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Abstract: Wind turbines and their associated parts are subjected to cyclical loads, such as bending,
torque, longitudinal stresses, and twisting moments. The novel spatiotemporal reliability technique
described in this research is especially useful for high-dimensional structural systems that are either
measured or numerically simulated during representative observational time span. As this study
demonstrates, it is possible to predict risks of dynamic system failure or damage given the in situ
environmental load pattern. As an engineering example for this reliability, the authors have chosen
10-MW floating wind turbines and their dynamic responses, under environmental loadings, caused
by wind and waves. The aim of this study was to benchmark a state-of-the-art approach suitable
for the reliable study of offshore wind turbines. Existing reliability methods do not easily cope
with dynamic system high dimensionality. The advocated reliability technique enables accurate and
efficient assessment of dynamic system failure probability, accounting for system nonlinearities and
high dimensionality as well as cross-correlations between different system components.

Keywords: floating wind turbine; green energy; risk; reliability; dynamic system; wind energy

1. Introduction

As more offshore wind turbines have recently been developed, wind energy is taking
lead in the field of renewable green energy. Wind energy is accessible, cost-free, and has
great potential to be environmentally friendly. Installation of new, larger wind turbines has
been relocated offshore due to available space and greater offshore wind potential [1]. No
greenhouse gases, such as carbon dioxide, sulphur oxide, or nitrogen oxide, are released
during the wind turbine’s operation. The contemporary market for floating (offshore) wind
turbines (FWT, FOWT) has expanded along with a variety of accompanying technologies
currently developed and already in use. According to the International Renewable Energy
Agency (IRENA), offshore wind energy capacity will increase about 60% worldwide by
2050 [2]. In Europe, the Netherlands is leading, followed by UK, Belgium, and Germany.
As offshore wind turbines have been further developed and newly put into service, there is
a growing need to economically optimize the design of new turbines while maintaining
their safety margins along with operational readiness levels. To minimize failures, improve
design, and reduce maintenance downtime, accurate loads and structural reaction predic-
tion methods are required to be used along with control algorithms, aerodynamics models,
and dynamics of FOWTs.

Bottom-fixed monopile windfarms make up the majority of modern offshore wind-
farms. However, bottom-fixed wind turbines are not yet profitable [3]. About 80% of wind
turbines are installed in deep seas, where floating offshore wind turbines (FOW) offer a
considerable advantage. For an illustration of the various types of floating wind turbines,
see Figure 1 up.
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Figure 1. (Up): The evolution of FWTs. (Down): Reliability and downtime in FWT sub-assemblies [3]. 
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motor, blades, and control. The majority of wind turbines, however, did not survive as 
long as they were expected to, which had negative effects on expenses. According to stud-
ies on wind turbine drivetrain status monitoring, the drivetrain gearbox failure may cause 
the highest downtime per repair [3–5]. For alternative approaches on the design of FOWTs 
as well as the current research status and future prospects, see [6–11]. As offshore wind 
industry improves designs, production, and deployment of big FWTs (10 MW and above), 
it should lead to even more refined designs and reduced failure rates within the next dec-
ade (see Figure 1). It would then be possible to build and execute a better FWT structural 
design and control system with the help of accurate and efficient calculations of FWT fail-
ure risks, [12–22]. 

To understand and develop numerical methods for estimating effects of waves and 
wind on wind turbines, several studies were carried out. Fatigue damage along with ex-
treme structural responses of semi-submersible FOWTs were assessed in [5] while ac-
counting for wave nonlinearities. The FWT drivetrain dynamics of a 750 KW spar type 
FWT was highlighted by [6–8]. Drivetrains for floating wind turbines have more complex 
load uncertainties than drivetrains for land-based turbines because of additional hydro-
dynamic effects. For future 10-MW FWT drivetrains, there is a pressing need to provide 
novel drivetrain design along with proper dynamic analysis. In Refs. [9–11], authors con-
tributed to further developing of the 10-MW FWT design, modelling, and investigation of 
FWTs dynamic behavior. Hence, research on dynamic system resilience under high loads 
is critical for design of future low-risk operations. In addition, loads acting on FWTs 

Figure 1. (Up): The evolution of FWTs. (Down): Reliability and downtime in FWT sub-assemblies [3].

