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Abstract: A suitable jump Markov system (JMS) filtering approach provides an efficient technique
for tracking surface targets. In complex surface target tracking situations, due to the joint influences
of lost measurements with an unknown probability and heavy-tailed measurement noise (HTMN),
the estimation accuracy of conventional interacting multiple model (IMM) methods may be seriously
degraded. Aiming to address the filtering issues in JMSs with HTMNs and random measurement
losses, this paper presents an IMM filtering approach with the adaptive estimation of unknown
measurement loss probability. In this study, we assumed that the measurement noises obey student’s
t-distributions and then proposed Bernoulli random variables (BRVs) to characterize the random
measurement loss. Notably, by converting the two likelihood functions from the weighted sum form
to exponential multiplication, we established hierarchical Gaussian state space models to directly
utilize the variational inference method. The system state vectors, unknown distribution parameters,
BRVs, and unknown measurement loss probabilities were estimated simultaneously according to the
variational Bayesian inference in the IMM framework. The results of maneuvering target tracking
simulations verified that the presented filtering approach demonstrated superior estimation accuracy
compared to existing IMM filters.

Keywords: variational Bayesian; interacting multiple model; random measurement loss; surface
target tracking; heavy-tailed measurement noises

1. Introduction

State estimation holds significant importance for the maneuvering target tracking of
conventional vessels and surface autonomous vessels [1]. Aiming to estimate the states
of hidden dynamic systems from noisy measurements according to proper criteria, state
estimation has attracted wide attention in signal processing communities. For linear
Gaussian dynamic systems, the optimal solution for real-time online state estimation
can be obtained by the Kalman filter (KF) (for abbreviations, see Table 1). However, the
uncertainty of the system model in a jump Markov system (JMS) [2,3] may cause the
typical KF’s estimation accuracy to decline dramatically. In addition, the conventional
KF requires Gaussian noise, and all measurements need to be obtained quickly. These
assumptions are usually not satisfied in real applications, leading to limited filtering
performance. Consequently, the expansion of the KF under different assumptions has
garnered significant interest due to its extensive utilization in engineering [4–9].

Tracking surface targets can be considered a state estimation issue in JMSs. There is
no existing optimal Bayesian solution to estimate the states of JMSs, since they introduce
problems of nondeterministic polynomial difficulties and computational intractability [10].
In recent decades, a series of sub-optimal estimators have been proposed, such as particle
filters, the generalized pseudo-Bayesian method, and the interacting multiple model (IMM)
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approach, etc. [11–13]. Among these solutions, the IMM approach stands out as an efficient
algorithm due to its ability to strike a balance between acceptable filtering performance and
reasonable computational costs [13,14]. The theoretical details of the IMM approach can be
found in [15]. Performance analyses of the IMM filter were provided by [16,17]. Typical
IMM filters run KFs in parallel to update the state estimate of each mode and then fuse the
sub-filter outputs through moment matching theory to obtain the system estimation results.
An efficient way to improve the model-matched filters’ performance is variational Bayesian
(VB) theory, which executes approximation on conjugate exponential models under a
reasonable calculation complexity [18,19]. By combining VB inference with the KF, many
scholars have achieved remarkable breakthroughs [20–24]. In the past few years, VB-type
IMM filters have been introduced to address the filtering issue of JMSs. The authors of [25]
designed an adaptive IMM filter for handling unknown process and measurement noise
covariances in JMSs. By utilizing the VB technique and the weighted Kullback–Leibler (KL)
average method, the system state vectors and the noise covariances were jointly estimated.
This technique achieved significant estimation performance in scenarios of uncertain noise
covariances. However, this method required Gaussian-distributed measurement noise,
and all measurement data had to be obtained quickly, which may not be possible in real
application situations under the joint influences of measurement outliers and interrupted
communication channels.

Table 1. Notations and definitions used in this article.

Notation Definition Notation Definition

CV Constant velocity UMLP Unknown measurement loss probability
CT Coordinated turn HGSSM Hierarchical Gaussian state space model
KF Kalman filter St(·; µ, P, λ) Student’s t-distribution,
KL Kullback–Leibler µ-mean vector, P-scale matrix,
VB Variational Bayesian λ-degree of freedom parameter
BRV Bernoulli random variable N(·; µ, P) Gaussian distribution,
IMM Interacting multiple model µ-mean vector, P-scale matrix
JMS Jump Markov system G(·; s, k) Gamma distribution,
PDF Probability density function s-shape parameter,
STD Student’s t-distribution k-rate parameter
SSIT Single-step implementation time Be(·; α, β) Beta distribution
HTMN Heavy-tailed measurement noise α- and β-shape parameters

Considering the adverse effects of measurement outliers on state estimation in JMSs,
the authors of [26] utilized Student’s t-distribution (STD) to model the heavy-tailed mea-
surement noise (HTMN). By introducing the VB approach, the posterior probability density
functions (PDFs) of the state and noise parameters were approximated, which overcame the
restrictions of the Gaussian assumption in real applications. In [27], the authors proposed
a KF with a fading factor to cope with the state transition model mismatch and non-zero
mean value statistical characteristics caused by outliers. The measurement noises were
modeled as skew STDs, and the system state vectors were inferred by VB techniques. Addi-
tionally, the authors of [28] improved an IMM filter by modeling the measurement noises,
scale covariance matrices, and freedom degree parameter as STDs, inverse Wishart distribu-
tions, and gamma distributions, respectively. According to the VB approach, system state
vectors and unknown parameters were inferred simultaneously. This algorithm showed
superior estimation performance when HTMN was present. However, the abovementioned
algorithms may be not able to achieve satisfactory estimation accuracy in the presence of
random measurement loss. To deal with this problem, the authors of [29] presented an
adaptive IMM filter to address the unknown measurement loss probability (UMLP). The
prior distribution of UMLP was selected rationally. The system state vectors, Bernoulli
random variable (BRV), and UMLP were inferred. However, this algorithm assumed
Gaussian-distributed measurement noise, and this assumption resulted in restricted estima-
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tion accuracy due to the sensitivity of Gaussian distributions to measurement outliers [30].
In a complex surface target tracking environment, HTMN and UMLP often coexist, and the
generalized IMM algorithm for HTMN and UMLP needs to be further studied.

To address the JMS filtering issue under HTMN and UMLP effectively, this study
designed a VB-based robust IMM Gaussian approximate filter (IMM-VBRGAF). The HTMN
was modeled rationally, and the measurement loss in JMSs was characterized appropriately.
By converting the forms of the measurement likelihood functions, a new hierarchical
Gaussian state space model (HGSSM) could be constructed. Then, the state vectors, noise
parameters, BRV, and UMLP were estimated. The surface target tracking simulation results
verified the superiority of the presented approach. Table 2 outlines the existing algorithms
currently in place.

