for uncertain nonlinear

systems. Int. J. Robust Nonlinear Control. 2022, 32, 7536–7553. [CrossRef]
22. Ma, H.; Liu, W.; Xiong, Z.; Li, Y.; Liu, Z.; Sun, Y. Predefined-time barrier function adaptive sliding-mode control and its application

to piezoelectric actuators. IEEE Trans. Industr. Inform. 2022, 18, 8682–8691. [CrossRef]
23. Souissi, S.; Boukattaya, M. Time-varying nonsingular terminal sliding mode control of autonomous surface vehicle with

predefined convergence time. Ocean. Eng. 2022, 263, 112264. [CrossRef]
24. Wu, Z.; Ni, J.; Qian, W.; Bu, X.; Liu, B. Composite prescribed performance control of small unmanned aerial vehicles using

modified nonlinear disturbance observer. ISA Trans. 2021, 116, 30–45. [CrossRef]

http://doi.org/10.1016/S1474-6670(17)31732-9
http://dx.doi.org/10.1016/j.oceaneng.2021.110367
http://dx.doi.org/10.3390/jmse10091246
http://dx.doi.org/10.1109/TCYB.2018.2844177
http://www.ncbi.nlm.nih.gov/pubmed/29994688
http://dx.doi.org/10.3390/jmse11020281
http://dx.doi.org/10.1016/j.oceaneng.2023.114109
http://dx.doi.org/10.3390/jmse11020430
http://dx.doi.org/10.3390/jmse11030636
http://dx.doi.org/10.1109/OJIES.2020.3040412
http://dx.doi.org/10.1016/j.oceaneng.2021.109684
http://dx.doi.org/10.3390/jmse10111782
http://dx.doi.org/10.1016/j.oceaneng.2022.112505
http://dx.doi.org/10.1109/TII.2019.2949007
http://dx.doi.org/10.1109/TCSII.2021.3067361
http://dx.doi.org/10.1109/TVT.2019.2955020
.
http://dx.doi.org/10.1002/rnc.5369
http://dx.doi.org/10.1016/j.oceaneng.2020.107107
http://dx.doi.org/10.1109/TCYB.2019.2951067
http://dx.doi.org/10.1109/TAC.2020.2967555
http://dx.doi.org/10.1016/j.conengprac.2020.104682
http://dx.doi.org/10.1002/rnc.6231
http://dx.doi.org/10.1109/TII.2022.3143606
http://dx.doi.org/10.1016/j.oceaneng.2022.112264
http://dx.doi.org/10.1016/j.isatra.2021.01.032


J. Mar. Sci. Eng. 2023, 11, 1244 18 of 18

25. Zhu, G.; Ma, Y.; Li, Z.; Malekian, R.; Sotelo, M. Adaptive neural output feedback control for MSVs with predefined performance.
IEEE Trans. Veh. Technol. 2021, 70, 2994–3006. [CrossRef]

26. Zhao, J.; Cai, C.; Liu, Y. Barrier lyapunov function-based adaptive prescribed-time extended state observers design for unmanned
surface vehicles subject to unknown disturbances. Ocean. Eng. 2023, 270, 113671. [CrossRef]

27. Wang, Y.; Hao, L.; Li, T.; Chen, C. Integral sliding mode-based fault-tolerant control for dynamic positioning of unmanned marine
vehicles based on a T-S fuzzy model. J. Mar. Sci. Eng. 2023, 11, 370. [CrossRef]

28. Yao, Q. Adaptive finite-time sliding mode control design for finite-time fault-tolerant trajectory tracking of marine vehicles with
input saturation. J. Frank. Inst. 2020, 357, 13593–13619. [CrossRef]

29. Li, Y.; He, J.; Zhang, Q.; Zhang, W.; Li, Y. Predefined-time fault-tolerant trajectory tracking control for autonomous underwater
vehicles considering actuator saturation. Actuators 2023, 12, 171. [CrossRef]

30. Hao, L.; Zhang, Y.; Li, H. Fault-tolerant control via integral sliding mode output feedback for unmanned marine vehicles. Appl.
Math. Comput. 2021, 401, 126078. [CrossRef]

31. Ma, M.; Wang, T.; Guo, R.; Qiu, J. Neural network-based tracking control of autonomous marine vehicles with unknown actuator
dead-zone. Int. J. Robust Nonlinear Control. 2021, 32, 2969–2982. [CrossRef]

32. Cui, R.; Zhang, X.; Cui, D. Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities.
Ocean. Eng. 2016, 123, 45–54. [CrossRef]

33. Zhang, P.; Guo, G. Fixed-time switching control of underactuated surface vessels with dead-zones: Global exponential stabilization.
J. Frank. Inst. 2019, 357, 11217–11241. [CrossRef]

