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Abstract: On account of the external disturbances and difficult maneuverability of a hovercraft, this
paper devises a safety-guaranteed, robust, nonlinear, path-following control strategy of a hovercraft
targeted for unknown dynamics, unavailable velocity, and unknown external ocean disturbances.
Firstly, for the sake of accurately observing unavailable lumped disturbances and unavailable velocity
measurements, a finite-time extended state observer (FTESO) is proposed. Secondly, a line-of-
sight (LOS) guidance law constructed with a bounded-gain-forgetting (BGF) adaptive estimator is
devised to follow the desired path while considering external environmental disturbances accurately,
in which the tracking errors and the parameter estimation are both proven to be bounded. In
addition, for the sake of safety, a safety-guaranteed auxiliary system that can constrain the drift
angle during the hovercraft’s navigation is proposed. Thirdly, the robust, nonlinear, path-following
controllers achieved high tracking performance with the constructed safety-guaranteed compensation
backstepping method. Finally, according to the Lyapunov and homogeneous theories, the observation
error can be guaranteed to zero and the tracking error can converge to an arbitrarily small region
near zero in finite time. Numerical simulations illustrate the effectiveness for the proposed robust,
nonlinear, path-following scheme.

Keywords: hovercraft; path-following control; FTESO; line-of-sight

1. Introduction

The hovercraft’s main actuators include a vertical air rudder mounted behind every
propeller and two air propellers at the stern normally [1]. Hence, the hovercraft is a typical
underactuated ship. A hovercraft, as depicted in Figure 1, can run above the water surface.
A hovercraft is faster than normal displacement vessels because of its low hydrodynamic
resistance. Hence, the hovercraft has increasingly attracted more attention in both civil and
military domains due to its particular performance [2].

Obviously, when sailing at low speed, the hovercraft has poor stability for coursing. It
is easy for a hovercraft to experience heeling motion during fast turning. The abovemen-
tioned issues highlight many safety challenges for a hovercraft. It is dangerous when the
stern kick-off phenomenon happens, as it may result in the hovercraft capsizing at high
speed [2]. In addition, regarding the detailed review of the available literature about a hov-
ercraft’s trajectory tracking control [3-8], only state feedback was taken into consideration,
and the literature about the output feedback on a hovercraft combined with its unique
characteristics are few.

Considered that a hovercraft is a typical underactuated ship, various control methods
of the underactuated surface vessels can be referenced. To solve the above difficulties, in
recent years, various control methods have been reported through researchers’ efforts with
remarkable success. Some robust control algorithms have been presented, subject to the
high nonlinearity of underactuated surface vessels. In [9], for an underactuated ship aiming
to follow the given route, an adaptive control law is proposed according to parameter
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estimation and sliding mode theory. For the sake of enhancing strong robustness and
reducing oscillation of the whole control system with unavailable parameters and external
environmental disturbances, an adaptive continuous sliding mode scheme is designed.
In [10], constructed with the disturbance observer, a new robust formation control law
via the minimal learning parameter algorithm is presented. In [11], an accurate, safety-
guaranteed, area-keeping control scheme for an unmanned surface vessel is proposed that
illustrates the safety and stability during the whole control. In [12], a coordinated tracking
problem is considered for unmanned surface vehicles (USV) with communication delays
and constrained actuation resources. Its position can be obtained by a small fraction of
USVs, whereas its velocity is not available to follower USVs. An adaptive control law
for path following of an unmanned surface vehicle based on deep reinforcement learning
theory is proposed in [13]. The presented controller is capable of following the given path
via interacting with the nearby environment.

Figure 1. The underactuated hovercraft.

Although the aforementioned research has good effectiveness for unknown uncer-
tainties and external disturbances, the aforementioned control laws only consider state
feedback; in other words, all ship signals are required to be known. Actually, because
of the hull space and equipment cost limitation, the hovercraft is not allocated with a
speed sensor or noise contamination sensor. During feedback control, a vessel’s velocity
is unavailable. Therefore, the robust path-following control strategy is significant for the
motion of a hovercraft. Unfortunately, few studies have been carried out with regard to
the underactuated hovercraft. In [14], an attitude tracking control approach developed
for the nonlinear quadrotor model guarantees the desired performance within finite time
reliably. Via delay-dependent Lyapunov functional theory, the annular finite-time filters are
devised and the filtering error system (FES) is illustrated to attenuate the environmental
disturbances with high performance in [15]. Combined with the observer of strict-feedback
nonlinear systems that observing the environmental disturbance and fuzzy approxima-
tion errors in finite time, an event-triggered fuzzy control strategy based on an adaptive
technique is presented in [16] with strong robustness.

Combined with the adaptive fuzzy technique, Ref. [17] illustrates a control strategy
that can follow a programmed path for underactuated vessels and achieves good tracking
performance. In [18], considering surge-heading guidance, a path-following control scheme
is devised. Unfortunately, these studies only consider state feedback and the unavailable
velocity is ignored in [17-19]. In [20], a new FTESO is designed to observe the unavailable
velocity and disturbances with good accuracy. The LOS guidance approach, which is based
on velocity observations, is introduced to obtain the reference yaw law. In [21], the output
feedback control laws are proposed to follow the programmed path precisely with tracking
performance in finite time.
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Nevertheless, it is noted that research on finite-time motion control for a hovercraft is a
challenge on account of the real hovercraft’s sailing characteristics. Although the finite-time
theories have good convergence performance and precision characteristics, there are few
pieces of research with regard to path-following control for a hovercraft.