Table 2. Outlines of existing algorithms.

Algorithm Technique and Methodology Deficiencies (Compared with Proposed Filter)

VBAKF (1) Gaussian noise modeling (1) Ignores the measurement outliers
[24] (2) VB inference (2) Incapable of addressing the

(3) UMLP adaptive estimation system–model mismatch

VBRSF (1) Student’s t noise modeling (1) Ignores the measurement loss
[23] (2) VB inference (2) Incapable of addressing the

(3) Multi-sensor fusion system–model mismatch

IMM-CKF (1) Gaussian noise modeling (1) Large estimation errors
[13] (2) IMM filtering framework (2) Incapable of addressing measurement loss

(3) Cubature Kalman filter (3) Incapable of addressing measurement outliers

IMM-VBKF (1) Gaussian noise modeling

(1) Limited estimation accuracy[25] (2) VB inference

(2) Limited to Gaussian noise(3) Noise covariance estimation

(3) Sensitive to outliers in measurement noiseIMM-VBAKF (1) Gaussian noise modeling
[29] (2) VB inference

(3) UMLP adaptive estimation

IMM-VBSTDF (1) Student’s t noise modeling
[26] (2) VB inference

(1) Limited estimation accuracy(3) IMM filtering framework

(2) Incapable of addressing measurement lossIMM-ORSRCKF (1) Student’s t noise modeling
[28] (2) VB inference

(3) Noise parameter estimation

Proposed (1) Student’s t noise modeling
(1) Increased computational burdenIMM-VBRGAF (2) VB inference

(3) UMLP adaptive estimation

The main contributions of this paper are summarized below:

• The HTMN and one-step predicted PDF in this paper were modeled accurately as
STDs and Gaussian distributions, respectively. A BRV was proposed to describe the
measurement loss. To directly include the VB theory in this method, the form of
two measurement likelihood functions was changed from a weighted summation to
exponential multiplication, and a new HGSSM was therefore established.

• Considering the coupling of the state vector with HTMN, this paper proposes an
approach that combines VB inference with the IMM method. The posterior PDFs
conditioned on each mode were recursively approximated by a measurement updating
process. Based on VB theory, the state vector, noise parameters, BRV, and UMLP
could be jointly obtained. The final estimate was obtained by performing a weighted
summation of the outputs from the sub-filters.



J. Mar. Sci. Eng. 2023, 11, 1243 4 of 23

• The simulation results of the surface maneuvering target tracking validated that the
proposed filtering approach surpassed existing IMM methods in terms of estimation
accuracy. The proposed approach provides a solution for the filtering issues arising
from the coexistence of HTMN and UMLP.

The remainder of this paper is arranged as follows. Section 2 provides the problem
statement. The proposed HGSSM and IMM-VBRGAF are summarized in Section 3. In
Section 4, the estimation performance of the designed filter is compared with that of existing
filters. The conclusion of this article can be found in Section 5.

2. Problem Statement

Consider the following state space model of a JMS [29]:

xj
s = f j

s−1

(
xj

s−1

)
+ gj

s−1 (1)

zj
s = τ

j
s hj

s

(
xj

s

)
+ rj

s (2)

where s denotes the discrete time index; xj
s ∈ Rn×1 and zj

s ∈ Rm×1 are the system state
vector and measurement vector, respectively, conditioned on the system mode index Ms = j;
and m and n are their dimension numbers. Ms denotes a discrete variable indicating the
state of the Markov chain, and its value is selected from {1, 2, 3, . . . , l} by the transition
probability matrix Π =

[
πij
]

l×l , where πij represents the transition probability from model
i to j satisfying the following formulas:

πij
∆
= P{Ms = j|Ms = i} (3)

l
Σ

j=1
πij = 1 (4)

where f j
s−1(·) and hj

s(·) are the process and measurement functions, respectively, of the

j-th mode. The process function f j
s−1(·) in this study was switched between two different

kinematic models (the coordinated turn (CT) model f 1
s (·) and the constant velocity (CV)

model f 2
s (·) [3,29,31,32]) to describe the problem of the system–model mismatch in JMSs.

gj
s−1 refers to the white Gaussian process noise vector with a mean value of zero and

nominal covariance matrix Qj
s, while rj

s represents the white HTMN vector caused by mea-
surement outliers, and the random variable τ

j
s was utilized to characterize the phenomenon

of received or lost measurements. Note that the random variables xj
s, gj

s−1, rj
s, and τ

j
s were

assumed to be mutually independent.
τ

j
s in Equation (2) was assumed to obey the Bernoulli distribution with two optional

values, 1 and 0. In this paper, τ
j
s = 1 denotes that the measurement was available from

the sensor, and τ
j
s = 0 means that the measurement was lost, i.e., the measurement only

contained the noise vector rj
s. The probabilities of τ

j
s can be defined as follows:

Pr
(

τ
j
s = 1

)
= 1− ϕ

j
s (5)

Pr
(

τ
j
s = 0

)
= ϕ

j
s (6)

where Pr(·) represents the random event probability, and ϕ
j
s ∈ [0, 1] denotes the UMLP.

According to Equations (1)–(6), due to the frequent changes in the motion models of
JMSs and the fact that the measurements can be easily affected by measurement outliers
and interrupted communication channels, the accuracy of traditional Kalman-type filtering
may be insufficient or even very poor. Therefore, the goal of this work was to design a
recursive filter to estimate the state of a JMS with HTMN and UMLP.
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3. Main Results
3.1. The Proposed HGSSM

According to Equations (2), (5) and (6), the conditional likelihood PDF could be
formulated as a weighted sum:

p
(

zj
s

∣∣∣xj
s, ϕ

j
s , Ms = j

)
=

1

∑
τ

j
s=0

p
(

zj
s, τ

j
s

∣∣∣xj
s, ϕ

j
s , Ms = j

)
=Pr

(
τ

j
s = 0

)
p
(

zj
s

∣∣∣xj
s, τ

j
s = 0 , Ms = j

)
+ Pr

(
τ

j
s = 1

)
p
(

zj
s

∣∣∣xj
s, τ

j
s = 1 , Ms = j

)
(7)

=
(

1− ϕ
j
s

)
p

vj
s

(
zj

s − hj
s

(
xj

s

))
+ ϕ

j
s p

vj
s

(
zj

s

)
where p

vj
s
(·) is the PDF of measurement noise.