In the past two decades, the FWT size increased to save costs, and as its capacity
increased, new technological developments were required for crucial parts including the
motor, blades, and control. The majority of wind turbines, however, did not survive as
long as they were expected to, which had negative effects on expenses. According to
studies on wind turbine drivetrain status monitoring, the drivetrain gearbox failure may
cause the highest downtime per repair [3–5]. For alternative approaches on the design of
FOWTs as well as the current research status and future prospects, see [6–11]. As offshore
wind industry improves designs, production, and deployment of big FWTs (10 MW and
above), it should lead to even more refined designs and reduced failure rates within the
next decade (see Figure 1). It would then be possible to build and execute a better FWT
structural design and control system with the help of accurate and efficient calculations of
FWT failure risks, [12–22].

To understand and develop numerical methods for estimating effects of waves and
wind on wind turbines, several studies were carried out. Fatigue damage along with
extreme structural responses of semi-submersible FOWTs were assessed in [5] while ac-
counting for wave nonlinearities. The FWT drivetrain dynamics of a 750 KW spar type FWT
was highlighted by [6–8]. Drivetrains for floating wind turbines have more complex load
uncertainties than drivetrains for land-based turbines because of additional hydrodynamic
effects. For future 10-MW FWT drivetrains, there is a pressing need to provide novel
drivetrain design along with proper dynamic analysis. In Refs. [9–11], authors contributed
to further developing of the 10-MW FWT design, modelling, and investigation of FWTs
dynamic behavior. Hence, research on dynamic system resilience under high loads is
critical for design of future low-risk operations. In addition, loads acting on FWTs exhibit
stochastic behavior due to the wind action in terms of speed, direction, shear, and vorticity,
thus necessitating rigorous load analysis throughout designed operational lifetime of wind
turbine drivetrains. The methodology advocated in this study is based on structural dy-
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namic models, aerodynamic models, and control algorithms. In this study, the SIMPACK
(multibody simulation method) software tool was used to assess floating wind turbine
drivetrains’ empirical bending moments.

To identify structural load reactions, proper understanding of the drivetrains’ dynamic
behavior is required. This will allow us to decrease the failure rate, increase service life,
and save costs. In the hydrodynamic study of FWTs, irregular waves and water depth
are two separate concepts since FWTs are frequently placed in shallow-water areas where
waves become more nonlinear and create a significant increase in hydrodynamic loads.
One of two strategies may be used to evaluate extreme FWT loads. The first strategy is to
simulate extreme events that lead to large structural loads. The second strategy, in contrast,
simulates a wind turbine under normal operational conditions; the extreme probability
distribution tail is then extrapolated [23–30].

2. Theoretical Background

The FWT drivetrain is decoupled in the two following steps. First, to identify in situ
environmental loads and resulting stresses of the drivetrain, global aero-hydro-elastic-
servo experiments in FAST (fatigue, aerodynamics, structures, and turbulence) is run.
Following that, the loads and movements are employed as inputs in an SIMPACK multi-
body drivetrain model. The gearbox’s feedback forces need to be minimized in an optimal
way given the fact that the eigen-frequencies of the gearbox are substantially higher than
those of the WT structure.

2.1. Hydro-Servo-Aero-Elastic Analysis Using FAST

FAST or Open FAST is the name of the engineering tool created by NREL to study
the coupled dynamic response of FWT. To establish a time domain coupled nonlinear,
aero-hydro-servo-elastic modelling, FAST employs aerodynamics and hydrodynamics
models along with control electrical system (servo) models and structural (elastic) dynamics
models. Lattice or tubular towers, solid or shaky hubs, upwind or downwind rotors, two-
or three-blade horizontal axis FWT rotors, pitch and stall control, and rigid or unbalanced
hubs may all be examined using the FAST program. Rotor blades and floating structures
with aerodynamic and hydrodynamic stresses as well as FAST’s AeroDyn and HydroDyn
modules are then connected to SIMPACK.

2.2. Hydrodynamics

Hydrodynamic loads acting on 10-MW FWT are evaluated using NREL HydroDyn
simulation modules and time domain hydrodynamic modules coupled to SIMPACK in
order to enable FWT’s aero-hydro-servo-elastic modelling. The Morrison equation, along
with linear potential theory, were used to determine the wind turbine floater hydrodynamic
stresses. WAMIT (WAMIT, Inc., Chestnut Hill, MA, USA, www.WAMIT.com (accessed
on 1 January 2023)) was used to assess damping coefficients, extra mass, and first-order
wave excitation load transfer functions. Semi-submersible floater hydrodynamic stresses
were calculated using potential flow theory along with Morison’s drag term. WAMIT
panel code computes hydrodynamic coefficients, such as extra mass as well as potential
damping coefficients, and it computes first-order wave excitation load transfer functions in
the frequency domain first in accordance with potential flow theory. The hydrodynamic
coefficients are then transformed via convolution into time domain.