Motivated by the aforementioned analysis, this paper is targeted to resolve the robust,
nonlinear, path-following control problem for the hovercraft with regard to the unavail-
able velocity measurement and unavailable external disturbances. Firstly, for the sake of
observing total compound disturbances, an FTESO is devised. Secondly, based on the
bounded-gain-forgetting (BGF) estimator and adaptive technique, a line-of-sight (LOS)
guidance law is developed to track the programmed path with good accuracy, in which
errors are bounded. Thirdly, for sake of safety, a safety-guaranteed auxiliary system that
can restrain the drift angle in real-time is developed. Subsequently, because of the ac-
tuators’ natural capabilities, robust, nonlinear control laws are established to follow the
programmed path with the constrained control input. Finally, it can be illustrated that the
designed safety-guaranteed, robust, nonlinear, path-following control strategy can ensure
that the errors converge to near zero precisely and all signals are bounded in finite time.
The main characteristics of the paper are generalized as follows:

(1) Considering the real hovercraft’s motion characteristics, the FTESO is used for
path following of the underactuated hovercraft. The estimation errors are proved to
converge to zero accurately via homogeneous theories, and the FTESO enhances the whole
system’s robustness.

(2) The reference yaw angle, which is proposed by a LOS guidance law based on
the BGF adaptive estimator (BGF-LOS), can guarantee the performance of decreasing the
convergence time.

(3) Aiming at safe navigation of the hovercraft, the constructed safety-guaranteed,
robust, nonlinear control strategy possesses two advantages, which are its stronger, robust
anti-interference ability and higher precision performance.

The rest of the paper is organized as follows. The preliminary, subsequently required
standards and assumptions are introduced in Section 2. The reference yaw angle and the
safety-guaranteed, robust, nonlinear, path-following control scheme based on FTESO are
discussed in Section 3. Stability analysis is proposed in Section 4. Numerical simulations
that demonstrate the feasibility and universality of the proposed control law are given in
Section 5. Lastly, conclusions are shown in Section 6.

2. Preliminaries and Problem Formation
2.1. Preliminaries

Definition 1 ([22]). For a vector x = [x1, xp, -- -xn] € R"a contznuousfunctzon g(x):
R" — Ris homogeneous with degree k with respect to the dilation. (A"1xy, A2xp, --- ,A"mxy,),
zfg(/\ xy, A2xy, - ,A'ixy) = Afg(x), VA > 0, where k > —min{r;}, (i = 1, 2 ).
x = g(x) (or a vector ) is a differential system with continuous: g(x) : R* — R is homogeneous wzth
degree k with regard to the dilation (AMxy, Al2xp, -0,
Afnxy); if g(Axg, A'2xp, oo Alnxy,) = /\kg(x), VA > 0.

Lemma 1 ([23]). Suppose that there is a positive, definite, continuous Lyapunov function V(x, t)
defined on Uy € R" of the origin and

V(x,t) < —ciVE(x,t) + caV(x, t), Vx € U;\{0} (1)
wherecy > 0,cp > 0,and 0 < a < 1. Thus, the origin of system (1) is locally finite-time stable. The
set Uy = {x|V1™%(x, t) < c1/cy } is contained in the domain of attraction of the origin. The settling

time satisfies T < In(1 — (c/c1) V' ~*(xo, to)) / (coa — ¢3) for a given x(ty) € {U; N Uy}.

Lemma 2 ([24]). ForVx; € R,i=1,...,n,0 < g < 1; then,
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(2?:1 ‘xi‘) < Z?:l x| <l q(Z?:l |xi|) )
Lemma 3 ([25]). For Vx; € R,i =1,...,n, and a real number p > 1,
P - p
Yl < (X lal)” < Y ()
2.2. Model of Underactuated Hovercraft
The three-DOF hovercraft model is as follows:
.. - \T T
(x v 1p> =S(y)(u v r)
u or Ry, + 1y 4
v | = —ur | +M Ry
7 0 R, +1
where
cosyp —siny 0
S(y) = [siny cosyp O
0 0 1 )
1
= 00
M=|0 L o
0 0 £
Z

The signals u, v, r are the surge and sway velocities, and the turning rate, respectively;
x, y represent the hovercraft’s position in the earth fixed frame; i describes yaw angle; m
and J, are the hovercraft’s mass and moments of inertia; 7, and 7, are the control inputs.
The total drags of the known model are denoted by R, Rwm, Rsk, Ru, Ro, Ry. For pe, S,

(Ru Ry Ry) T, please refer to [1,3,26] to obtain more details.
In Figure 2, we obtain

v=utanp

@)

Propeller

Figure 2. Diagram of the underactuated hovercraft.

(6)



J. Mar. Sci. Eng. 2023, 11,1235

50f21

For the sake of more convenience for controlling B, an improved model is derived
from (4) and (6)—that is,

(5c Y ¢)T:S(lp)(u utan f r)T

U urtan B Ry + Ty )
) o 2

v | = _ us?b(lZ,B) _ rcos? g | +M| g, COZ B

r 0 Rr + T

Assumption 1 ([1]).

(1) A hovercraft state satisfies u(0) > kp,(t), [v(0)| < kry(t), |7(0)| < kgr,(t). The safety
boundaries ky, (t), kro(t), and kg, (t) will be discussed later on.

(2) The hovercraft has two identical air propellers and two identical air rudders, which are

symmetrically mounted on the tail of the hull; they can only be operated simultaneously, not
separately.