Remark 1. The document text continues here. From Equation (7), p
(

zj
s

∣∣∣xj
s, ϕ

j
s , Ms = j

)
in a sum

form has neither closed nor conjugate properties. It is unfeasible to employ the VB method directly to
estimate the system state and unknown parameters. To solve this problem, by utilizing Equations (5)
and (6), the probability of the BRV in Equation (7) is converted into the probability mass function of
τ

j
s , i.e.,

p
(

τ
j
s

∣∣∣ϕj
s

)
=
(

1− ϕ
j
s

)τ
j
s
(

ϕ
j
s

)(1−τ
j
s

)
(8)

Based on Equations (7) and (8), the conditional likelihood PDF can be reformulated as

p
(

zj
s

∣∣∣xj
s, ϕ

j
s, Ms = j

)
=

1

∑
τ

j
s=0

p
(

τ
j
s

∣∣∣ϕj
s

)
p
(

zj
s

∣∣∣xj
s, τ

j
s , Ms = j

)

=
1

∑
τ

j
s=0

(
1− ϕ

j
s

)τ
j
s
p

vj
s

(
zj

s − hj
s

(
xj

s

))τ
j
s
(

ϕ
j
s

)(1−τ
j
s

)
p

vj
s

(
zj

s

)(1−τ
j
s

)
(9)

=
1

∑
τ

j
s=0

p
(

τ
j
s

∣∣∣ϕj
s

)
p

vj
s

(
zj

s − hj
s

(
xj

s

))τ
j
s
p

vj
s

(
zj

s

)(1−τ
j
s

)

According to Equation (9), in order to further use the VB method to obtain an approximate so-
lution, the conditional likelihood function is rewritten in exponential multiplication form as follows:

p
(

zj
s

∣∣∣xj
s, τ

j
s , Ms = j

)
= p

rj
s

(
zj

s − hj
s

(
xj

s

))τ
j
s
p

rj
s

(
zj

s

)(1−τ
j
s

)
(10)

Remark 2. In VB inference, selecting suitable conjugate prior distributions of random variables is
necessary. Therefore, a new HGSSM was established by choosing a reasonable series of prior PDFs.

In terms of noise processing, rationally modeling the process and measurement noise is critical
to estimation accuracy. In this article, the process noise in Equation (2) is white Gaussian noise.
Therefore, the one-step predictive PDF could be formulated by Gaussian distribution:

p
(

xj
s

∣∣∣zj
1:s−1

)
= N

(
xj

s; x̂j
s|s−1 , Pj

s|s−1

)
(11)

To handle the HTMN caused by measurement outliers, since STD is more robust to outliers
than Gaussian distribution [22,30,33], the likelihood PDF was modeled with STD. Based on the
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hierarchical characteristics of STD, the likelihood PDF in Equation (10) could be rewritten in
hierarchical Gaussian form as follows:

p
(

zj
s

∣∣∣xj
s, τ

j
s , Ms = j

)
= N

(
zj

s; hj
s

(
xj

s

)
, Rj

s/λ
j
s

)τ
j
s
N
(

zj
s; 0, Rj

s/λ
j
s

)(1−τ
j
s

)
(12)

p
(

λ
j
s

)
= G

(
λ

j
s;

σ
j
s

2
,

σ
j
s

2

)
(13)

Considering that τ
j
s selects a value between 0 and 1 through Bernoulli distribution, the

probability mass functions of τ
j
s are obtained as follows:

p
(

τ
j
s

∣∣∣ϕj
s

)
=
(

1− ϕ
j
s

)τ
j
s
(

ϕ
j
s

)(1−τ
j
s

)
(14)

Since the conjugate prior distributions guarantee that the posterior and prior distributions
can be in the same functional form, which can further ensure the utilization of the VB approach,
the analysis is greatly simplified when the conjugate prior distributions are used. In this paper, the
unknown time-varying mixing coefficient ϕ

j
s was assumed to obey beta distribution:

p
(

ϕ
j
s

)
= Be

(
ϕ

j
s; α̂

j
s|s−1 , β̂

j
s|s−1

)
(15)

With the determination of the the conjugate prior distributions, the HGSSM is established by
Equations (11)–(15), and a novel VB-based robust IMM filtering approach is presented based on the
constructed HGSSM.

3.2. Robust IMM Filter with UMLP

Similar to the conventional IMM method, the proposed IMM-VBRGAF approach also
comprises the following four main recursive processes: (1) the interacting/mixing process,
(2) the mode-conditioned filtering process, (3) the mode probabilities update process, and
(4) the combination process [28,29,32,34].

Step 1: Interacting/Mixing Process
The posterior PDF at time s− 1 is obtained as follows:

p(xs−1, ϕs−1|z1:s−1, Ms = j )

=
l

∑
i=1

p(xs−1, ϕs−1|z1:s−1, Ms−1 = i )P{Ms−1 = i|Ms = j, z1:s−1 }

=
l

∑
i=1

uij
s−1N

(
xs−1; x̂i

s−1, Pi
s−1

)
Be
(

ϕs−1; α̂i
s−1, β̂i

s−1

)
(16)

Here, the mixing probability uij
s−1 is obtained by utilizing the transition probability πij:

uij
s−1 =

1
ε̄ j

πijui
s−1 (17)

where the normalization constant ε̄ j can be calculated by

ε̄ j =
l

∑
i=1

πijui
s−1 (18)

and ui
s−1 denotes the mode probability when the time index is s− 1, i, j ∈ {1, 2, . . . l}.
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The sum term in Equation (16) can be approximated with the following formula:

p(xs−1, ϕs−1|z1:s−1, Ms = j ) ≈N
(

xs−1; x̂0j
s−1|s−1 , P0j

s−1|s−1

)
Be
(

ϕs−1; α̂
0j
s−1, β̂

0j
s−1

)
(19)

where the system state x̂0j
s−1|s−1 and covariance matrix P0j

s−1|s−1 can be combined by the
standard IMM approach, i.e.,

x̂0j
s−1|s−1 =

l
∑

i=1
uij

s−1|s−1 xi
s−1|s−1

P0j
s−1|s−1 =

l
∑

i=1
uij

s−1|s−1

(
Pi

s−1|s−1 +
(

x̂i
s−1|s−1 − x̂0j

s−1|s−1

)(
x̂i

s−1|s−1 − x̂0j
s−1|s−1

)T
) (20)

and the shape parameters α̂
0j
s−1 and β̂

0j
s−1 can also be mixed by the standard IMM method:

α̂
0j
s−1 =

l
∑

i=1
uij

s−1α̂i
s−1|s−1

β̂
0j
s−1 =

l
∑

i=1
uij

s−1 β̂i
s−1|s−1

(21)

Step 2: Mode-Conditioned Filtering Process
The mixing state vector x̂0j

s−1|s−1 , covariance P0j
s−1|s−1 , and shape parameters of beta

distribution α̂
0j
s−1 and β̂

0j
s−1 obtained in the previous process are used as the inputs of the

mode-conditioned filter. The one-step predictive PDF is written as follows:

p(xs, ϕs|z1:s−1, Ms = j ) 'N
(

xs; x̂j
s|s−1 , Pj

s|s−1

)
Be
(

ϕs; α̂
j
s|s−1 , β̂

j
s|s−1

)
(22)

Based on the posterior PDF N
(

xs−1; x̂j
s−1|s−1 , Pj

s−1|s−1

)
, x̂j

s|s−1 and Pj
s|s−1 can be com-

puted through the time-update step of the standard Gaussian approximate filter [20,35], i.e.,
x̂j

s|s−1 =
∫

f j
s−1

(
xj

s−1

)
N
(

xs−1; x̂j
s−1|s−1 , Pj

s−1|s−1

)
dxj

s−1

Pj
s|s−1 =

∫
f j
s−1

(
xj

s−1

)
f (j)T
s−1

(
xj

s−1

)
N
(

xs−1; x̂j
s−1|s−1 , Pj

s−1|s−1

)
dxj

s−1

−x̂j
s|s−1

(
x̂j

s|s−1

)T
+ Qj

s−1

(23)

The shape parameters α̂
j
s|s−1 and β̂

j
s|s−1 are spread by a forgetting factor ρ ∈ (0, 1]: α̂
j
s|s−1 = ρα̂

j
s−1

β̂
j
s|s−1 = ρβ̂

j
s−1

(24)

In the measurement update steps, the aim is to obtain the conditional PDFs. However,
an analytical solution does not exist due to the coupled conditional state vector and HTMN.
Aiming to solve this difficulty, the VB method was introduced to obtain the approximated
PDF q(·) based on the constructed HGSSM, i.e., [36–38]: p(Ξ|z1:s , Ms = j) ≈ q

(
xj

s

)
q
(

λ
j
s

)
q
(

τ
j
s

)
q
(

ϕ
j
s

)
Ξ ∆
=
{

xj
s, λ

j
s, τ

j
s , ϕ

j
s

} (25)

By introducing the VB technique, the approximated PDF q(θ) could be obtained by
minimizing the KL divergence as follows:
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q
(

xj
s

)
q
(

λ
j
s

)
q
(

τ
j
s

)
q
(

ϕ
j
s

)
= arg min KL

(
q
(

xj
s

)
q
(

λ
j
s

)
q
(

τ
j
s

)
q
(

ϕ
j
s

)∥∥∥p
(

Ξ
∣∣∣zj

s, Ms = j
))

(26)

Here, KL(q((·)‖p(·) )) ∆
=
∫

q(t) log
(

q(t)
p(t)

)
dt denotes the KL divergence, and the

optimal approximation can be obtained as follows:

ln q(θ) = EΞ(−θ) [logp(Ξ, z1:s|Ms = j )] + constθ (27)

where E[·] stands for the operation of expectation, θ represents one of the elements in Ξ,
Ξ(−θ) refers to the remaining elements in Ξ after removing the element θ, and const denotes
the constant for the variable.

The joint PDF p(Ξ, z1:s|Ms = j ) in Equation (27) is rewritten below:

p(Ξ, z1:s|Ms = j )
=p(zs|xs, λs, τs, ϕs, Ms = j )p(xs|z1:s−1, Ms = j )p(z1:s−1|Ms = j )
·p(λs|Ms = j )p(τs|ϕs, Ms = j )p(ϕs|z1:s−1, Ms = j ) (28)

=N
(

zs; h
(

xj
s

)
, Rj

s/λ
j
s

)τ
j
s
N
(

zs; 0, Rj
s/λ

j
s

)(1−τ
j
s

)
N
(

xs; x̂j
s|s−1 , Pj

s|s−1

)
·G
(

λs;
σ

j
s

2
,

σ
j
s

2

)(
1− ϕ

j
s

)τ
j
s
(

ϕ
j
s

)(1−τ
j
s

)
Be
(

ϕs; α̂
j
s|s−1 , β̂

j
s|s−1

)
p(z1:s−1)

Logarithmically, Equation (28) is further obtained in the following form:

logp
(

Θ, zj
1:s|Ms = j

)
= −1

2

(
xs − x̂j

s|s−1

)T(
Pj

s|s−1

)−1(
xs − x̂j

s|s−1

)
− 1

2
λ

j
sτ

j
s

(
1− τ

j
s

)(
zs − hj

s(xs)
)T(

Rj
s

)−1(
zj

s − hj
s(xs)

)
− 1

2
λ

j
s

(
1− τ

j
s

)
zT

s

(
Rj

s

)−1
zs +

(
m + σ

j
s

2
− 1

)
log λ

j
s −

σ
j
s

2
λ

j
s (29)

+
(

α̂
j
s|s−1 − 1

)
log ϕ

j
s +

(
β̂

j
s|s−1 − 1

)
log
(

1− ϕ
j
s

)
+
(

1− τ
j
s

)
log ϕ

j
s + τ

j
s log

(
1− ϕ

j
s

)
+ cΘ

Based on variational Bayesian theory, the posterior distribution of each variable can
be approximated by fixed-point iteration.