2.3. Structural Dynamics

Combined multi-body along with structural modal approach is taken into account by
FAST software to account for FWT’s structural dynamics. The tower, blades, and driveshaft
are regarded as flexible bodies, whereas the nacelle, hub, and floater are rigid bodies. The
Rayleigh damping model was used to model structural damping. Resolving equations
of motion produced by Kane’s technique for rigid–flexible-coupled systems were used to
predict time domain dynamic structural responses [5].

www.WAMIT.com
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2.4. Dynamics of Control System

The control system utilized in 10-MW FWT has two operating modes: (a) below-
rated and (b) full-rated. In order to maximize power production, the generator’s torque–
speed curve regulates the FWT rotor’s rotational speed, keeping an appropriate tip speed
ratio within the below-rated region. In order to reduce structural stresses and keep the
specified power output, a proportional-integral (PI) algorithm was utilized, regulating FWT
blade pitch angle across the whole range of the motor’s rated power. The PI parameters
obtained from a land-based reference wind turbine (RWT) were altered to prevent adverse
damping effects.

2.5. Aerodynamics

Aerodynamic loads acting on FWT blades were assessed using blade element mo-
mentum (BEM) theory. The BEM technique combines a variety of complex modifications,
including dynamic stall corrections, tip loss, hub loss, and skewed input. Prandtl ad-
justments were utilized to take into account FWT hub and blade tip losses brought on
by the small number of blades. Glauert correction was used for induction factors. The
skewed inflow adjustment was implemented in the Pitt and Peters model using dynamic
stall adjustments in Beddoes–Leishman model. For more information about aerodynamic
load calculations in the AeroDyn theory documentation, see (www.nrel.gov (accessed on
1 January 2023)) [1–4].

2.6. Multibody Simulation Using SIMPACK

Using the multi-body simulation (MBS) method, dynamics of FWT moving parts and
distribution of loads and forces on the FWT mechanical system was investigated. Because
FWT includes many moving elements, including the hub, main shaft, bearing, gearbox, etc.,
and because MBS is designed to address dynamic system behavior of linked bodies, it is
ideally suited to handle dynamic reactions of FWT. It is made up of both rigid and flexible
sections that are joined together by a variety of joints and other restraints. MBS is able to
gauge and improve the behavior of multi-body simulations by solving motion equations.
Usually, the bodies are joined by joints, which can either be a force or a stiffness element,
limiting the motion of the bodies in relation to one another. SIMPACK is used for dynamic
analysis and numerical modelling. Using the simulation analysis tool SIMPACK, one can
accurately simulate nonlinear motions of FWTs and then predict dynamic behavior of its
mechanical and mechatronic systems.

3. System Description
3.1. DTU 10-MW RWT

The powertrain design employed in this study was the DTU (Technical University of
Denmark) 10-MW RWT. As a part of the Light Rotor project, DTU Wind Energy and Vestas
Wind System developed the 10-MW RWT. To offer a design foundation for optimized
10+ MW FWTs, DTU launched the Light Rotor project. DTU 10-MW RWT, which was
employed as a powertrain design for this study, was proposed by scaling the NREL 5 MW
reference wind turbine (WT), which has a medium-speed motor and an efficient, lightweight
rotor. The key design element for the 10-MW DTU is displayed in Tables 1 and 2.

3.2. Drivetrain’s Design

The 10-MW powertrain was created in accordance with international standard IEC
61400-4 [8–15]. These standards address design specifications for FWT gearboxes and are
applicable to horizontal-axis FWTs with a rating of more than 500 kW for onshore and
offshore sectors. The drivetrain’s size and weight were kept to a minimum, while wind
turbine efficiency was maximized by utilizing design foundation criteria that adhered with
FLS and ULS specifications. The design notably minimized resonance, and logic of the new
drivetrain model was compared to that of the DTU RWT that is now available. The 10-MW

www.nrel.gov
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RWT optimal design resulted from continuous improvement in the numerical model of the
driver train to satisfy FLS and ULS standards.

Table 1. DTU-10-MW RWT design summary [13].

