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Abstract: Container terminals are at the center of global logistics, and are highly dependent on
the schedule of vessels arriving. Conventional ETA records from ships, utilized for terminal berth
planning, lack sufficient accuracy for effective plan implementation. Thus, there is a pressing need
for improved ETA prediction methods. In this research, we propose a novel approach that leverages
past voyage route patterns to predict the ETA of container vessels arriving at a container terminal
at Busan New Port, South Korea. By modeling representative paths based on previous ports of call,
the method employs real-time position and speed data from the Automatic Identification System
(AIS) to predict vessel arrival times. By inputting AIS data into segmented representative routes,
optimal parameters yielding minimal ETA errors for each vessel are determined. The algorithm’s
performance evaluation during the modeling period demonstrates its effectiveness, achieving an
average Mean Absolute Error (MAE) of approximately 3 h and 14 min. These results surpass the
accuracy of existing ETA data, such as ETA in the Terminal Operating System and ETA in the AIS
of a vessel, indicating the algorithm’s superiority in ETA estimation. Furthermore, the algorithm
consistently outperforms the existing ETA benchmarks during the evaluation period, confirming its
enhanced accuracy.

Keywords: automatic identification system; estimated time of arrival prediction; berthing plan; spline
interpolation; past voyage route modeling; container ship

1. Introduction
1.1. Research Background

The global container fleet has experienced substantial growth over the past four
decades, with container ships carrying over 80% of international trade in goods [1]. The
deadweight tonnage of these ships, which indicates their cargo, fuel, crew, and other
contents, has increased from around 11 million metric tons in 1980 to approximately
275 million metric tons in 2020 [2]. Container terminals play a vital role in handling this
cargo, but they face challenges due to limited berthing capacity. Efficient scheduling of
terminal operations relies on accurate arrival time predictions for ships. Delays in ship
arrivals can disrupt terminal plans and operations. Therefore, obtaining precise ship arrival
information is crucial for optimizing terminal efficiency.

Terminal operators in charge of berthing plans determine vessel arrangements based
on factors such as estimated time of arrival (ETA), cargo volume, dimensions, and type [3].
Currently, terminals rely on updates from the ship’s agent via phone or email, but these
updates are not real-time and are often received only 24 to 48 h in advance, contributing
to the unreliable nature of ETAs [4]. Uncertain ETAs lead to the allocation of buffer times
before and after the scheduled arrival, which reduces operational efficiency and can cause
a ripple effect of delays and disruptions for subsequent vessels [5].

To address this issue, it is necessary to develop a model capable of predicting the time
of arrival for vessels, providing terminal planners with accurate information to facilitate
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optimal berth planning. The utilization of the Automatic Identification System (AIS) proves
highly effective in this regard, as it captures and stores essential ship trajectory data, such
as position, course, and speed. By accumulating such data, the AIS can offer a diverse
range of applications. The AIS serves as a navigation instrument located in the bridge
of vessels, transmitting its information automatically to other vessels nearby, terrestrial
receiving stations, and low-orbit satellites [6,7]. Extensive research has been conducted to
tap into the potential of the AIS in various studies.

1.2. Literature Review

The literature review aims to explore the current state of research and advancements
in AIS applications and vessel arrival time prediction. The following sections highlight key
studies and methodologies related to route modeling, trajectory mining, virtual arrival,
and ETA prediction.

1.2.1. Route Modeling for Path Prediction

In recent years, considerable efforts have been dedicated to enhancing the accu-
racy of vessel path prediction through the utilization of extensive historical AIS data.
In Dobrkovic et al.’s review [8], many research studies were dedicated to route prediction
using the AIS. Among many, Talavera et al. used historical AIS data to model the voy-
age and quantify the uncertainties in the near future by constructing Dempster–Shafer
structure [9]. They focused on estimating similar individual trajectories by clustering past
routes [9].

Another recent study by Wu et al. introduced a multi-scale Visibility Graph approach
for efficient long-distance route planning [10]. They extracted obstacle polygons from
electronic charts and constructed Visibility Graphs by connecting these polygons. The
authors generated an initial path between the start and end points using the Great Circle
Line and divided it into segments. To reduce complexity and computation time, they em-
ployed a Local Planning Window based on multiple map scales [10]. Another noteworthy
study by Li et al. proposed a novel path planning strategy utilizing deep reinforcement
learning and Artificial Potential Field with a Convention on the International Regulations
for Preventing Collisions at Sea (COLREGS) collision avoidance function [11]. They ad-
dressed the limitations of path planning with Deep Q-Network, such as sparse reward,
by incorporating the Artificial Potential Field. Experimental results demonstrated that
their proposed approach successfully guided ships along the designated path without
collisions with smaller vessels along the route [11]. Although both studies made significant
contributions to path planning, Wu et al.’s work primarily focused on long-range route
planning for autonomous surface ships [10], while Li et al.’s work addressed direction
changes in the presence of other vessels [11]. However, these studies paid less attention to
the dynamic voyage trajectory of the ships.

The following section will focus on vessel trajectory mining using the AIS and other
data sources.