2.3. The Hovercraft Dynamics of Tracking Error

The path-following depiction can be seen in Figure 3 below.

Figure 3. Path-following depiction of a hovercraft.

The above parameter as shown is represented by 9. A Serret-Frenet (SF) system is
introduced to obtain the error for path following. An arbitrary point Pr (%) is set in advance
as the origin on the desired path. ¢ (9) = atan2(xp(8), yx(9)), where x(8) = o(x}) /90
and y;(9) = d(yy)/99. P(9) = (x,y) represents the hovercraft’s position, as depicted in
Figure 3. Pp(9) = (xp(9),yr(9)) is the position of the motional target point along the
programmed path set in advance.

The error scheme In the SF system is depicted as follows:

H _ { Pr(9) —sinmmﬂx—xpwq @
ye]  [sinypr(9) cosyr(9) | [y —yr(9)

where x., y. denote tracking errors.
Taking the derivative of Equation (13), the location tracking error dynamics can be
obtained as follows:

HE [ cos(p — Y (8)) — vsin( — Pr(8)) + Pr(8)ye — 0/x%e(8) y%(&)] ©)
2 usin(p — r(8)) +vcos(p — 4 (8)) — (9%
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Considering the underactuated hovercraft model (4) and (5) in the presence of unavail-
able velocity and complex external disturbances, this paper aims to propel the hovercraft
to follow the programmed path in finite time by developing the guidance law and safety-
guaranteed, robust, nonlinear, path-following control strategy.

2.4. Actuator Saturation Nonlinearity and State Constraints

Considering the practical application of a hovercraft, in view of the actuators’ physical
constraints, the control force can be expressed as follows:

Timaxs ifTic > Timax
T = Tics lfTic > Timax 1= U, T (10)
Timins ! f Tic < Timin

Assumption 2. All position, orientation, and acceleration values of a hovercraft are available
for feedback.

The safety-guaranteed issue of  and the hump speed need to be obtained from model
calculation and real vessel experience [2,27]. In this article, they are assumed to be the state
constraint, which can be obtained. The safety constraint is defined as

,Bmin < ,B < ,Bmax (11)

3. Safety-Guaranteed, Robust, Nonlinear, Path-Following Control Strategy
3.1. Design of Finite-Time Extended State Observer

Transform the 3-degrees of freedom hovercraft model (4) and (5) as follows:

i1=S(y)v
Mo=d+ 1+ 71y (12)

where T = [1,, 0, Tr]T, M =diag{m, m, .}, q=1[x y 9] T,v =[u, o r]T,

and Ty = [Tuw, Tow, Trw) T da= (dy, do, dy] T denotes the model uncertainties, which
are written as follows: d, = m’lurtanﬁ + Ry, dy = m’l(—% — rcoszﬁ) + Ry,
d, = R,.

Aiming to draw forth the FTESO, set u = S(¢)v, (12) can be obtained as follows:

n=p
= d+S(pM T -
. 0 -7 0
wherep = [py o ] ,d1=S(Y)M (7w +d)+S(¢)Rv,R=| r 0 0 |s.
0 0 0

Assumption 3. The rate of external disturbances dy is unknown but bounded, which meets the

next requirement Hd1 H < dy, with dy, < oo denoting a positive constant.

Assumption 4. The whole signals of a hovercraft are bounded, and a positive constant € and a
compact set By, where B = { (g, p, 7, 10)|17]] < & ||ml| <& ||7|| < & ||#e]| < €} can be found.

Remark 3. In a hovercraft’s sail process,u, v, rof a hovercraft can be finite because of the hovercraft’s
performance containing air resistance constraints and a hydrodynamic damping term [28].



J. Mar. Sci. Eng. 2023, 11,1235 7 of 21

The FTESO of (12) is designed as follows:

7= ft = hsig" (if) — Asgn(#)
fi = di + S(p)M T — brsig™2 (i) — Aosgn(if) (14)

di = —I3sig" (i) — Azsgn (7))

where , fi, d are the observations of 7, , d1, respectively, and 7j = § — y = [Tu 7o Tir] h

H=p—p=|py o ﬁr]T, andd, =d; —dy = [d, dy &;]T are the FTESO observation

errors, 2 < my < 1,mp = 2my — 1,m3 = 3mq — 2, sig"i (if) = |7j|™isgn(7)(i = 1,2,3). The

parameters m;(i = 1,2,3), 1;(i = 1,2,3), and A;(i = 1,2, 3) are positive definite coefficients,

which can be set according to the Lyapunov functional theories and finite-time theories.
Combining (13) with (14), the error system is proposed as

7= fi — lisig™ (i) — Msgn(7)
;? = dy — Isig"™2 (1) — Apsgn(7y) (15)
dy = —dy — I3sig™ (if) — Aasgn ()

The stability proof of (15) is to be provided later.

Theorem 1. For the hovercraft model described in (13) in the presence of the unknown dynamic
and external disturbances, and unavailable velocity under Assumptions 14, the FTESO established
in (14) is illustrated to estimate the external disturbance and the error can converge to zero within
finite time.