34. Zhang, G.; Yao, M.; Zhang, W.; Zhang, W. Improved composite adaptive fault-tolerant control for dynamic positioning vehicle
subject to the dead-zone nonlinearity. IET Control. Theory Appl. 2021, 15, 2067–2080. [CrossRef]

35. Yan, Y.; Yu, S. Sliding mode tracking control of autonomous underwater vehicles with the effect of quantization. Ocean. Eng.
2018, 151, 322–328. [CrossRef]

36. Hao, L.; Zhang, H.; Li, H.; Li, T. Sliding mode fault-tolerant control for unmanned marine vehicles with signal quantization and
time-delay. Ocean. Eng. 2020, 215, 107882. [CrossRef]

37. Yan, Y.; Yu, S.; Yu, X. Quantized super-twisting algorithm based sliding mode control. Automatica 2019, 105, 43–48. [CrossRef]
38. Hao, L.; Zhang, H.; Guo, G.; Li, H. Quantized sliding mode control of unmanned marine vehicles: Various thruster faults tolerated

with a unified model. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 2012–2026. [CrossRef]
39. Shao, X.; Shi, Y. Fault-tolerant quantized control for flexible air-breathing hypersonic vehicles with appointed-time tracking

performances. IEEE Trans. Aerosp Electron. Syst. 2021, 57, 1261–1273. [CrossRef]
40. Li, A.; Liu, M.; Cao, X.; Liu, R. Adaptive quantized sliding mode attitude tracking control for flexible spacecraft with input

dead-zone via Takagi-Sugeno fuzzy approach. Inf. Sci. 2021, 587, 746–773. [CrossRef]
41. Zhang, T.; Bai, R.; Li, Y. Practically predefined-time adaptive fuzzy quantized control for nonlinear stochastic systems with

actuator dead zone. IEEE Trans. Fuzzy Syst. 2022, 31, 1240–1253. [CrossRef]
42. Zhao, Z.; Zhang, J.; Liu, Z.; He, W.; Hong, K. Adaptive quantized fault-tolerant control of a 2-DOF helicopter system with actuator

fault and unknown dead zone. Automatica 2023, 148, 110792. [CrossRef]
43. Shao, K.; Zheng, J. Predefined-time sliding mode control with prescribed convergent region. IEEE-CAA J. Autom. Sin. 2022, 9,

934–936. [CrossRef]
44. Slotine, J.; Li, W. Applied Nonlinear Control; Englewood Cliffs: Prentice Hall, NJ, USA, 1991; pp. 278–280.
45. Yin, Z.; Suleman, A.; Luo, J.; Wei, C. Appointed-time prescribed performance attitude tracking control via double performance

functions. Aerosp. Sci. Technol. 2019, 93, 105337. [CrossRef]
46. Tao, G. Model reference adaptive control with L1+α tracking. Int. J. Control. 1996, 64, 859–870. [CrossRef]
47. Hosseinzadeh, M.; Yazdanpanah, M. Performance enhanced model reference adaptive control through switching non-quadratic

Lyapunov functions. Syst. Control. Lett. 2015, 76, 47–55. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TVT.2021.3063687
http://dx.doi.org/10.1016/j.oceaneng.2023.113671
http://dx.doi.org/10.3390/jmse11020370
http://dx.doi.org/10.1016/j.jfranklin.2020.10.015
http://dx.doi.org/10.3390/act12040171
http://dx.doi.org/10.1016/j.amc.2021.126078
http://dx.doi.org/10.1002/rnc.5890
http://dx.doi.org/10.1016/j.oceaneng.2016.06.041
http://dx.doi.org/10.1016/j.jfranklin.2019.05.030
http://dx.doi.org/10.1049/cth2.12176
http://dx.doi.org/10.1016/j.oceaneng.2018.01.034
http://dx.doi.org/10.1016/j.oceaneng.2020.107882
http://dx.doi.org/10.1016/j.automatica.2019.03.002
http://dx.doi.org/10.1109/TSMC.2019.2912812
http://dx.doi.org/10.1109/TAES.2020.3040519
http://dx.doi.org/10.1016/j.ins.2021.11.002
http://dx.doi.org/10.1109/TFUZZ.2022.3197970
http://dx.doi.org/10.1016/j.automatica.2022.110792
http://dx.doi.org/10.1109/JAS.2022.105575
http://dx.doi.org/10.1016/j.ast.2019.105337
http://dx.doi.org/10.1080/00207179608921661
http://dx.doi.org/10.1016/j.sysconle.2014.12.001

	Introduction
	Problem Formulation and Preliminaries
	Problem Formulation
	Preliminaries

	Main Results
	Controller Design
	Stability Analysis

	Simulations
	Conclusions
	References