1.2.2. Ship Trajectory Mining

Trajectory mining refers to a subset of data mining that focuses on analyzing spa-
tiotemporal data. It involves employing analytical techniques to identify specific patterns
in the movement of objects, understand their movement characteristics, identify anomalies,
and perform other related tasks. A critical review of AIS data applications was carried
out by Yang et al. [12]. One notable application highlighted in the review is the use of
historical trajectories from raw AIS data to predict a vessel’s future route, as demonstrated
by Pallotta et al. [13]. Numerous studies have explored the analysis of AIS data using
trajectory mining techniques. One study employed Electronic Chart System (ECS) and
preprocessing methods to transform AIS data into ship trajectory patterns, providing
insights into maritime traffic flow [14]. Kwon et al. preprocessed AIS data using a Tra-
jectory Mining technique by finding cutting, noise, and stay points in AIS trajectory [15].
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Bai et al. analyzed financial and operational risk management for global tramp shipping
companies using AIS-driven trajectory data [16]. While they focused on tanker and dry
bulk carriers and only used AIS data for ship trajectory, they gave little attention to global
container vessels and terminals.

1.2.3. Virtual Arrival and Just-in-Time Arrival

Virtual Arrival, also referred to as Just-in-time arrival, is an operational process where
a vessel’s speed is reduced to meet a Required Time of Arrival in the presence of known
delays at the discharge port [17]. The Oil Companies International Marine Forum (OCIMF)
and the International Association of Independent Tanker Owners (INTERANKO) con-
sider it wasteful for vessels to travel at full speed to ports with identified cargo handling
delays [17]. The International Maritime Organization (IMO) and the Digital Container Ship-
ping Association (DSCA) also recognizes this concept as Just-in-time arrival [18,19]. This
policy aims to mitigate excessive bunker consumption and emissions resulting from ships
sailing at high speeds and consuming unnecessary fuel while waiting at port anchorages.
The implementation of Virtual Arrival or Just-in-time policies is closely tied to effective
berth scheduling for vessels and quay crane assignment at the terminal. Consequently, this
gives rise to the Berth Allocation and Quay Crane Assignment Problem (BACAP), a com-
plex optimization challenge that must be addressed to achieve successful implementation
of the Virtual Arrival policy.

To achieve JIT arrival for container ships, Yu et al. used Random Forest (RF) to predict
a vessel’s arrival time with the optimization of BACAP and vessel speed optimization [20].
Du et al. analyzed the impact of tides and Virtual Arrival policy on berth allocation [21].
To address the BACAP, Iris et al. proposed novel set partitioning models [22]. Those
studies focused on optimizing berth allocation for Virtual Arrival or Just-in-time policies.
Furthermore, accurate estimation of vessel arrival times using AIS data would greatly
enhance the effectiveness of these policies.

1.2.4. ETA Prediction with Various Approaches

According to [23], approaches to ETA prediction can be categorized as static or dy-
namic. Static approaches provide a single prediction for each port call using historical
maritime data, which includes static vessel and voyage features sourced from ports, such
as Terminal Operating Systems or logistics companies. For example, Fancello et al. utilized
Neural Network models to predict vessel arrival times to optimize resource allocation in
a container terminal [24]. Building upon their work, Pani et al. incorporated additional
variables and a larger dataset, employing Classification and Regression Tree methods [25].
Pani et al. extended their previous study and included weather data and critical trajectory
points, using Classification and Regression Trees, Logistic Regression, and Random Forests
for classification tasks [26]. These studies revealed variations in prediction accuracy and
the relative importance of variables across different ports. Although these studies are
notable, static approaches have limitations in their failure to account for dynamic vessel
behaviors and real-time situations. Without knowledge of the vessel’s current circum-
stances, accurately determining the vessel’s time of arrival at the destination terminal
becomes challenging.

In the dynamic category, models utilize real-time dynamic features derived from the
AIS, such as vessel position and speed, to predict ETA at different stages of the voyage.
For instance, Kim et al. applied a case-based reasoning method to determine real-time
delay classes during a vessel’s journey [27]. Wu et al. conducted a study on the estima-
tion of travel time for vessels navigating narrow channels in Houston using terrestrial
AIS data [28]. They determined the ship’s behavior and movement direction to make
estimations. While their estimation approach is commendable, it primarily focused on
vessels within the channel. Consequently, tracking and analyzing out-of-channel vessels
were limited, making it challenging to gather comprehensive voyage information and
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understand the characteristics of ships when departing from their previous port of call and
predicting their arrival time at the intended port.

1.2.5. Summary

To summarize, the literature review highlights a considerable emphasis on various
applications of the AIS and predicting vessel arrival times, with notable progress made in
route modeling, trajectory mining, virtual arrival policies, and ETA prediction approaches.
Despite these advancements, there exists a gap in terminal-oriented estimation of vessel
arrival time. Limited research has specifically focused on modeling vessels’ historical routes
using Satellite AIS data to establish representative paths for ETA predictions and analyzing
current inaccurate ETA metrics, which terminals still rely on for berth planning purposes.

1.3. Contributions

This research stands out from others due to its unique contribution in the following
three areas.