Description Values

Rating 10 MW
Rotor orientation and its configuration Upwind and 3 blades

Rotor and hub diameters 178.3 m, 5.6 m
FWT hub height 119 m

Cut-in, rated, and cut-out wind-speed 4.0 m/s, 11.4 m/s, 25.0 m/s
Cut-in, rated rotor speed 6.0 RPM, 9.6 RPM

FWT-rated tip speed 90 m/s
Overhang, shaft tilt, pre-cone 7.07 m, 5◦, 2.5◦

Rotor mass 229 tons (each blade ~41 tons)
FWT nacelle mass 446 tons

Tower mass 605 tons

Table 2. DTU-10-MW RWT drivetrain summary.

Parameters Values

FWT gearbox ratio 1:50
Minimum rotor speed (rpm) 6.0

Rated rotor speed (rpm) 9.6
Rated generator speed (rpm) 480.0
Electrical generator efficiency 94.0

Generator inertia about high-speed shaft (kg·m2) 1500.5
Free–free rigid shaft torsion mode natural frequency 4.0

Free–fixed rigid shaft torsion mode natural frequency 0.6

3.3. Drivetrain Layout

Based on industrial expertise, a four-point support system was employed with two
main bearings on the main shaft and two bearings on the torque arm (Figure 2). This
layout was chosen in light of research performed using a four-point support system, thus
using with two main bearings on the main shaft and two bearings on the torque arm. The
study conducted by [16] was focused on construction and use of main bearings in FWTs
with a capacity of at least 10 MW. It was decided to use conventional three-stage gearbox,
which comprises parallel and planetary stage gears. The three-stage gearbox consists of
two planetary and one parallel stage gear. SIMPACK was used to generate a computational
model of a 10-MW conventional powertrain and analyze its dynamics. The correctness and
consistency of the numerical model were evaluated after the model was built in MBS and
the characteristics of the drivetrain were explored [31–33].

The gear contact forces and bearing forces were calculated using the SIMPACK soft-
ware, which can represent the entire dynamic conventional drivetrain model. The drivetrain
was modelled as a spring and damper system with one degree of freedom, including joints
and restrictions. Due to the fact that they were designed to handle forces, the bearings have
six degrees of freedom. The model developed by [14] used first-order numerical eigenfre-
quency and yielded results less than 5% different from the theoretical model, illustrating
the accuracy of the previously created drivetrain model.

3.4. OO-Star Semi-Submersible FWT Floater with Mooring System

In the LIFES 50+ project, the semi-submersible floating substructure, supporting a
10-MW RWT was built [17]. A center column and three lateral columns with cylindrical
top portions and tapering bottom sections each made up the floating substructure. The
slab was linked at the FWT pontoon’s base, and the four columns were supported by a
three-legged star-shaped pontoon (Figure 3).



J. Mar. Sci. Eng. 2023, 11, 1237 6 of 15
J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 15 
 

 

 

 
Figure 2. (Up): Four-point support FWT configuration gearbox. (Down): 10-MW FWT drivetrain 
design in MBS software, [32]. 

The gear contact forces and bearing forces were calculated using the SIMPACK soft-
ware, which can represent the entire dynamic conventional drivetrain model. The 
drivetrain was modelled as a spring and damper system with one degree of freedom, in-
cluding joints and restrictions. Due to the fact that they were designed to handle forces, 
the bearings have six degrees of freedom. The model developed by [14] used first-order 
numerical eigenfrequency and yielded results less than 5% different from the theoretical 
model, illustrating the accuracy of the previously created drivetrain model. 

3.4. OO-Star Semi-Submersible FWT Floater with Mooring System 
In the LIFES 50+ project, the semi-submersible floating substructure, supporting a 10-

MW RWT was built [17]. A center column and three lateral columns with cylindrical top 
portions and tapering bottom sections each made up the floating substructure. The slab 
was linked at the FWT pontoon’s base, and the four columns were supported by a three-
legged star-shaped pontoon (Figure 3). 

Figure 2. (Up): Four-point support FWT configuration gearbox. (Down): 10-MW FWT drivetrain
design in MBS software [32].

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 3. OO-Star FWT wind floater’s semi-10-MW concept [31]. 