Proposition 1. Let θ = xj
s; utilizing Equations (28) and (25), q(D+1)

(
xj

s

)
is updated by the

following formula:

q(D+1)
(

xj
s

)
= N

(
xj

s; x̂(D+1)
s|s , P(D+1)

s|s

)
(30)

Here, q(D+1)(·) stands for the approximated PDFs after (D + 1) iterations, and the mean
x̂(D+1)

s|s and covariance P(D+1)
s|s are updated using Gaussian approximate filters:
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G(D+1)j
s =P(D+1)j

xz,s|s−1

(
P(D+1)j

zz,s|s−1

)−1
(31)

x̂(D+1)j
s|s =x̂j

s|s−1 − G(D+1)j
s

(
zj

s − ẑ(D+1)j
s|s−1

)
(32)

P(D+1)j
s|s =Pj

s|s−1 − G(D+1)j
s P(D+1)j

zz,s|s−1

(
G(D+1)j

s

)T
(33)

z(D+1)j
s|s−1 =

∫
hj

s

(
xj

s

)
N
(

xj
s; x̂j

s|s−1 , Pj
s|s−1

)
dxj

s (34)

P(D+1)j
zz,s|s−1 =

∫
hj

s

(
xj

s

)
h(j)T

s

(
xj

s

)
N
(

xj
s; x̂j

s|s−1 , Pj
s|s−1

)
dxj

s − ẑ(D+1)j
s|s−1

(
ẑ(D+1)j

s|s−1

)T
+ R̂(D+1)

s (35)

P(D+1)j
xz,s|s−1 =

∫
xj

s

(
hj

s

(
xj

s

))T
N
(

xj
s; x̂j

s|s−1 , Pj
s|s−1

)
dxj

s − x̂j
s|s−1

(
z(D+1)j

s|s−1

)T
(36)

Here, G(D+1)j
s denotes the Kalman gain, and the modified measurement noise covariances are

computed below:

R̂(D+1)j
s = Rj

s/E(D+1)
[
λ

j
s

]
E(D+1)

[
τ

j
s

]
(37)

Proposition 2. Let θ = λ
j
s; utilizing Equations (25) and (28), q(D+1)

(
λ

j
s

)
is updated by the

following formula:

q(D+1)
(

λ
j
s

)
= G

(
λs; a(D+1)j

s , b(D+1)j
s

)
(38)

a(D+1)j
s and b(D+1)j

s are calculated by:

a(D+1)j
s = 0.5

(
m + σ

j
s

)
(39)

b(D+1)j
s = 0.5

{
E(D+1)

[
τ

j
s

]
tr
(

A(D+1)
s E(D)

[
R−1

s

])
+E(D+1)

[
1− τ

j
s

]
tr
(

B(D+1)
s E(D)

[
R−1

s

])
+ σ

j
s

}
(40)

where A(D+1)
s and B(D+1)

s are defined as

A(D+1)j
s =

∫ (
zs − hj

s(xs)
)(

zs − hj
s(xs)

)T
N
(

xs; x̂j
s|s−1 , Pj

s|s−1

)
dxj

s (41)

B(D+1)j
s =

∫
zs(zs)

T N
(

xs; x̂j
s|s−1 , Pj

s|s−1

)
dxj

s (42)

Proposition 3. Let θ = τ
j
s ; utilizing Equations (28) and (25), log q(D+1)

(
τ

j
s

)
is obtained

as follows:

ln q(D+1)
(

τ
j
s

)
= −0.5λ

j
sτ

j
s

(
1− τ

j
s

)(
zs − hj

s(xs)
)T(

Rj
s

)−1(
zj

s − hj
s(xs)

)
−0.5λ

j
s

(
1− τ

j
s

)
zT

s

(
Rj

s

)−1
zs +

(
1− τ

j
s

)
log ϕ

j
s + τ

j
s log

(
1− ϕ

j
s

)
+ cτ

(43)

According to Equation (43), q(D+1)
(

τ
j
s

)
can be updated by BRV switching values between 1

and 0, and the event probabilities can be calculated by the following formulas:

Pr(D+1)
(

τ
j
s = 1

)
= ∆(D+1)j exp

{
S(D+1)j

1

}
(44)

Pr(D+1)
(

τ
j
s = 0

)
= ∆(D+1)j exp

{
S(D+1)j

2

}
(45)



J. Mar. Sci. Eng. 2023, 11, 1243 10 of 23

Here, ∆(D+1)j is the normalization constant, and S(D+1)j
1 and S(D+1)j

2 is calculated as follows:

S(D+1)j
1 = E(D+1)

[
log
(

1− ϕ
j
s

)]
− 0.5tr

(
A(D+1)j

s E(D+1)
[
λ

j
s

]
R−1

s

)
(46)

S(D+1)j
2 = E(D+1)

[
log
(

ϕ
j
s

)]
− 0.5tr

(
B(D+1)j

s E(D+1)
[
λ

j
s

]
R−1

s

)
(47)

Proposition 4. Let θ = ϕ
j
s; utilizing Equations (25) and (28), q(D+1)

(
ϕ

j
s

)
is updated as follows:

q(D+1)
(

ϕ
j
s

)
= Beta

(
ϕs; α̂

(D+1)j
s , β̂

(D+1)j
s

)
(48)

where

α̂
(D+1)j
s = α̂

j
s|s−1 − E(D+1)

[
τ

j
s

]
+ 1 (49)

β̂
(D+1)j
s = β̂

j
s|s−1 + E(D+1)

[
τ

j
s

]
(50)

The necessary expectations calculated in VB iterations are given as follows:

E(D+1)
[
τ

j
s

]
=

p(D+1)
(

τ
j
s = 1

)
p(D+1)

(
τ

j
s = 1

)
+ p(D+1)

(
τ

j
s = 0

) (51)

E(D+1)
[
λ

j
s

]
= S(D+1)j

1 /S(D+1)j
2 (52)

E(D+1)
[

ϕ
j
s

]
= α̂

(D+1)j
s /

(
α̂
(D+1)j
s + β̂

(D+1)j
s

)
(53)

E(D+1)
[
log ϕ

j
s

]
= ψ

(
α̂
(D+1)j
s

)
− ψ

(
α̂
(D+1)j
s + β̂

(D+1)j
s

)
(54)

E(D+1)
[
log
(

1− ϕ
j
s

)]
= ψ

(
β̂
(D+1)j
s

)
− ψ

(
α̂
(D+1)j
s + β̂

(D+1)j
s

)
(55)

where ψ(·) stands for a digamma function.