1. Terminal-focused ETA predictions: This study focuses specifically on estimating vessel
arrival times at a container terminal at Busan New Port, South Korea by collecting and
analyzing AIS data of vessels entering the terminal, as shown in Figure 1. The authors
relied on the Terminal Operating System (TOS) of the terminal to gather information
about the vessels’ scheduled arrivals. Although these studies were mainly focused
on solving berth allocation problems [21,22] and analyzing the trajectories of tanker
and bulk carriers [16], it is limited to the assumption that vessels in the experiment
are punctual to the berthing schedule. Yu et al. attempted to combine the Berth
Allocation and Crane Allocation Problem with prediction models of vessel arrival
time using the Random Forest technique [20]. However, the input parameters used in
their study were relatively insufficient. Furthermore, their algorithm only took into
account the ship’s estimated time of arrival (ETA) 24 h before arrival, disregarding the
high volatility of ship ETAs, thus demonstrating its limitations. The findings of this
study have practical implications for berth allocation and terminal operation tasks at
the specific terminal under examination.
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2. Novel detection method for determining vessel departure and arrival: This research
introduces a novel method for determining when vessels depart from their previous
port of call and arrive at their destination port, Busan. By confining the prediction
boundary to the short leg between these two ports, the complexity of the prediction
process is reduced. The authors created location polygons in the vicinity of the
previous ports to monitor vessel departures and arrivals using AIS data, allowing
them to closely track these movements.
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3. Consideration of implicit navigational features: This research incorporates implicit
navigational features by examining representative paths of individual ships and rec-
ognizing their influence on vessel trajectories. Talavera et al. also used historical AIS
data to construct representative paths, but their work focused more on traffic predic-
tion on a waterway, not the arrival time of container vessels [9]. These representative
paths were constructed from historical AIS trajectories using spline interpolation and
a segmentation method, refining the trajectory data. By integrating both implicit
navigational characteristics and representative paths into the prediction model, ETA
predictions are improved.

Section 2 provides an overview of the research object, followed by the data used in
this research and the methodologies employed, such as route modeling, representative
path, ETA prediction algorithm, and searching for optimal parameters. Section 3 presents
the results, while Section 4 provides a discussion of the results. Finally, Section 5 presents
the conclusions drawn from the study.

2. Materials and Methodology
2.1. Research Object

The primary object of this research is to develop a robust model that can accurately pre-
dict ETAs in terminal operations planning. Currently, the traditional method of providing
ETAs involves shipping agents communicating via phone or email, which is then stored in
the TOS. In this paper, the ETAs recorded in the TOS are referred to as ETATOS, which can
be compared with predicted ETA from our methodology. Furthermore, ETA information
in AIS data has recently been publicly available on websites such as MarineTraffic.com
(accessed on 10 May 2023), where ships’ current and past positions, ETA, and other infor-
mation are offered. Since terminal operators also get access to such AIS data for source
of terminal berth planning, ETA in the AIS is referred to as ETAAIS in this research. The
research aim is to facilitate efficient planning of ship arrivals by enhancing the accuracy of
ETA predictions, surpassing the existing metrics employed in berth planning.

ETApred,vi ,wj
←
(

RPPoptimal ,Qoptimal ,vi ,wj , V′vi ,wj

)
(1)

MAEpred,vi ,wj
=

∑
∣∣∣ETApred,vi ,wj

− ATAvi ,wj

∣∣∣
n

(2)

MAETOS,vi ,wj =
∑
∣∣∣ETATOS,vi ,wj − ATAvi ,wj

∣∣∣
n

(3)

MAEAIS,vi ,wj =
∑
∣∣∣ETAAIS,vi ,wj − ATAvi ,wj

∣∣∣
n

(4)

MAEpred Total =
∑8

j=1 ∑81
i=1 MAEpred,vi ,wj

N
(5)

MAETOS Total =
∑8

j=1 ∑81
i=1 MAETOS,vi ,wj

N
(6)

MAEAIS Total =
∑8

j=1 ∑81
i=1 MAEAIS,vi ,wj

N
(7)

Equation (1) represents the process of predicting ETAs for vessel vi from the previous
port wj. This prediction is based on the representative path RPPoptimal ,Qoptimal ,vi ,wj and the
processed AIS data voyage for performance evaluation V′vi ,wj

. In Equations (2)–(4), the Mean

MarineTraffic.com
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Absolute Errors (MAEs) of the predicted ETA (ETApred), ETATOS, and ETAAIS, respectively,
are calculated. This is achieved by subtracting each ETA from the Actual Time of Arrival
(ATA) and dividing by the total number of data points in a voyage.

To evaluate the performance of the ETA model, MAEs from Equations (2)–(4) were
summed for all 81 vessels and 8 previous ports, as shown in Equations (5)–(7). The
resulting MAEs, the total mean absolute error of the ETApred (MAEpred Total), the total mean
absolute error of ETATOS, (MAETOS Total), and the total mean absolute error of ETAAIS
(MAEAIS Total), respectively, were then compared.

This research aims to predict an MAEpred Total that is lower than both the MAETOS Total
and the MAEAIS Total , respectively. This comparison aims to demonstrate the superior
accuracy of the developed model in predicting ETAs compared with the existing methods
utilized in berth planning.