Proof of Theorem 1. Firstly, omit the terms —A1sgn(7j), —Azsgn(7), and —d; — Assgn(7]),
the error dynamics can be represented as

= fi— lisig™ (7)
2

ji = iy — Lsig" (i) (16)
d; = —I3sig™3 (7))
—hilz I3 0
Define the system matrix A = | —lpI3 0 I3 | and A as the Hurwitz matrix. Then,
—Islz 0 O
the Lyapunov function is written as follows:
Vi (@1, @, @3) = @' P (17)
T A o~ 1, T a2 T 11T
where @ = [@], @), @1] = [[sige ()] , [sig™ ()] ,[sig72 (d)] | , ¢ = mymam3, and P

is positive with respect to ATP + PA = —Iy. By [29], define f,, as the vector field and
set Ly Vin(@1,@2,@3) as the Lie derivative of Vy, (@1, @2, @3) along the vector field f,,.
According to Definition 1, V, (@1, @,, @3) and Ly Vin (@1, @,, @3) can be obtained such that
they are homogeneous with degrees %T and % +my — 1 with respect to (1, my, 2my —1),
respectively, and the inequality Ly Vin (@1, @2, @3) < —1[Vin (@1, @, @3)] is established,
where ¢; = " ‘1/11&>§_1}Lfm Vipand e = 1+ %% — § < 1. Choose the Lyapunov function
candidate of thé e;Iror subsystem (8) as follows:

Vos (@1,@2,@3) = @' Po (18)
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Taking the time derivative of (18) alongside (15), we can obtain

. 1 —
—diag(|77]7 ) A1sgn (i)

g
. U P ~
Vo = Lg, Vin(@1, @2, @3) +20TP —dmg(l;t\mll)/\zSgn(n)
U I
—diag(|d| "2 ")(~d—Assgn(i)
oniy
201 A (P) 0] £ [ (19)
S 7C1V0f + brd
3 1
200 max (P 1 [ 7T
+ (rm;
3 . 1 4
2(dm+A3)Amax (P)]|@]| ,;1 |d;| ™2
+ amy =
On the basis of Lemma 2, it yields
3 1_ 3 1 e 1
1 1 1o -
Yolmle Tt <3(Y mle) <377 @) (20)
i=1 i=1
3 Ly 3 ) 1—omy
| T AT 1-
Yo gl < 3Ty [ ) <3 o (21)
i=1 i=1
3 ~ Lfl 3 ~ 1 1_0—m2 1+omy
Yo ldif7 T <37 (Y (i) <377 ot (22)
= i=1
Substituting (20)—(22) into (19) yields
_ 10 2
Vof < *Clvsf‘i’ 2x3 2 AlArI;aX(P)H‘DH
+2X3H A2 Amax (P)||@|*~ 7"
14+0my gm (23)
2x37 2 (dw+A3)Amax (P) @72
+ U'mz
1 &77"1 17%
§—01V0f+c2Vf +63Vf 7 —|—C4Vf 2
where
2 “MA P
3 ¥ Ao ) @Y
[ Amin(P)]
o 2 X max(P) o 2m2 (dm + AS))\max(P)
€3 = 1-omy 7/ 4 = 1—omy
oy [)‘min(P)] : GmZ[Amin(P)} z
Since 0 <1—% <1—%2 <1— %2 < ¢ < 1, the following two situations are taken
into account for further research
If Vo5 > 1, we can simplify (24) as follows:

where ¢y = ¢ + ¢35 + ¢4. With respect to Lemma 1, it can be deduced that t,; and V, f
SVyrf(0)
o1 of

converge to Vof =1,ie,t,; <In —c
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It v, < 1, we can simplify (24) as

' _ 7
Vor < -y baty e (26)
B -

< 7C1C0Vf [Cl(l — CO)Vof 2 - CO]Vof

s
2

_ 149
where 0 < ¢p < 1— i—fl’; hence, when ng LIRS

Vof < —cﬁijf and Vof is
Vi (@(te)
leol(lfg)

co
c1(1-co)”

decreasing. Based on Lemma 1, the convergence time ¢,; < In such that V, f

converges to the domain.
2
Co Ty

Yor > (01(1 —50))

Next, it can be seen that the Lyapunov function V, ¢ converges to region (27) within
the time T} = t,1 + ty < 0.
Substituting (18) into (27), the observation error @ can be obtained as below:

(27)

1

1 Co Tmy
Il < % Ga ) (28)

According to Lemma 3, it can be obtained that

3 3 v
_ ~ 1 _a
lifll < ¥ (fil2)” <3 (Y [iile) <3 %||]|” (29)
i=1 i=1
3 1 am amy
7l < 32 (lgas] )7 < 31=mg Z 7)< o) (30)
i=1 i=1
3 ~ 1 3 L T amy
||I’ll|| < Z (‘di|om2 )Umz < 31—(7m2 Z 2 < 31_T ||(DH177112 (31)
i=1 i=1
Substituting (28) into (29)-(31), the convergence of the estimation error can be rewritten
as follows:
313 Co =
7| < = ! 32
il < s G e 2)
~ 31*% Co
< - 33
Il < e (o ) 33)
~ 3= c i
d H < oy 34
H 1 )\min(P)amZ (Cl(l _ Co) ( )

Obviously, the errors #, i, and d can converge to a bounded domain within finite time;
then, set A;(i = 1,2,3) properly and the errors can also converge to equilibrium.
Choose a Lyapunov candidate for

Voo = i (35)
Take the derivative of V,; as follows:

Vor =11 =g [fi — l1sig™ () — Alsgnom
3
Sllﬁ\lllﬁll—ll‘illﬁlml“ Alzm\ (36)
1=
< — (M = EDIIF — 5 ||n||"““