Step 3: Mode Probabilities Update Process
In this process, in order to update the mode probability µ

j
s, the likelihood function of

the designed IMM-VBRGAF can be jointly inferred by the VB approach, i.e.,

uj
s =

1
e

Λj,s ēj (56)

where

e =
l

∑
j=1

Λj,s ēj (57)

Here, ēj represents the normalization constant, and Λj,s = p(zs|z1:s−1, Ms = j ) denotes
the measurement likelihood function. The logarithmic form is obtained as follows:

ln p(zs|z1:s−1, Ms = j ) = L(Ω) + KL(Ω|p(Ξ|z1:s, Ms = j ) ) (58)

where the L(Ω) indicates the evidence lower bound and

Ω(xs, λs, τs, ϕs|z1:s, Ms = j ) = q
(

xj
s

)
q
(

λ
j
s

)
q
(

τ
j
s

)
q
(

ϕ
j
s

)
(59)
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By utilizing the VB inference iterations, the term KL(·) tends to be zero, and Λj,s can
be calculated by

Λj,s ' exp{L(Ω)} (60)

and

L(Ω) = ln p(zs|z1:s−1, Ms = j )
= ln p(z1:s|Ms = j )− ln p(z1:s|Ms = j ) (61)

= − ln p(z1:s−1|Ms = j ) + EΩ

[
ln

p(z1:s, xs, λs, τs, ϕs|Ms = j )
p(xs, λs, τs, ϕs|z1:s, Ms = j )

]
where E[·] represents an expectation term, and

p(xs, λs, τs, ϕs|z1:s, Ms = j ) ' q
(

xj
s

)
q
(

λ
j
s

)
q
(

τ
j
s

)
q
(

ϕ
j
s

)
(62)

L(Ω) can be rewritten in the following form:

L(Ω) = EΩ[ln p(z1:s, xs, λs, τs, ϕs|Ms = j )]− EΩ

[
ln q
(

xj
s

)
q
(

λ
j
s

)
q
(

τ
j
s

)
q
(

ϕ
j
s

)]
− ln p(z1:s−1|Ms = j ) (63)

where

p(z1:s, xs, λs, τs, ϕs|Ms = j )
=p(zs|xs, λs, τs, ϕs, Ms = j )p(xs|z1:s−1, Ms = j )p(z1:s−1|Ms = j ) (64)

·p(λs|Ms = j )p(τs|ϕs, Ms = j )p(ϕs|z1:s−1, Ms = j )

According to Equation (59), L(Ω) can be rewritten as follows:

L(Ω) = EΩ[ln p(zs|xs, λs, τs, ϕs, Ms = j )] + EΩ[ln p(xs|z1:s−1, Ms = j )]
+ EΩ[ln p(λs|Ms = j )] + EΩ[ln p(τs|ϕs, Ms = j )]

+ EΩ[ln p(ϕs|z1:s−1, Ms = j )]− EΩ

[
ln q
(

xj
s

)]
− EΩ

[
ln q
(

λ
j
s

)]
− EΩ

[
ln q
(

τ
j
s

)]
− EΩ

[
ln q
(

ϕ
j
s

)]
(65)

Step 4: Combination Process
Based on the Bayes’ theories, the system state vector x̂s|s and covariance P̂s|s are

computed by the total probability formula below:
x̂s|s =

l
∑

i=1
ui

s x̂i
s|s

Ps|s =
l

∑
i=1

ui
s

(
Pi

s|s +
(

x̂i
s|s − x̂s|s

)(
x̂i

s|s − x̂s|s
)T
) (66)

The proposed IMM-VBRGAF algorithm combines the time update in Equations (23)
and (24) with the measurement update in Equations (30)–(55) and operates recursively
based on the IMM approach. A detailed flow chart and pseudocode are provided in
Figure 1 and Algorithm 1, respectively.



J. Mar. Sci. Eng. 2023, 11, 1243 12 of 23

Algorithm 1: One pseudocode implementation cycle for the proposed IMM-
VBRGAF model.

Input: f j
s (·), hj

s(·), zs, x̂j
s−1|s−1 , Pj

s−1|s−1 , u0, πij, α̂
j
s−1|s−1 , β̂

j
s−1|s−1 , n, m, ρ, Ni,

Qs−1, Rs
Process 1: Interacting/Mixing
Combine probability uij

s−1 using Equations (17) and (18)

Combine state x̂0j
s−1|s−1 and covariance P̂0j

s−1|s−1 using Equation (20)

Combine α̂
0j
s−1|s−1 and β̂

0j
s−1|s−1 using Equation (21)

Process 2: Mode-Conditioned Filtering
Time updating:
Predict system state x̂j

s|s−1 and covariance P̂j
s|s−1 using Equation (23)

Predict shape parameters α̂
j
s|s−1 and β̂

j
s|s−1 using Equation (24)

Measurement updating:
Obtain initial expectations using Equations (51)–(55)
for D = 0, 1, 2, · · · , Ni − 1 do

Calculate R̂(D+1)j
s using Equation (37)

Update q(D+1)
(

xj
s

)
as a Gaussian distribution

Calculate x(D+1)j
s|s , P(D+1)j

s|s using Equations (32) and (33)

Calculate A(D+1)j
s and B(D+1)j

s using Equations (41) and (42)
Update q(D+1)

(
τ

j
s

)
as a Bernoulli distribution, given q(D+1)

(
xj

s

)
Calculate E(D+1)

[
τ

j
s

]
using Equation (51)

Update q(D+1)
(

λ
j
s

)
as a Gamma distribution, given q(D+1)

(
τ

j
s

)
and

q(D+1)
(

xj
s

)
Calculate E(D+1)

[
λ

j
s

]
using Equation (52)

Update q(D+1)
(

ϕ
j
s

)
as a beta distribution, given q(D+1)

(
xj

s

)
, q(D+1)

(
λ

j
s

)
, and

q(D+1)
(

τ
j
s

)
Calculate E(D+1)

[
log ϕ

j
s

]
and E(D+1)

[
log
(

1− ϕ
j
s

)]
using

Equations (54) and (55)

Sub-filter outputs x̂j
s|s = x̂(D+1)j

s|s , P̂j
s|s = P̂(D+1)j

s|s
Process 3: Mode Probabilities Update
Calculate uj

s using Equations (56)–(65)
Process 4: Combination
Calculate x̂s|s and Ps|s utilizing Equation (66)
Output: x̂s|s , Ps|s
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Figure 1. Flow chart for the proposed IMM-VBRGAF method.