2.2. Schematic Diagram

The present study outlines a research approach that involves two distinct stages,
as depicted in Figure 2. The first stage of the research was about voyage modeling for
ETA prediction and optimal parameter search. This stage commenced with the voyage
splitting process, wherein AIS data of ships was collected and preprocessed. The arrival and
departure data of ships was classified, and each voyage was modeled by classifying them
by vessel and by previous port. Representative routes for each vessel were derived using
spline interpolation and segment. When AIS data was updated anew, ETA of the modeled
voyage was predicted, and the optimal parameters, Poptimal and Qoptimal , were explored
for each voyage, considering the number of interpolations, segments, and the difference
between actual time of arrival and the ETAs calculated as Mean Absolute Error (MAE).
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Figure 2. Schematic diagram for overall research.

The second stage of the research involved the evaluation of modeled voyages and
optimal parameters Poptimal and Qoptimal obtained in Stage 1. ETAs were predicted using the
new voyage data of the modeled vessel, and the results were compared with the existing
ETA metrics, ETAAIS and ETATOS, for MAE.
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2.3. Data Preparation
2.3.1. Data Description

This study utilized three types of data, namely AIS data, Ship Arrival and Departure
Declaration system data, and berth plan data. The berth plan data contained berth allocation
plans in the TOS, which provided information regarding the scheduled ships’ entry into the
terminal, detailed berthing/unberthing datetime, and other relevant data. AIS data was
utilized to obtain the actual voyage and navigation information of the monitored vessels,
using the vessel list in the berth plan data. The historical arrival and departure time and
previous port information of the vessels were collected through Ship Arrival and Departure
Declaration system data and used for voyage separation.

AIS(S-AIS)

The AIS signals had a horizontal range of about 40 nautical miles (74 km), meaning that
AIS traffic information was only available around coastal zones or in a ship-to-ship zone [7].
A terrestrial AIS is a short-range coastal tracking system that provides identification and
positioning information to vessels and shore stations. Conversely, Satellite-AIS (S-AIS)
is an extension of AIS that allows for wider coverage and longer range [7]. In order to
model the overall route of vessels in open waters, S-AIS was mainly used in the research.
AIS data comprises static, dynamic, voyage-related, and safety-related information, as
documented in [7].

Table 1 represents AIS data sent by ship side. Table 2 shows raw S-AIS data of
the ‘vessel GLO**’. In Table 1, static information was typically fixed and modified only
when AIS equipment was first installed on board or when ship specifications changed.
Dynamic information was automatically transmitted by AIS equipment and updated
dependent on speed and course alteration, while voyage-related information was manually
updated by navigators, including ETA information for the next port of call [7]. Authors
preprocessed the raw data to have it in dataframe datatype using the Python library Pandas
1.3.5, and accumulated during the research period. Among many fields, certain columns,
including vessel name, vessel position, position timestamp, API call timestamp, heading,
ETA, Destination, and SOG, were used for the research. This research did not tap into
voyage-related information because there was unreliability of voyage-related information.
During the data preprocessing, it was found that voyage-related information, such as
ETA and Destination, had been updated infrequently, due to negligence of some bridge
officers in charge or technical glitch of AIS equipment. According to [29], about half of the
navigational information in the AIS, such as ETA and destination, transmitted showing
obvious errors. That means it is hard for berth planners in the terminal to look to ETA in
AISs for berth planning.

Table 1. AIS data sent by ship [7].

Static Dynamic Voyage-Related Safety-Related

MMSI 1 Vessel position Draught Short safety-related messages
Call-Sign Position Timestamp Destination

Name COG 2 ETA
IMO No. SOG 3

Length and beam Heading
Vessel type Navigational status 4

1 Maritime Mobile Service Identity; 2 Course Over Ground; 3 Speed Over Ground; 4 e.g., ‘underway by engines’,
‘at anchor’, ‘moored’ . . .
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Table 2. S-AIS raw data sample.

Field Value

MMSI (concealed)

imo (concealed)

callsign (concealed)

vessel_name (concealed)

type_info (code: 70,
description: ‘Cargo, all ships of this type’)

dimension_info (a:18, b:181, c:12, d:20)

voyage_info

(eta: ‘09211045′,
max_draught: 10.0,

destination: ‘SADMM’,
navigation_info: (code: 0, description: ‘under way using engine’},

received: ‘2022-09-13T04:30:38Z’)

Position_info

(‘lat’: 17.2595,
‘lon’: 72.4836,

‘turn’: 44.0,
‘speed’: 12.2,

‘course’: 196.1,
‘true_heading’: 140,

‘received’: 2022-09-13T04:35:58Z’),

API call Timestamp 2022-09-13 04:41:10 GMT+9
Specific information about the ship is concealed.

Ship Arrival and Departure Declaration System from Port-MIS System

Port Management Information System (Port-MIS) is an electronic information system
related to port operations managed and operated by the Ministry of Oceans and Fisheries
of the Republic of Korea. Among its many functions, the data used in this paper are Ship
Arrival and Departure Declaration systems. Since this information is publicly available
online, it was used to categorize AIS voyages by vessel. Table 3 represents the Ship Arrival
and Departure Declaration system data sample of Vessel V010.

Table 3. Ship arrival and departure declaration history data sample.