N
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1iam1 1+o
. ~ - 2x3 2 AA P
since ||| < —2 i (Gisg))r Co = C2+ 3+ ¢y and ¢ = 23 2 Mdmax(P) - hoose
/\min(P) 1 ° O—Mmin(P)] 2

M 7l e, Ay > 31771U[Amin(P)]131%£C3+C4)
[ Pamin (P (1-2)~2x3" 2 Amax (P)]

. It can be demonstrated that the

. mq+1
control design parameter A; is independent. Next, formula (36) becomes V,; < —c,1V,;* ,

1-mq

P _ e v, 7 (§(Th))
where ¢;1 = =—m—. Thus, the error # can converge to 0 within finite time t,3 < e =mm)
After the time T, = Tj + t,3, the second subsystem (15) is written as follows:

7i = di — Agsgn(i) (37)
Accordingly, select the Lyapunov function for i as follows:
1 7.
Voo = H (38)
The derivative of (38) is
Voo <alsi=al[d) — Arsgn(i
2 S p=p [d—Asgn(p)] (39)

<~ (Ao — [y

By choosing the appropriate parameter Ay, Ay > H%H + &1 holds. As H;llH <

1+omg
2x37 2 ApAmax(P)

L_omy my

/\3 - 12) 3 (C1 (f‘lm )™ and ¢z = i, the control parameter A; is similarly
win(F) om [Amin (P)] 2

independent from the system. Based on Lemma 1, yi could converge to zero within

V2 %
tog < Vo (H)7,-
After the time Tz = T, + t,4, the third equation of (15) is written as follows:

Zl = —dy — Agsgn(ﬁl) (40)
In the same way, choose the Lyapunov candidate for d; as
Vis = ydi d @
The derivative of (41) is

iy = [~y ~ Aasgn(dy)]
(A2 + Hd1H>H31H

L. 3 <
42
< (42)

By choosing the appropriate parameter, A3, A3 + Hdl H > ¢ are fulfilled. When Hd1 H <dp,
the control parameter A3 is independent from the system. As such, with the above parame-

~ ~ 1
ter selection, d; could converge to zero within ¢,5 < gVoa(dl)%s.

Based on the aforementioned sections, the estimation errors 7, i, and 31 could converge
to zero within the finite time Ty = T3 + t,5.
The proof is completed. O

Remark 4.  With the FTESO, note that a hovercraft’s states are assumed to be
bounded; next, the estimation errors will converge to the residual set ();:
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1-9 1
o (@1, @2, @3)||(@1, @2, @3)|| < \/ﬁil’)” (G ™
e 37 ( ¢ )%_{_ - ( ¢ )7
Amin(P). 1 (e1(1—co)—c3) VAmin(@) 2 N (e1(1—co)—c3)
) size relies on the minimum eigenvalue of P. It is noted that the residual set (3¢ can be as small
as desired by designing P.

my - Lhe residual set’s

3.2. Design of LOS

In this subsection, in the presence of time-varying sideslip compensation, an adaptive
BGF-LOS guidance law is developed to obtain better performance for a hovercraft subjected
to sideslip constraint during path following.

First of all, for the sake of estimating the sideslip angle parameter varying with time,
the model is represented as a vector form. We firstly define

x =[x y]", 0(t) = tanp(t), h(x) = [ucos(p—yr(8)) + Pp(8)ye—

OV/xZe(8) + y2(8)  usin(y — Pr(8)) — Pp(8)xe]”, and A(x) = [~usin(p —yr(8))
ucos(yp — Pr(9))]T; next, the error dynamics (9) are constructed as

x = h(x)+ A(x)0(t) (43)

Next, we define the state predictor model for (43) as below [30]:

2= h(x) + A(2)0(t) + kswexs + w(E), ks > 0 (44)
w = —kspw + X(x), w(ty) =0 (45)
where £ = [£. 7] T is the predicted vector of x = [x, ¥ T; eyxs = X — % is the estimation

error; ks € R2*2 with respect to kg + ksTw = L w e R* is the output of (44); and (1) is

the estimation of sideslip parameter, which is generated by the update law 8(t) proposed
below.
Noting that the sideslip angle estimation error 6 = 0 — 0, it is obtained in (43) and (44) that

e = X(2)B(F) — kswexs — wO(1) (46)

Next, ¢ is an auxiliary variable, which is defined as ¢ = exs — wé(t) ; it is obtained from
(45) and (46) that

¢ = —kswg — wé(t), 6(to) = exs(to) (47)

Because the change rate of the sideslip parameter 6(t) is unavailable, we can obtain
an estimation of ¢ [31] as follows:

¢ = ket (48)
Define the estimation error ¢ = ¢ — ¢ with dynamics
¢ = —kswG — wé(t),f(to) =0 (49)
based on the definitions of ¢ and ¢, we have
wO(t) =exs — € — ¢ (50)

Based on (44), (45), and (48), consider the BGF estimator as [32]

0 = ProjlE Y (w  (exs — &) — x0), 6, B(tg) = 6° (51)
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where the gain & € R"*" can be obtained from the following update law:
1
E =B loTwE '+ ArE - 6E1E"Y; 71 (ty) = a7 (52)
E=-Ar(BE—6/Ar) +wlw; E(tg) = as

where A7 is a design positive factor; Js is a design control parameter; and Proj{¢, é}
represents the Lipschitz projection operator, which meets with [33]

—Projl¢, ()} 8(t) < —¢T8(t)

(53)
Then, we select the path-following laws as follows:
Ya = Yr(8) +atan(—L5)
= U cos(qz—zpp\(;y)c?z?;)siny(,f;g)p(19))9+k51x€ (54)
ty = —ky (P — Pa) — ky,sig" 2 (¥ — a) + g — ye V2 + %9

where ¢ = (1—cos lﬁ)(yf+ay)+Asin1ﬁ, N

— aigl/2
=si ,and
(et 2402 y = sig " (ye)
0< Amin <A <A 4 < 1| Yt
min = max| \/(ye+“y)2+A2 | — \/(]/e+“y)2+A2 |

sin(y—1y) 1—cos(y—q)
S USSR < U0 <073
so, |¢| < 1.73 is bounded.