3.5. Load Cases and Environmental Conditions 
The Northern North Sea site’s [34] hindcast data measured between years 2010 and 

2020 were used to generate the in situ wind–wave information that was utilized in this 
study. Based on in situ wind–wave data from the aforementioned site [34], the environ-
mental parameters were identified, and combined wind–wave distribution was estab-
lished taking into account 1 h mean wind speed at 10 m above the mean water level. (U10) 
is the significant wave height (HS), and the peak-period is (Tp) 𝑓௎భబ,ுೄ, ೛்(u, h, t) = 𝑓௎భబ(u) ∙  𝑓ுೄǀ௎భబ(ℎǀu) ∙  𝑓 ೛ǀ௎భబ,ுೄ(𝑡ǀu, h) (1)

In this study, three load examples were taken into account as the most common op-
erational scenarios. The average operational wind speed is between 8 and 16 m/s (cut-in, 
rated, and cut-out). In general, wind turbines produce less power at speeds below 8 m/s 
than at speeds over 23 m/s, and they cease to a parked condition at speeds above 23 m/s 
to prevent mechanical damage. Table 3 describes three realistic load situations that were 
taken into consideration for this research and have a good chance of happening under 
ordinary in situ operational conditions. The mean wind speed utilized in this study was 
based on the operational ranges of FWTs, which vary between cut-in and cut-out zones 
that have a bin size of 4 m/s. 

Table 3. Numerical simulation of FWT load cases. 

Load Cases 𝑼𝒘 (m/s) 𝑻𝑰 𝑯𝒔 (m) 𝑻𝒑 (s) Samples Simulation Length 
(hours) 

LC1 8 0.1740 1.9 9.7 24 1 
LC2 12 0.1460 2.5 10.1 24 1 
LC3 16 0.1320 3.2 10.7 24 1 

A straightforward wind-power law that is typically used to model vertical wind 
shear is as follows: 
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3.5. Load Cases and Environmental Conditions

The Northern North Sea site’s [34] hindcast data measured between years 2010 and
2020 were used to generate the in situ wind–wave information that was utilized in this study.
Based on in situ wind–wave data from the aforementioned site [34], the environmental
parameters were identified, and combined wind–wave distribution was established taking
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into account 1 h mean wind speed at 10 m above the mean water level. (U10) is the
significant wave height (HS), and the peak-period is (Tp)

fU10,HS ,Tp(u, h, t) = fU10(u)· fHS |U10
(h|u)· fTp |U10,HS

(t|u, h) (1)

In this study, three load examples were taken into account as the most common
operational scenarios. The average operational wind speed is between 8 and 16 m/s (cut-in,
rated, and cut-out). In general, wind turbines produce less power at speeds below 8 m/s
than at speeds over 23 m/s, and they cease to a parked condition at speeds above 23 m/s to
prevent mechanical damage. Table 3 describes three realistic load situations that were taken
into consideration for this research and have a good chance of happening under ordinary
in situ operational conditions. The mean wind speed utilized in this study was based on
the operational ranges of FWTs, which vary between cut-in and cut-out zones that have a
bin size of 4 m/s.

Table 3. Numerical simulation of FWT load cases.

Load Cases Uw (m/s) TI Hs (m) Tp (s) Samples Simulation
Length (hours)

LC1 8 0.1740 1.9 9.7 24 1
LC2 12 0.1460 2.5 10.1 24 1
LC3 16 0.1320 3.2 10.7 24 1

A straightforward wind-power law that is typically used to model vertical wind shear
is as follows:

U(z) = Ure f (
Z

Zre f
)

α

(2)

with

U(z): Wind speed at the level z
Uref: Wind speed at the reference height
Zref: Reference height
α: Empirical wind–shear exponent

The power law exponent was α = 0.14 m for all wind speeds (see Table 3).
For operational scenarios, 10 random samples of wind–wave environmental sea states

are normally utilized for each sea state, while severe wind and wave situations need the
use of 24 random seeds of wind and wave. To create a simulation that lasts an hour, all
simulations were run for 4000 s after deleting the 400 s starting transient phase.

4. Novel Reliability Method

Ocean wind speeds are typically thought to follow a stationary, homogeneous er-
godic random process. We must take into account an offshore multi-degree of freedom
(MDOF) structure experiencing ergodic environmental loadings such as those brought
on by the local wind–wave loads. An alternative is to think of a process as being de-
pendent on ambient variables whose variation over time may be described as a separate
ergodic process. Consider an MDOF structural response that is being jointly stationary.
An example of a structural dynamic MDOF system is (X(t), Y(t), Z(t), . . .) consisting
of system’s vital components X(t), Y(t), Z(t), . . . being simulated/measured/observed
over a long enough (representative) time lapse (0, T). Unidimensional system compo-
nents’ global maxima during the whole lapse (0, T) is denoted as Xmax