Port Name Callsign Vessel
Name Call Year Ser No. Gross Tonnage Port in Time Port out

Time CIQ Time Berth Place Previous Port Next Port Vessel Type

Busan (concealed) V010 2022 12 40,447 2023-03-30
03:22

2023-04-01
01:00

2023-03-30
03:22

Gam-man
pier Berth 3

TIANJIN
XINGANG PT

TIANJIN
XINGANG

PT

Full
Container

Specific information about the ship is concealed.

TOS Berth Plan

A Terminal Operating System (TOS) is an essential component of the supply chain
that plays a crucial role in managing the transportation and storage of different types of
cargo within a port or marine terminal [30]. In this study, the berth plan in TOS of the
container terminal testbed, which contains the schedules of vessels arriving, was utilized to
identify which vessels were to be monitored for AIS data collection, as the research focused
on vessels arriving at the terminal at Busan New Port.

2.3.2. Data Gathering Description

The present study utilized S-AIS, Ship Arrival and Departure Declaration system, and
TOS berth plan data to predict ETAs of vessels expected to arrive at the terminal in focus.
As Table 4 shows, AIS data was collected from 20 September 2022 to 13 January 2023, for a
duration of approximately four months. A separate evaluation dataset was also collected,
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covering a period of two months from 14 January to 14 March 2023, which included 27 out
of the 81 ships utilized in the model.

Table 4. Data gathering specifics.

For Modeling For Evaluation

Collecting period 20 September 2022~13 January
2023 (app’ 4 months)

14 January 2023~14 March 2023
(2 months)

API call interval Every 5 min

Data format Comma-separated values (csv)

Voyages 157 36

Vessels 81 27

By calling S-AIS API through a subscription to a low-orbit satellite service, the collec-
tion of vessels was updated every 5 min. The resulting raw data consisted of 1,255,387 rows.
The collected data were saved in comma separated values (csv) files. Additionally, the berth
plan and Ship Arrival and Departure Declaration system data were also collected cumula-
tively during the AIS collection period. Table 5 briefly offers vessel principal particulars
used in this research.

Table 5. Target vessel principal particulars.

Vessel
Code MMSI IMO Type Gross

Tonnage
LOA
(m)

Breath
(m) Year Built Capacity

1 V001 (concealed) (concealed)

Full
Container

54,214 294.06 32.2 2004 5060
2 V002 (concealed) (concealed) 93,685 299.9 48.2 2014 9300
3 V003 (concealed) (concealed) 113,042 337 48.3 2015 10,000

. . . . . . . . . . . . . . . . . . . . . . . . . . .
79 V079 (concealed) (concealed) 93,685 299.9 48.2 2015 9300
80 V080 (concealed) (concealed) 153,115 365.79 51.3 2011 14,000
81 V081 (concealed) (concealed) 113,042 337 48.31 2015 10,000

Specific information about the ship is concealed.

2.4. Past Voyage Route Modeling
2.4.1. Previous Port of Call Categorization

Figure 3 provides a map of the previous ports of call of ships collected during the
study period. A total of 152 ships were collected, yielding 358 routes and 39 previous
ports of call. Based on the number of previous ports of call and the number of routes, we
identified eight ports with the highest number of samples for subsequent modeling, as
shown in Table 6. Since a lack of voyage data may hamper the modeling performance, the
authors decided to exclude vessels with less than 50 AIS data rows per voyage.

Table 6. Previous port groups used in modeling.

Region Previous Ports
(Voyages Counted by Port) Total Voyages Counted

Northern coast, China QINGDAO (34),
TIANJIN (37) 71

Eastern coast, China NINGBO (31),
ZHOUSHAN (10) 41

South China Sea SINGAPORE (14),
TANJUNG, Malaysia (4) 18

Southern Japan (Kyushu) HAKATA (19) 19

Eastern Japan (Honshu) YOKOHAMA (13) 13
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As a result, the voyage data of ships with a history of departure from the identified
eight previous ports of call were used for voyage modeling. This resulted in the selection
of 157 voyages from 81 ships during the modeling period.

vessel vi ∈ (v1, v2, v3, · · · , v81) (8)

previous port wj ∈ (w1, w2, · · · , w8) (9)

Vvi =
( ˆD1, D̂2, . . .

)
(10)

Vvi ,wj ,T =
( ˆDT,1, ˆDT,2, . . . , ˆDT,k, . . . , ˆDT,F

)
(11)

A vessel on focus is denoted as vi and a previous port is as wj, as shown in
Equations (8) and (9). In Equation (10), Vvi represents a raw AIS dataset of vessel vi. D̂1
corresponds to the AIS data of index 1 of vi, which has been sorted by its timestamp. In
Equation (11), Vvi ,wj ,T refers to the split AIS data of vi from previous port wj over a specified
timespan T. The value of T can be obtained from the ship’s departure time and arrival time
history recorded in the Ship Arrival and Departure Declaration system. Vvi ,wj ,T comprises
a set of F indices.

2.4.2. Location Polygon for Voyage Splitting

In this study, the primary goal was to accurately predict the estimated time of arrival
for vessels during their voyages. To achieve this, a preprocessing technique was employed
to segment raw voyage into legs, which represent specific segments from the vessel’s
departure from the previous port to its arrival at Busan port. This segmentation was crucial
because it allowed for a more precise analysis of each leg, taking into account the unique
characteristics and variables associated with different segments of the voyage. However,
obtaining accurate departure and arrival times from available data sources, such as the AIS,
TOS, and the Ship Arrival and Departure Declaration, was challenging due to the lack of
detailed information. To address this issue, a novel method utilizing location polygons
is proposed in this study. Location polygons are geospatial shapes projected around port
areas and composed of connected points of interest. By monitoring AIS location points
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within the location polygons, the departure and arrival times of voyages can be accurately
determined, enabling more precise ETA predictions.