Therefore, the error dynamics x, and y,. can be established as

"

.7ng = —kslxe +u sin(l[J - llJF(ﬂ))é—i_ IEF(ﬁ_)ye (55)
o = s cos(yp — pr(9))0 — P (8)ye

We choose the Lyapunov function Vg = 1x2 4 132 regarding position errors. Then,
we can obtain

VE = —ksle + usin(yp — gbp(ﬁ))xeg— kscyg + ucos(yp — lpp(ﬂ))yeg

(56)
where kse = ——-—— > 0.
(ye+A6)"+A2
By Young’s inequality,
usin(y — ¢r(0))xed < 5l |l + 5 P2 7)
ucos(p — Yr(9))yed < 5= |yel* + 52|60
It follows that
Ve < —(ka —u/(2e0))x% — (kse —u/ (2e2) )y2 + 4 (€1 + £2)[6] -
< _2ksminVE + %(851 + 852)|9|2
where ksmin = min{ (ksl - M/(ZF,S])), (ksc - u/(ngz))} > 0.
Noting that E = [x,, ye]T, one has
’ 1 2 1 2 u ~n
Ve < =5 Ksmin[[E[|” = (Gksmin[[E[|” — 5 (e51 +£52)[6]%) (59)
and since [34]
0 0 02
IlE| > Vs |0) + Vg0 > u(es1 +e52)|0| 0)
\/ ksmin \/ ksmin ksmin
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this renders

. 1
Vg < _EksminHEH2 (61)
Choosing ao; (||E||) = a(|E||) = ||E|[?/2 = Vg, there is a class KL function
dxr2(E(ty), t) = e kmint/2E(t5) and a class K function ps(x) = /u(es + €52) /2x such

that 701 = ag;' 0 w2 © ps2 = ps2 and ||E(t) || < S r2(E(to), £) + ps2(16]).
Consequently, Equation (61) is referenced to study the whole system’s stability.

3.3. Safety-Guaranteed, Robust, Nonlinear, Path-Following Controller
3.3.1. Safety-Guaranteed Auxiliary System Subject to Constraints

The safety auxiliary system’s input of drift angle § is defined as follows:

AB = kp(Pmax — B) (62)

where k,; is a positive constant and Bmax can be designed as follows:

Bmax B > Bmax
ﬁmax = S{Zt(ﬁ, ﬁmaX/ ,Bmin) = ,B ,Brnin < ,3 < ,Bmax (63)
,Bmin ﬁ < ,Bmin

Devise the safety auxiliary system with the following constraint [35]:

1
~kep,Cp — kep,5ig 2(Cp)
. L(kes, A
Cp = ‘Zgiﬂzﬁgﬁ +kzp, AB, gl >0 (64)
0, |€5| <4

where kzg, > 1, kzp, > 0, and kzg, > 0 are parameters of the safety-guaranteed auxiliary
system designed later on and 6 > 0 is a very small constant.

3.3.2. FTESO-Based Safety-Guaranteed Heading-Tracking Control Strategy

Let u = S(y)v and v = ST(p)y; thus, V = ST(h)f1. The path-following error of the
yaw angle is denoted below:
f‘e == i; - 0(;/ (65)

where «, is the virtual control law.
Differentiating (65) and reconstructing (14), we can obtain
fo = Py — lpsig™ () + d, + ];11} — Apsig" (¢) — &, (66)

For the sake of stabilizing the yaw angle error (66), the FTESO-based, robust, nonlinear
heading-tracking controller is introduced as follows:

T = T+ Tr‘@v: ]z(_krre k g%( ) Py
+1sig"2 () + Aasig™2 () — dy + &) (67)
s 2
+5 (kgp, 0B)” — kg, DB
where k; > 0, kr; > 0, and kglg3 > 0 are the design parameters.
Substituting the controller (67) into (66), we can obtain

e = —kife — krlszg%() Pe (68)

3.3.3. FTESO-Based Safety-Guaranteed, Robust, Nonlinear, Tracking Control Design

According to the velocity observation, the velocity tracking error of the hovercraft is
denoted as follows:
fe =1 — 1y (69)
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Differentiating (62) and rewriting (14), we obtain

e = cos()(—lpsig" (X) 4 dy + cos(p)m 11, — Aysgn(F))
+ sin() (—losig™? (§) + dy + sin(p)m 17, — Aosgn(¥)))
—lg — ?sin(z/})liu + 7 cos()fiy A A (70)
= m 17, (cos(¢p) cos(y) + sin(¢p) sin(y)) — #sin(¢) iy
+cos(§) (—lasig" (%) + dy — Apsgn(%)) + 7 cos() flo

sin(P) (—Losig™?(§) + do — Aosgn(y)) — itg

For the sake of stabilizing the surge velocity error formula (70), the robust, nonlinear,
velocity-tracking controller is introduced as follows:

T = H Ym(—kyily — ky,5ig? () + 7 sin ()i, — Fcos()fl)

— COS(l?)(*leigmz(f) +dy — Aysgn(¥)) 1)
—sin(y) (—1l2sig™2 (Y) + dy — Aasgn(y)) + 1)

where
H = cos() cos(¢p) + sin(¢) sin() (72)
Combining (71) with (70), it can be obtained that

RN
ue = —kyile — ky,sig? (1) (73)
Choose the Lyapunov function for the control subsystem as below,
1, 1, 1,
Ve =5 + 57 + 505 (74)

and taking the time derivative of V¢, we obtain
(75)

Equation (75) is used to solve the system stability.