4. Maneuvering Target Tracking Simulation

To demonstrate the effectiveness and advantages of the designed IMM-VBRGAF
method, a transformation dynamic maneuvering target tracking simulation was utilized. A
constant-velocity (CV) model and a coordinate turn (CT) model were used alternately for
describing the maneuvering target dynamics. The mode indexes Ms = 1 and Ms = 2 repre-
sent the current CV and CT models, respectively, which are described in detail as follows:

xs,CV =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

xs−1,CV + gs−1,CV (67)

xs,CT =



1
sin(ξT)

ξ
0 −1− cos(ξT)

ξ
0

0 cos(ξT) 0 − sin(ξT) 0

0
1− cos(ξT)

ξ
1

sin(ξT)
ξ

0

0 sin(ξT) 0 cos(ξT) 0
0 0 0 0 1


xs−1,CT + gs−1,CT (68)

The system state vectors of the two models are defined as follows:

xs,CV = (xs ẋsysẏs)
T (69)

xs,CT = (xs ẋsysẏsξs)
T (70)

where xs and ys denote the horizontal position, ẋs and ẏs denote the horizontal velocity, ξs
represents the unknown turn rate, and the sampling period T was set to be 1 s. The process
noise covariances were set as follows:

Qs,CV =

[
q1M2×2 02×2

02×2 q1M2×2

]
(71)
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Qs,CT =

 q1M2×2 02×2 0
02×2 q1M2×2 0
01×2 01×2 q2T

 (72)

where

M2×2 =

[
T3

3
T2

2
T2

2 T

]
(73)

Here, the power spectral densities q1 and q2 related to xs were set to be 0.1 m2s−3 and
1.75 × 10−4 s−3.

The switching between the CV model and the CT model was governed by a Markov

chain, and the matrix of transition probabilities was initialized as Π =

[
0.95 0.05
0.05 0.95

]
.

A sensor located at
(

px, py
)

obtained range and bearing measurements according
to [39]:

h(xs) =

[ √
(xs − px)

2 +
(
ys − py

)2

arctan
((

ys − py
)
/(xs − px)

) ] (74)

Referring to [30,33], the HTMN is formulated below:

rs ∼
{

N(0, 100R) u.p. 0.1
N(0, R) u.p. 0.9

(75)

where u.p. stands for “under a probability”, and the nominal covariance matrix of mea-
surement noise is R = diag

(
(10 m)2, (0.1◦)2

)
.

In this simulation, the target moved alternately according to the CV model and the CT
model from 0 s to 1000 s, i.e., from 0 s to 200 s, 401 s to 600 s, and 801 s to 1000 s, the target
moved based on the CV model, whereas it implemented the CT model with a turn rate of
5◦/s from 201 s to 400 s and from 601 s to 800 s. The system state vector x0 and covariance
matrix P0 were initialized as (10,000 m, 10 m/s, 10,000 m, 10 m/s, 5◦/s)T and diag (100 m2,
10 m2/s2, 100 m2, 10 m2/s2, 10 m rad2/s2), respectively. The position of the sensor was
(0 m, 0 m).

Referring to [24,29], the time-varying UMLP was set as follows:

p(ϕs) =


0.1 for 1 ≤ s ≤ 200
0.3 for 201 ≤ s ≤ 600
0.1 for 601 ≤ s ≤ 1000

(76)

To describe the received or lost measurements in the simulation, Figure 2 shows the
binary flag sequence in one Monte Carlo cycle. From 1 s to 200 s the measurement loss
probability was assumed to be 0.1; from 201 s to 600 s, the measurement loss probability
increased to 0.3 and then decreased to 0.1 until 1000 s. When random measurement
loss occurs, the system state vector information contained in the measurement cannot
be collected.

Four IMM filters, namely the VB-based KF in the IMM framework with unknown
noise covariances (IMM-VBKF) [25], the IMM variational Bayesian-based adaptive KF with
UMLP (IMM-VBAKF) [29], the outlier-robust STD-based IMM filter utilizing the square-
root cubature KF to address nonlinear problems (IMM-ORSRCKF) [28], and the designed
IMM filter considering HTMN and UMLP, were compared.
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Measurement Received

Measurement Lost

Figure 2. The binary flag sequence in one Monte Carlo cycle.

In order to verify the estimation accuracy of IMM-VBRGAF and existing methods, we
selected two evaluation indicators, namely root mean square error (RMSE) and averaged
RMSE (ARMSE), and these indicators of position were defined similarly to [40,41], as follows:

RMSEpos(s) =

√√√√ 1
Nmc

Nmc

∑
k=1

((
x̂k

s − xk
s
)2

+
(
ŷk

s − yk
s
)2
)

(77)

ARMSEpos =
1
Ts

Ts

∑
s=1

RMSEpos(s) (78)

where Nmc = 1000 is the Monte Carlo run times;
(

xk
s , yk

s

)
and

(
x̂k

s , ŷk
s

)
denote the true

and estimated position in the k-th Monte Carlo run, respectively; and Ts refers to the total
sampling number. The RMSE and ARMSE of the turn rate or velocity were defined in a
similar form of position.

The whole simulation could be divided into four experimental steps. In the first step,
the estimation accuracy of IMM-VBRGAF and the state-of-the-art methods was evaluated.
Figure 3 shows the tracking trajectory of the proposed method compared with the other
techniques. The tracking trajectory of the proposed algorithm was closer to the real moving
trajectory of the surface maneuvering target than that of the existing methods. Although
the IMM-ORSRCKF and IMM-VBAKF methods could complete the target tracking task,
the tracking trajectory showed large biases. Due to the joint action of HTMN and UMLP,
filter divergence occurred in the tracking process of the IMM-VBKF method, which failed
to complete the tracking task (thus, it is not included in the figure).

Figures 4–6 show the RMSEs of the positions, velocities, and turn rates of these meth-
ods. The RMSE curves of the IMM-VBKF algorithm were not plotted completely in order
to clearly display the other curves in Figures 4–6. The reason for the poor performance of
the IMM-VBKF method was that the coexistence of random measurement loss with HTMN
had a significant impact on the filtering accuracy. As shown in Figures 4–6, the designed
IMM-VBRGAF method had smaller RMSEs than the existing algorithms. The proposed
filtering approach demonstrated increased robustness to measurement outliers and adapted
effectively to random measurement loss. As illustrated in Figures 4–6, the proposed method
had great advantages in estimation accuracy compared to the existing filters.
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Figure 3. Tracking trajectories of different filters.
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Figure 4. RMSEs of position for different filters.

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

0

2

4

6

8

10

12

14

16

18

20

R
M

S
E

v
e

l (
m

/s
)

IMM-VBKF

IMM-ORSRCKF

IMM-VBAKF

The proposed filter

CV model CT model CV model CT model CV model

Figure 5. RMSEs of velocity for different filters.