Polygonwj =
(

Polygon((lat1, lon1), (lat2, lon2), . . .), headingwj ,threshold

)
(12)

Each Polygonwj comprises location polygons associated with the previous port and a
heading criterion, like Equation (12). The authors manually selected the points of interest
to construct the shape of the location polygons by closely monitoring the traffic flow of AIS
trajectories. The shape of connected points in the location polygons could be either convex
or non-convex, depending on the geometry of the previous port region. However, whether
the polygon was convex or not, its primary purpose was to determine if the vessel’s position
was within the polygon or not.

Algorithm 1 is a method that splits raw voyage data of vessels using location poly-
gons. Further detailed descriptions of the aforementioned concepts are provided in the
subsequent sections of Finding the starting point of the voyage (ATD) and Finding the Last
Point of the Voyage (ATA).

Algorithm 1: Voyage splitting using location polygons
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Input 

𝑉𝑣𝑖,𝑤𝑗,𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅ : Raw voyage data set of 𝑤𝑗 over timespan T

𝑃𝑜𝑙𝑦𝑔𝑜𝑛𝑤𝑗
: Location polygon of previous port 𝑤𝑗

𝑃𝑜𝑙𝑦𝑔𝑜𝑛𝐵𝑢𝑠𝑎𝑛: Location polygon of Busan New Port 

Output Processed voyage 𝑉𝑣𝑖,𝑤𝑗,𝑇

1 // 1. Finding Berthing Timestamp 

2 Sort 𝑉𝑣𝑖,𝑤𝑗,𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅   by timestamp

3 if any points in 𝑉𝑣𝑖,𝑤𝑗,𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅ within 𝑃𝑜𝑙𝑦𝑔𝑜𝑛𝑤𝑗

 referenced by shapely

4 Find the last point 𝐷𝑠𝑡𝑎𝑟𝑡
̂   in within_points

5 // 2. Finding Starting Point 

6 Define temp group=(𝐷𝑠𝑡𝑎𝑟𝑡
̂ , 𝐷𝑠𝑡𝑎𝑟𝑡+1

̂ , 𝐷𝑠𝑡𝑎𝑟𝑡+2
̂ , … )

7 for 𝐷�̂�  in temp group:

8 𝑆𝑂𝐺𝑘 , ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑘 ← 𝐷�̂�

9 
if 𝑎𝑣𝑔(𝑆𝑂𝐺𝑘−1, 𝑆𝑂𝐺𝑘, 𝑆𝑂𝐺𝑘+1) > 11(knot) 

and ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑘 𝑖𝑛ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑤𝑗,𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

10 Starting point 𝐷1 ← 𝐷�̂�

11  end if 

12 end for 

13 end if 

14 // 3. Finding Last Point 

15 if any points in 𝑉𝑣𝑖,𝑤𝑗,𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅  within 𝑃𝑜𝑙𝑦𝑔𝑜𝑛𝐵𝑢𝑠𝑎𝑛 referenced by shapely

16 Find the first point 𝐷𝑒𝑛�̂� by timestamp

17 End point 𝐷𝐸 ← 𝐷𝑒𝑛�̂�

18 end if 

19 Processed voyage 𝑉𝑣𝑖,𝑤𝑗,𝑇 = (𝐷1, … , 𝐷𝐸)

Finding the Starting Point of the Voyage

To determine if a ship was departing, three conditions were all checked.

• The voyage data must fall within or nearby the location polygon, indicating that the
ship was either on the verge of leaving or had already left the polygon.

• The heading of the ship must meet the specified criteria.
• The average starting sailing speed must be equal to or greater than 11 knots.
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As previously discussed, location polygons were utilized to track the AIS locations
of vessels. When a vessel fell within the polygon associated with the previous port, it
signified that the vessel had arrived at the port. Subsequently, after the completion of
cargo operations at the terminal, the ship was ready to depart. The moment when the AIS
data crossed the boundary of the location polygon marked the ship’s departure. However,
during our observation and preprocessing, we encountered instances where vessels left
the location polygon due to reasons such as shifting berths or remaining at anchorage
near the port. This finding highlights the need to consider additional conditions to avoid
making naïve determinations of the departure time. Figure 4 presents an overview of
the location polygons for the eight ports to detect the ATD. Each polygon, denoted as
Polygonw j, represents the geospatial region of a previous port wj. To identify the departure
location and time, the authors employed the Polygonw j to analyze the raw voyage data. The
raw voyage dataset Vvi ,wj ,T was sorted based on timestamp and subsequently evaluated to
detect coordinates that fell within the polygon. This was achieved using the Point.within
function of shapely 1.8.2, one of Python’s libraries.

The heading criteria were established to determine whether the departing vessel was
moving away from the port, with its heading in the opposite direction. We analyzed the
heading angles of vessels at the time of departure and identified specific ranges of angles
for each port. These ranges represented the boundary angles within which vessels typically
followed the departing route.