T = max
0≤t≤T

X(t),

Ymax
T = max

0≤t≤T
Y(t), Zmax

T = max
0≤t≤T

Z(t), . . . By long enough time lapse T, the authors pri-

marily mean a large enough value of T with respect to dynamic system relaxation and auto
correlation times [35–39]. Let X1, . . . , XNX be consequent in time the system component’s
X(t) local maxima, occurring at discrete time instants with monotonically rising rates
tX
1 < . . . < tX

NX
in (0, T). For more MDOF response components, the equivalent definition
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is as follows: Y(t), Z(t), . . . with Y1, . . . , YNY ; Z1, . . . , ZNZ and so on. For convenience, all
system components’ local maxima and components are considered to be non-negative.
Estimating the likelihood of a system failure is the goal [40–49]

1− P = Prob(Xmax
T > ηX ∪ Ymax

T > ηY ∪ Zmax
T > ηZ ∪ . . .) (3)

with

P =

(ηX , ηY , ηZ , ...)y

(0, 0, 0, , ...)

pXmax
T , Ymax

T , Zmax
T , ...(xmax

T , ymax
T , zmax

T , . . .)dxmax
T dymax

T dzmax
T . . . (4)

P is the target non-exceedance probability that corresponds to critical system component
values ηX, ηY, ηZ, . . . ; ∪ stands for logical unity operation «or»; and pXmax

T , Ymax
T , Zmax

T , ... is
the overall joint PDF (probability density function) of system components’ global maxima
within (0, T). It is not practical, however, to explicitly estimate the latter joint probability
distribution in reality pXmax

T , Ymax
T , Zmax

T , ... because of the low number of available data sets
and high dimensionality. To put it another way, the moment when either X(t) exceeds
ηX, Y(t) exceeds ηY, Z(t) exceeds ηZ, and so on, then the system is regarded as failed.
Fixed system components hazard/failure levels ηX, ηY, ηZ, . . . are individual for each
system unidimensional system components Xmax

NX
= max

{
Xj ; j = 1, . . . , NX

}
= Xmax

T ,
Ymax

NY
= max

{
Yj ; j = 1, . . . , NY

}
= Ymax

T , Zmax
Nz

= max
{

Zj ; j = 1, . . . , NZ
}
= Zmax

T , and so

on [50–53]. Local maxima time instants
[
tX
1 < . . . < tX

NX
; tY

1 < . . . < tY
NY

; tZ
1 < . . . < tZ

NZ

]
in monotonously non-decreasing order are sorted into one single merged temporal vector
t1 ≤ . . . ≤ tN . Note that tN = max

{
tX

NX
, tY

NY
, tZ

NZ
, . . .

}
, N ≤ NX + NY + NZ + . . ..

In this case tj represents system components’ local maxima of one of MDOF stationary
system response components, being either X(t), Y(t), Z(t), and so on. That means that
having a dynamic system record time series, all that is required is to continually, concur-
rently search for system components’ local maxima within the system’s unidimensional
response/load components and note when they surpass the MDOF hazard/limit sys-
tem vector (ηX , ηY, ηZ, . . .) in any of the system’s components X, Y, Z, . . .. A single
temporally non-decreasing vector is created by combining the unidimensional system

component’s local maxima
→
R = (R1, R2, . . . , RN) in accordance with the merged temporal

vector t1 ≤ . . . ≤ tN . Every local maximum Rj is actually an encountered component’s
local maxima, corresponding to either system component X(t), Y(t), Z(t), and so on. A
unified system limit vector (η1, . . . , ηN) is now introduced with each component ηj and is
either ηX, ηY, ηZ, and so on, depending on which of X(t), Y(t), Z(t), etc. corresponds to
the current local maxima with the running index j. Scaling parameter 0 < λ ≤ 1 are now
implemented to artificially lower the limit/hazard values for all response/load components
at the same time, namely new MDOF hazard/limit vector

(
ηλ

X , ηλ
Y, ηλ

z , . . .
)

with ηλ
X ≡ λ·ηX ,

≡ λ·ηY, ηλ
z ≡ λ·ηZ, . . . being now introduced. A unified limit/hazard vector

(
ηλ

1 , . . . , ηλ
N
)

is now introduced, having each its components ηλ
j being equal to either ηλ

X, ηλ
Y, ηλ

z , etc.
Hence, we have defined dynamic system survival probability P(λ) as function of λ. Note
that P ≡ P(1) is from Equation (1). Non-exceedance system survival probability P(λ) may
be now estimated as follows [54–64]:

P(λ) = Prob
{

RN ≤ ηλ
N , . . . , R1 ≤ ηλ

1
}
= Prob{RN ≤ ηλ

N
∣∣ RN−1 ≤ ηλ

N−1, . . . , R1

≤ ηλ
1 } · Prob{RN−1 ≤ ηλ

N−1, . . . , R1 ≤ ηλ
1 } =

N
∏
j=2

Prob{Rj ≤ ηλ
j | Rj−1

≤ ηλ
j−1, . . . , R1 ≤ ηλ

1

}
· Prob

(
R1 ≤ ηλ

1
) (5)
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In offshore engineering practice, correlative dependency between the neighboring Rj is not
always readily negligible; hence, following one-step conditioning number k = 1) memory
approximation is now introduced

Prob
{

Rj ≤ ηλ
j

∣∣∣ Rj−1 ≤ ηλ
j−1, . . . , R1 ≤ ηλ

1

}
≈ Prob

{
Rj ≤ ηλ

j

∣∣∣ Rj−1 ≤ ηλ
j−1

}
(6)

for 2 ≤ j ≤ N (conditioning number k = 2). The approximation introduced by Equation (4)
can be further elaborated as

Prob
{

Rj ≤ ηλ
j

∣∣∣ Rj−1 ≤ ηλ
j−1, . . . , R1 ≤ ηλ

1

}
≈ Prob

{
Rj ≤ ηλ

j

∣∣∣ Rj−1 ≤ ηλ
j−1, Rj−2 ≤ ηλ

j−2

}
(7)

where 3 ≤ j ≤ N conditioning number k = 3), and so on. Monitoring each independent
hazard/failure that occurred locally first in time is the goal in order to prevent cascade
local intercorrelated exceedances. Statistical dependence effects between neighboring in
time maxima can be captured more precisely with the latter type of approximations. The
development of the stationary process was expected to be ergodic and stationary because
of the MDOF dynamic system pk(λ) := Prob{Rj > ηλ

j | Rj−1 ≤ ηλ
j−1, Rj−k+1 ≤ ηλ

j−k+1}
for j ≥ k will be independent on j but only dependent on conditioning number k. Thus,
non-exceedance (survival) probability may be now approximated as

Pk(λ) ≈ exp (−N·pk(λ)) , k ≥ 1 (8)

Equation (6) follows from Equation (1), if neglecting Prob
(

R1 ≤ ηλ
1
)
≈ 1, as the risks

of a design failure is low. In addition, it is expected that N � k. Note that Equation (5) is
comparable to the well-known relationship between exceedance probability and the mean
up-crossing rate function. Convergence with regard to conditioning parameter is observed
for increasing k

P = lim
k→∞

Pk(1); p(λ) = lim
k→∞

pk(λ) (9)

Note that Equation (6) for k = 1 becomes the well-known mean up-crossing rate
function, related to non-exceedance (survival) probability

P(λ) ≈ exp (−ν+(λ) T); ν+(λ) =
∫ ∞

0
ζ p

R
.
R(λ, ζ)ζdζ (10)

with ζ p
R

.
R

being joint PDF, ν+(λ) being mean up-crossing rate function of non-dimensional
response level λ for above-assembled non-dimensional vector R(t) assembled from prop-
erly scaled MDOF dynamic system components

(
X
ηX

, Y
ηY

, Z
ηZ

, . . .
)

, see Figure 4.
Note that a stationarity premise was used above. The provided technique can also be

used to manage non-stationary cases. An example that follows shows how the method can
be used in non-stationary situations. Given a scatter diagram, consisting of m = 1, . . . , M
environmental states, each short-term environmental sea state has probability qm, such that
∑M

m=1 qm = 1. The corresponding long-term equation is then

pk(λ) ≡
M

∑
m=1

pk(λ, m)qm (11)

with pk(λ, m) being the same function as in Equation (7) but with the number matching
the particular in situ short-term environmental condition m. The above-presented pk(λ)
functions are often regular in their tail, i.e., for extreme values of λ approaching extreme
level 1. More precisely, for λ ≥ λ0, the distribution tail behaves like exp

{
−(aλ + b)c + d

}
with a, b, c, d being four fitted constants for the appropriate tail cut-on λ0 value. Optimal
values of a, b, c, and d may be determined using a sequential quadratic programming
(SQP) technique, implemented in NAG Numerical Library.
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5. Failure Probability Estimation