Table 3 lists in detail the ARMSEs of all filters for different time periods, and the single-
step implementation time (SSIT) with an iteration number of Ni = 8 is also presented
for comparison. The computational complexity of the IMM-VBKF, IMM-ORSRCKF, IMM-
VBAKF, and proposed IMM-VBRGAF methods was approximated as O

((
12n3 + 8n2m

+12nm2 + 3m3)lNi +4n3l
)
, O

((
2n3/3 + 20n2m + 14nm2 + 4m3)lNi +

(
14n3 + 8m3/3

)
l
)
,
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O
((

13n3/3 + 4n2m + 14nm2 +8m3)lNi + 4n3l
)
, and O

((
26n3/3 + 4n2m + 18nm2 + 12m3)

·lNi + 4n3l
)
, respectively. Based on the theoretical computational complexity of the pro-

posed filter and existing algorithms and the ARMSEs presented in Table 3, the proposed
filter achieved a significant improvement in estimation accuracy, although the computa-
tional complexity increased slightly. The SSITs in Table 3 are consistent with this conclusion.
Figure 7 provides the true and estimated loss probabilities of the designed filter. The results
in Figure 7 indicate that when the random measurement loss probability changed, the
designed IMM-VBRGAF could achieve the adaptive estimation of UMLP.
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Figure 6. RMSEs of turn rate for different filters.

Table 3. ARMSE and SSITs of all filters for distinct periods of time. Method A, Method B, and Method
C represent the IMM-VBKF [25], IMM-ORSRCKF [28], and IMM-VBAKF [29] methods, respectively.
Method D represents the designed IMM-VBRGAF method.

Time (s) Method A Method B Method C Method D

A
R

M
SE

po
s

(m
)

1∼200 25.12 13.70 22.80 10.10
201∼400 299.98 39.55 30.85 16.15
401∼600 1291.14 32.50 27.45 12.69
601∼800 2480.05 27.99 26.58 13.66
801∼1000 3188.77 20.51 23.50 11.08

A
R

M
SE

ve
l

(m
/s

)

1∼200 2.43 1.95 3.69 1.51
201∼400 13.01 5.79 6.36 3.64
401∼600 17.24 3.15 4.49 2.08
601∼800 17.99 5.09 5.79 3.27
801∼1000 18.35 2.69 4.03 1.90

A
R

M
SE

om
g

(d
eg

/s
)

1∼200 0.76 0.67 1.20 0.55
201∼400 4.48 3.04 3.35 2.42
401∼600 3.69 1.39 1.87 1.15
601∼800 6.10 2.84 3.21 2.34
801∼1000 3.38 1.33 1.89 1.18

SS
IT

(m
s)

1∼1000 1.45 1.29 1.14 1.42

In the second step of the simulation, the influence of different UMLPs on the filtering
performance was tested. The UMLP in Equation (76) was set to different values, ranging
from 0.1 to 0.3, throughout the simulation. Figures 8–10 show the ARMSEs of IMM-
VBRGAF and the other methods under various UMLP values. With an increase in the UMLP,
the performance of IMM-VBKF and IMM-ORSRCKF was affected significantly. The main
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reason for this was that these two filters could not adaptively address the measurement
loss. Although the IMM-VBAKF method could address the random measurement losses,
it performed worse than the designed filter because it ignored the HTMN induced by
measurement outliers. Since the IMM-VBRGAF could address the HTMN and UMLP at
the same time, it exhibited superior adaptability to various random UMLPs and achieved a
higher filtering accuracy than the existing filters.
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Figure 7. Estimate of measurement loss probabilities for the proposed filtering approach.
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The third simulation step verified the filtering accuracy under different probabilities
of measurement outliers. Figures 11–13 exhibit the curves of the ARMSEs with outlier
probabilities ranging from 0.05 to 0.15. Figures 11–13 show that the IMM-VBKF model did
not exhibit a satisfactory performance, further corroborating the conclusion regarding IMM-
VBKF drawn from the previous two experimental steps. As the probability of measurement
outliers increased, both IMM-VBKF and IMM-VBAKF exhibited a noticeable decline in
estimation accuracy. This decline could be attributed to their reliance on the assumption that
the measurement noise followed a Gaussian distribution, which is known to be sensitive to
outliers. The performance of IMM-ORSRCKF was worse than that of IMM-VBRGAF, since
this model assumed that all measurements could be obtained quickly, which is not possible
in the presence of random measurement loss. The results in Figures 11–13 validated that
the designed filter had superior adaptive estimation performance than the existing filters
under different measurement outlier probabilities.
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Figure 11. ARMSEpos for each filter with different outlier probabilities.

In the fourth experimental step, the impact of variations in the iteration number Ni on
the filtering performance was assessed for each model. Considering the trend of divergence
displayed by IMM-VBKF, only IMM-ORSRCKF, IMM-VBAKF, and the designed filter were
compared in this step. Figures 14–16 show the ARMSE curves for a series of iteration
numbers: Ni = 1, 2, 3, · · · , 15. The results indicated that IMM-VBRGAF began to show
superior estimation accuracy when Ni ≥ 2 and converged when the iteration number
was fixed at 3. In comparison with the other algorithms, the proposed filter converged
faster. While the Ni of IMM-VBRGAF gradually increased, the filtering accuracy improved.
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However, it is essential to take computational efficiency into account. To strike a balance
between computing costs and estimation accuracy, the recommended variational iteration
number is between 4 and 8.
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Figure 12. ARMSEvel for each filter with different outlier probabilities.
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Figure 15. ARMSEvel for each filter with Ni = 1, 2, · · · , 15.
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Figure 16. ARMSEomg for each filter with Ni = 1, 2, · · · , 15.

5. Conclusions

The coexistence of measurement outliers and random measurement losses results
from the combination of unreliable sensors and interrupted communication channels,
posing significant challenges in state estimation for surface maneuvering targets. As
a result, surface maneuvering target tracking becomes highly challenging. Aiming to
efficiently deal with measurement outliers and adaptively estimate the UMLP in JMSs,
we designed an effective and robust IMM approach. Firstly, we modeled the HTMN
using STD, and the likelihood function was transformed into an exponential product form
by introducing BRVs. Secondly, to directly utilize the VB technique, we established a
new HGSSM. The state vector, distribution parameters, BRV, and UMLP were inferred
simultaneously according to the VB technique, and a Gaussian approximate filter was
utilized to address the system nonlinearity. Finally, the results from the simulation of
maneuvering target tracking validated the superiority of the IMM-VBRGAF technique over
existing filters in terms of estimation accuracy, despite a minor increase in computational
costs. Furthermore, the proposed approach exhibited enhanced robustness across various
measurement outlier probabilities and achieved a higher filtering accuracy across different
UMLPs. This algorithm could be utilized to address the state estimation issues in JMSs with
the coexistence of HTMN and UMLP. In future research, the proposed tracking approach
will be extended to multi-sensor networks, which are more in line with actual application
scenarios. Real data surface target tracking experiments will also be considered based on
the extended theoretical contents.
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