To determine these boundaries, we calculated the average heading angles based on
the voyages collected during the research period. For instance, we examined 37 voyages
that departed from Tianjin port to Busan. After departure, we averaged the heading angles
for each voyage and determined the minimum and maximum average heading angles
across all 37 voyages. In the case of Tianjin, the minimum heading angle was 93.2 degrees,
and the maximum heading angle was 121.2 degrees. We applied the same methodology
to the other ports as well. The heading angle criteria corresponding to the previous ports
are illustrated in Figure 5 and summarized in Table 7. Table 7 presents the overall results
of the method, while Figure 5 displays the heading angle polar plot organized by port.
Each colored sector represents the boundary angles for the heading. By implementing this
method, we successfully applied it to all 157 voyages, allowing us to accurately determine
the actual departure time.

Table 7. Heading angle criteria boundary by previous port.

Port Min Heading Max Heading

Yokohama 149.9◦ 232.7◦

Hakata 285.3◦ 311.2◦

Ningbo 43◦ 129.25◦

Zhoushan 72.7◦ 121◦

Singapore 39.4◦ 183.3◦

Tanjung Pelepas 171.8◦ 183.4◦

Qingdao 84.7◦ 123.2◦

Tianjin 93.2◦ 121.2◦

Lastly, the average starting sailing speed in the initial voyage was taken into consider-
ation. When vessels depart, they may encounter other vessels along their route or allow
the pilot to disembark after passing the port area, resulting in a potential decrease in speed.
However, once all obstacles have been cleared, they accelerate for normal navigation. Ac-
cording to [31], the lowest speed of most vessels across all sailing legs is 14 knots. Authors
referred to this speed for validation purposes and found that the majority of monitored
vessels commenced their voyage at speeds around 11 knots or even higher. Consequently,
a threshold of an average of 11 knots was set to determine the actual start of the voyage
based on three consecutive AIS data points.
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All conditions considered, the actual time of departure point (ATD) was determined
and denoted as D1 (ATD).

Finding the Last Point of the Voyage

As in the absence of actual time of departure in data sources such as AIS or TOS,
Actual Time of Arrival information was also unavailable. In TOS, there is an Actual Time of
Berth (ATB) field for when the vessel actually berthed at the terminal berth, but the actual
time of arrival is not maintained. To find the actual time of arrival, it was necessary to
determine the actual time of arrival in the same way as the actual time of departure.

Figure 6 depicts a location polygon used to determine the actual time of arrival of
ships entering Busan New Port. The polygon, PolygonBusan, was created by combining
the polygons of the pilot boarding place (PBP) and the anchorage near Busan New Port.
A pilot boarding place is a designated zone where a pilot boards a ship to assist with
navigation when entering a port. In the Busan New port, due to its narrow channels and
traffic congestion, vessels are mandated to have a pilot on board when berthing. The pilot
boarding place is typically located near the port entrance and can be a pier, buoy, or other
suitable location where the pilot can safely board the ship.
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Additionally, an anchorage is a designated area in a harbor or port where ships can
anchor and wait for their turn to enter the port. The coordinates of the Busan New Port
anchorage area, designated by the government, and the pilot boarding points, disclosed by
the Busan Harbor Pilot’s Association, were utilized to construct the polygon. To account for
the update interval and error of the AIS data, an additional error radius of approximately
5 km was incorporated into the actual polygon. Since vessels often deviate from the
designated areas when arriving, we experimentally set an error radius of 5 km to improve
the determination of actual arrival.

To find the end point (ATA), we defined ATA as the time when the first point in Vvi ,wj ,T
by timestamp entered the PolygonBusan. Once a vessel’s position was found in a given
polygon, the corresponding AIS point was selected as DE (ATA). In this study, the ETA was
calculated using the ATA as the ground truth because it is a prediction of when the vessel
will arrive at the arrival point regardless of the actual berthing time.

The result of algorithm 1 is the processed voyage Vvi ,wj ,T of vessel vi from previous
port wj over timespan T. Vvi ,wj ,T contains discrete AIS data starting from D1 to DE.

2.5. Generating Representative Paths

The purpose of creating a representative path is to model the navigation of a specific
ship by reflecting its navigation characteristics. A representative path is a single path that
represents the voyages of ships departing from the same previous port of call. Since the
number of data points for each route may differ, it was necessary to first equalize the
number of data points. To achieve this, interpolation was used to create a uniform number
of data points for each voyage. Subsequently, the indices of each voyage were grouped,
and the average values of latitude, longitude, and speed were computed to generate a
representative path.

2.5.1. Spline Interpolation for Integrating Voyages

During the voyage modeling period, raw voyages were cut to the core as a result of Al-
gorithm 1. Processed voyages were then combined by the same vessel vi and same previous
port of call wj to generate a representative path using spline interpolation. Interpolation
is a mathematical technique used to estimate values between known data points. In Wu
et al.’s previous work [28], interpolation was utilized to fill in the gaps within discrete AIS
points, enabling the determination of vessel movement direction. Similarly, Hintzen et al.
employed spline interpolation to reconstruct trajectories of fishing vessels [32]. Building
upon their approach, we adopted spline interpolation in this study to enhance the smooth-
ness of predictions for intermediate values. This was particularly crucial for long-distance
voyages, which tend to exhibit complexity and non-linearity, making it desirable to obtain
a smooth curve representation of the routes.