This section illustrates how the advocated methodology may be used in engineering
practice. Internal stresses and bending moments of 14 crucial gearbox bearings were se-
lected as components X, Y, Z, . . . , hence constituting an example of a fourteen-dimensional
(14D) system. FWT numerical simulation has been done for a range of different realistic
wind speeds; in total, 20 independent 1 h response time series were generated for each
wind speed, and the discrete time step was dt = 0.025 s. For simplicity, the global maxi-
mum of each unidimensional component force was increased by 50% to represent a critical
threshold, causing FWT to fail. In order to unify all 14 measured time series X, Y, Z, . . .
the following scaling was conducted:

X → X
ηX

, Y → Y
ηY

, Z → Z
ηZ

, . . . (12)

making all 14 responses non-dimensional and having the same failure/hazard limits
simultaneously equal to 1. Then, by maintaining them in a temporal non-decreasing
order, all local maxima from the 14 recorded time series were combined into one merged

time series: R(t) ≡
→
R = (max{X1, Y1, Z1, . . .}, . . . , max{XN , YN , ZN,...}, . . .) with each set

max
{

Xj, Yj, Zj, . . .
}

being ranked based on the non-decreasing occurrence times of these
local maxima [59–65].

Figure 5 presents an example of a non-dimensional assembled vector
→
R, consisting of

assembled local maxima of the FWT’s internal forces; λ > 0.05 cut-on limit was used for
illustrative purposes, as lower values λ ≥ 0 are obviously irrelevant for the failure/hazard

system’s PDF tail extrapolation towards the target λ = 1. Note that system vector
→
R does

not have any physical meaning on its own, as it was assembled from different system
components having different measurement units (MPa and Nm in our case). The index j is
just the running index of local maxima, encountered in a non-decreasing time sequence.
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Figure 5. Non-dimensional assembled 14D vector
→
R example.

Figure 6 presents an extrapolation (solid line) according to Equation (9) towards
hazard/failure state, which is 1 and somewhat beyond. The λ = 0.25 cut-on value was used.
Dotted lines indicate extrapolated 95% confidence intervals (CI). According to Equation (5),
p(λ) is directly related to the target system failure probability 1− P from Equation (1).
Therefore, in agreement with Equation (5), system failure probability 1− P ≈ 1− Pk(1) can
be now estimated. Note that in Equation (5), N corresponds to the total number of local

maxima within the unified system vector
→
R. The conditioning number k = 6 was found to

be sufficient due to convergence occurrence with respect to k (see Equation (6)). Figure 6
exhibits a relatively narrow 95% CI.
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Note that discretization of the equations and the order or accuracy of the chosen
discretization scheme were not discussed in this study. Sensitivity analysis to evaluate
the sensitivity of the output to changes in input parameters was left for future studies.
Incorporating sensitivity analysis is critical to assess robustness and reliability of the
model’s predictions. Neglecting parameter sensitivity could result in inadequate capturing
of uncertainties and variations in the system. The latter was due to the fact that this study
was focused primarily on demonstration of a novel reliability technique and not much on
the underlying numerical model itself.

6. Conclusions

This study examined simulated response time series of offshore floating wind turbines.
Application of a novel spatiotemporal reliability method to multidimensional wind energy
system reliability was conducted, the theoretical rationale of the proposed technique
was discussed.

The goal of this study was to develop a general-purpose, yet reliable and easy-to-use
multi-dimensional reliability technique. As seen from the results, the suggested method
produced fairly narrow confidence intervals. The suggested method might therefore be
used for a variety of nonlinear dynamic system reliability studies, especially at the design
stage. Both measured and numerically simulated dynamic system responses may be used
as an underlying dataset.

As this study demonstrates, it is feasible to accurately assess risks of complex sys-
tem failure or damage, while efficiently utilizing available datasets. To summarize, the
suggested method can be applied to various engineering and design applications. The en-
gineering system considered in this study by no means limits applicability of the suggested
reliability methodology.

Note that stability properties are critical for the numerical methods employed in the
structural model. Failing to analyze and consider stability, particularly for methods such as
explicit time integration schemes, can lead to inaccurate or divergent solutions. Ensuring
the stability of the numerical methods is crucial for reliable and meaningful results.

Among potential limitations of suggested methodology is that the underlying dataset
should be representative and filtered from outliers; another major requirement is system
stationarity. In cases where an underlying trend is present, it is necessary to identify this
trend first.
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