4. Stability Analysis

Theorem 2. For a hovercraft depicted in (12) with regard to the unknown model dynamics and
external ocean disturbances, taking Assumptions 1-6 into consideration, combine the FTESO (14);
BGF-LOS guidance laws (54) and (55); and the safety-guaranteed, robust, nonlinear controllers
(67) and (71). Then, the path-following errors could converge to the origin with the performance
guarantee required on all states being uniformly, ultimately bounded at the same time in the
closed-loop control system via selecting the control coefficients appropriately.

The Proof of Theorem 2. Select the candidate as follows:

V= Vof+VE+Vc (76)
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Taking the derivative of (76), and combining (23), (56), and (75), we can obtain
+Z 1-¢
1% < 7C1C0V [Cl(l ) of — CO]Vof 2
3
—ky 1l 24ku1‘2u9‘4 - smm”EH
krr —24kr1|2;’e|4 _knglg,B 24k€52| €5|4 (77)
_ 1+9
< —c16Vyy — 3[ a(l— Co)Vef ? =V, f — ks, VE
_kCl VC - kC2 ‘/Cz
. 3 3 3
where k¢, = {ku, ks, kz} and ke, = m1n{24ku1,24 kr,, 25k, }
According to (77), when the following inequality V of AL N (1CiE;) holds,
V < —ka Ve —keVe < —kpV (78)
where k, = min{kg, kc}.
Hence,
0<V <V(0)e ! (79)

It is obvious that the Lyapunov function V; of the closed-loop system is bounded,
and errors @, Xe, Y, Ue, e are uniformly bounded.

Subsequently, the proof of finite-time convergence will be analyzed. We can see from
Theorem 1 that the observation error of FTESO can converge to zero, i.e., i = p.

Since position tracking errors x,, i, are bounded, the hovercraft’s position is bounded.
Similarly, u, is constant and #, = @i — uy, f. = # — r; are bounded; thus, 7, # are bounded.
S(y) and pi = ji — p are also bounded at the same time. In addition, the sway velocity is
bounded according to previous research. g

Remark 5. The FTESO can achieve the estimated performance of lumped disturbances containing
the model and external uncertainties in finite time, and the errors’ convergence is faster than infinite.
As a result, the constructed robust, nonlinear control scheme has a better performance.

5. Numerical Simulations

In this section, numerical simulations are executed to prove the presented method’s
efficiency demonstrated on a hovercraft in this paper. Firstly, the nomenclature of a
hovercraft is depicted in Table 1 [36].

Table 1. Nomenclature.

Parameter Value Unit Parameter Value Unit
mg 40,000 kg J20 1.8 x 10° kg-m?

Jx0 2.5 x 10° kg-m? Spp 45 m?

Sip 93 m? Syp 260 m?

Q 140.8 m3/s S, 212 m?

Lsk 65 m B. 8.9 m

h 2.4 m I 23.6 m

h 1 m Hyoo 5.9 m

Vw 5 knot Buw 45 deg

The initial values of a hovercraft satisfying Assumption 2 are as follows:

u(0) =30,v(0) =0,r(0) =0,and B(0) =0

Main hovercraft parameters are as follows: x(0) = —500, y(0) = 200, and —2 < g < 2.
The starting pose of the generated parameterized reference line path follows x(0) = —500
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and y(0) = 200, and the ending pose is plotted in Figure 4. The lumped disturbances [37]

are described as follows:
du =2 Sll’l(005t) /ﬂ’lo * bl

dy = 0.2c0s(0.03t) /mg * by (80)
dy = c0s(0.02t) /] * b3

where b = [b1 by b3] Tandb = —-T b + Aw,, are the first-order Markov process and
the vector of zero-mean Gaussian white noise, respectively; the other parameters of the
first-order Markov process are set as follows:

b(0) = [2x10%, 2x10%, 2x104)", T = diag(10%,10%,10%), A = diag(1 x 10%,
1x 1041 x 10%)

12,000 T T T T T T T T
— — — -Desired trajectory
FTESO-SGCB
10,000 1
FTESO-TSM
== == FTESO-PID
8000 |- % starting point

6,000 |-

Eas t(m)

4,000

2,000

2,600 2,800 3,000 3,200 3,400

0 2000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000
North(m)

Figure 4. Path of the hovercraft.

In order to indicate the advantage and validity of the proposed safety-guaranteed,
robust, nonlinear controller with FTESO, numerical simulation results are executed to
compare the PID and TSM’s performances.

The PID controller based on the feedback error is designed as follows:

ey = U — 0y

Ty = kpyeu +ka,eu + ki, [y eudt
ey =0V — Ay

o = kpyeo + ka,eo + ki, [ eodt
ey =71 — Oy

TR = kpaer + kayér + ki [y erdt

(81)

where the design parameters are set as k,, = 1.6, k5, = 0.5, k;; = 0.08, kp, = 0.35,
ks, = 0.5, k;, = 0.001, kp, = 04, k;; = 4.2, and k;; = 0.001 according to previous
engineering experience.
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The TSM controller based on the feedback error is designed as follows:

Sy = éu + Cueuq”/p”
1 .
Ty = mo(—or — nTOFxDO) — cuey /Py 4 i,

Tps = —HuSign(sy)
Sv = év + Cvev
. 82
ar:_%(—%ﬁzo—cyev‘l'“u_ﬂvsiﬂ) 2

Sy = & + crey i/ Pr

M .
R = ]zO(_ ]EODO - Crerqr/pr + 067)

Trs = —1ysign(sy)

where the design parameters are ¢, = 2, 7, = 1.1, q,/pu = 7/8.9, ¢, = 0.35, 1, = 0.6,
¢=1n=11and g, /pr =7/89.

The proposed controller design parameters and the FTESO’s parameters are designed
as follows: x = s = 6, kg = 0.03,A = 20,ky = 6, k¢1 = 0.001, k, = 6, k,, = 0.001,
l; =085, = 08,3 =0.03, A; = 0.05, A, = 0.05, A3 = 0.0003. The parameters of the
auxiliary system are selected as follows: kéﬁn = 3.1, k§ﬁ2 = 0.1, kéﬂs = 0.02, kﬁ = 1.2,
6 = 0.00001.

The simulation results and comparisons are presented by different lines in Figures 4-8.
It can be seen from Figure 4 and Table 2 that three control strategies ensure that the
hovercraft follows the desired path with high performance, and the FTESO-based, safety-
guaranteed compensation backstepping (FTESO-SGCB) method performs better than the
FTESO-based PID (FTESO-PID) and the FTESO-based TSM (FTESO-TSM) methods under
the model uncertainties and external ocean disturbances. With the adjustment of the
controllers in three situations, they all can approach the generated desired path and follow
the virtual hovercraft’s motion. It can be seen from Figure 5 and Table 2 that the controller
proposed is effective and guarantees that whether following a straight line or a quasi-circle
path, all error signals can converge to an arbitrarily small region near the origin within finite
time and the presented controllers have faster convergence speed, higher tracking accuracy,
and stronger robustness than the PID controller and the TSM controller. The curves of
the sway velocity and yaw angular velocity during navigation are shown in Figure 6a. It
is worth noting that the drift angle is restrained to stay within safety limits in real-time
under the proposed controllers in Figure 6a. The control inputs are presented in Figure 6b.
Figure 7a shows that the hovercraft’s velocities can track the expected velocity generated
by the three relative controllers, whereas the convergence time of the proposed control
scheme is shorter than those of the other two. The yaw angle and reference yaw angle
are displayed in Figure 7b. The uncertainties and the corresponding estimation values are
depicted in Figure 8. All shown simulations and comparisons illustrate the superiority and
robustness of the proposed method.

Under the action of the three controllers, the control accuracy range of the position
tracking error between 300 s and 700 s, and the tracking errors, are depicted in Table 2.
The proposed method performs better than the FTESO-based PID (FTESO-PID) and the
FTESO-based TSM (FTESO-TSM) methods under the model uncertainties and external
ocean disturbances. The proposed controller has the highest control accuracy and the
error under is ultimately within the range of 0.30 m, 0.20 m, 0.01 knots, 0.04 knots, and
0.004 deg/s.
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Figure 5. (a) Tracking errors. (b) Along-track x, and cross-track y, errors.
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Figure 6. (a) Rate of turning and drift angle of the hovercraft. (b) The control inputs T, 7.
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Figure 7. (a) The observation of u, v, r. (b) Yaw angle ¢ and reference yaw angle ;.
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Figure 8. Estimation performance of the proposed observer.
Table 2. Control accuracy of four different controllers.
Controller | x| (m) ly,|(m) |ey|(knots) |ey|(knots) lex| (deg/s)
FTESO-PID < 0.60 < 0.50 <1.10 <0.25 < 0.05
FTESO-TSM <540 < 3.80 < 0.05 <0.14 <0.01
FTESO-
<0. <0. <0. <0. <0.
SGCB <0.30 <0.20 <0.01 <0.04 < 0.004

6. Conclusions

In this paper, the safety-guaranteed, robust, nonlinear controller with FTESO is con-
structed for a hovercraft with unavailable velocity, unknown uncertainties containing the
model, and external disturbances. The presented FTESO has been introduced to observe
the unavailable velocities and unknown disturbances while converging to zero within
finite time via the homogeneous theory; according to a line-of-sight (LOS) guidance law
via the bounded-gain-forgetting (BGF) adaptive estimator, our method can obtain the
reference yaw angle law and meet the requirement of finite time convergence. The pro-
posed controllers can handle the problems of strong nonlinearity and complex model
uncertainties for a hovercraft by combining with the observer. The safety-guaranteed
auxiliary system can restrict the drift angle to be more stably constrained to the inside of
the safety boundary, varying with time. Finally, the simulation results and comparisons
have demonstrated the efficiency of the presented control scheme. In future works, the
proposed method may be extended to a hovercraft model with four degrees of freedom
while considering various safety constraints. Additionally, the proposed method may be
utilized in a safety-guaranteed control formation plan with other performance standards
required for autonomous surface vessels; this will be considered in future research.
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