Vvi ,wj ,com =
(

Vvi ,wj ,T1 , Vvi ,wj ,T2 , . . . , Vvi ,wj ,Tk , . . . , Vvi ,wj ,TR

)
(13)

RPP,Q,vi ,wj =
∑R

k=1 Spline
(

Vvi ,wj ,Tk [x, y, z]
)

R
(14)

RPP,Q,vi ,wj = (p1, p2, · · · , pn, · · · , pP) (15)

pn = (xn, yn, zn) (16)

Equation (13) consists of several Vvi ,wj ,Tk . Each is a group of R numbers of processed
voyages, where R is the number of voyages of vi from wj. The set of data pn of the rep-
resentative path of vessel vi departing from the previous port wj is referred to as the
Representative Path, denoted by RPP,Q,vi ,wj , where P represents the number of interpo-
lations and Q represents the number of segments. In Equations (14) and (16), x denotes
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longitude, y denotes latitude, and z denotes ship’s actual speed. After being interpolated to
P, each x, y, and z of the processed voyages were added and divided by R, generating a
representative path of vi from wj. Additionally, the authors define pn as the position and
velocity vector of the nth index of the representative path, as shown in Equation (15).

In this study, we used the interpolate.interp1d (kind = ‘cubic’) function from the
Python library scipy 1.4.1 to perform spline cubic interpolation. Table 8 shows a sample of
a representative path generated using this interpolation method

Table 8. Representative path sample using spline interpolation.

Longitude Latitude SOG

1 117.9633 38.92593 11
2 117.9683 38.92525 11.00596
3 117.9731 38.92458 11.01029

. . . . . . . . . . . .
10,998 128.8637 34.91406 7.276178
10,999 128.8638 34.91496 7.302102
11,000 128.8638 34.91583 7.333333

2.5.2. Segmenting Representative Path

Figure 7 shows an example of a segmented representative path, where each segment
has data equal to P divided by Q, and there are Q total segments in the path.
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Figure 7. Graphical image of segmentation in the representative path.

After representative paths were derived from the processed voyages of vi from wj,
segmenting the path into several segments was needed. This is because computing ETAs
for each interpolated path takes a lot of time and resources. We suggest that segmentation
can reduce the time and resources by obtaining the average speed of segments and applying
them to calculate ETA predictions. In an experiment by the authors, an average computation
time of ETA prediction without segmentation took about 3 min and 52 s per voyage of a
vessel, while by using segmentation, the time taken was significantly reduced to 1 min
and 10 s. The experiments were conducted on a computer with an Intel Core i7-10700F
processor, 32 GB of RAM, and a solid-state drive. Additionally, the programming tasks
were performed using Python 3.7 on a Windows 11 machine.

RPP,Q,vi ,wj = (p1, p2, · · · , pn, · · · , pP)

=
(

Seg1, Seg2, · · · , Segm, · · · SegQ

) (17)

Segm =

(
p P

Q (m−1)+1, p P
Q (m−1)+2, · · · , p P

Q m−1, p P
Q m

)
(18)
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1 ≤ n ≤ P, 1 ≤ m ≤ Q (19)

Representative Path, RPP,Q,vi ,wj , can also be represented by a series of Segs, like
Equation (17). Each segment was constructed using a range of indices of P and Q, shown in
Equation (18). In Equations (19), the index of the AIS data n is greater than 1 and cannot
exceed number of interpolations P, and the index of segment m also cannot exceed the
number of segments Q. A larger number of segments generally performs better, as the inter-
polated representation of the route becomes more normalized and can better follow speed
trends. In our experiments, we varied two parameters, namely the number of segments
and the interpolation number, to select the optimal parameters for each ship.

In Figure 8a, there are three voyages of vi. Each of those voyages was firstly interpo-
lated equally, such as the number of 11,000. The data lengths of each voyage then became
equal, ready for integration. Subsequently, the longitude, latitude, and speed values for
each column of the three voyages were averaged to determine the representative path of
vi from the previous port, Tianjin. The representative path of vi from the previous port
is shown in Figure 8b. Figure 9a shows the overview of the previous port of call and the
beginning parts of the representative path, and Figure 8b represents the last part of the
voyage. In Figure 9b, the green colored blots are the normal path, and the red colored dots
are excluded for implementing representative path, as the PolygonBusan filters the last point
of the voyage.
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2.6. Prediction of ETA

Let Vvi ,wj ,T denote the AIS voyage data of ship vi departing from port wj over a
timespan T, which is a set of multiple AIS voyage data arranged in chronological order,
presented in Equation (20). Let Dt denote the AIS data at time index t, where D1 is the data
at the time of departure from the previous port j, and DE is the data at the time of arrival in
Busan, as shown in Equations (21) and (22). The time index t is always greater than 1 and
cannot exceed E, in Equation (23).

Vvi ,wj ,T = (D 1, D2, . . . , Dt, . . . , DE

)
(20)

Timestamp o f D1 = ATD o f previous port j (21)

Timestamp o f DE = ATA o f Busan New Port (22)
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1 ≤ t ≤ E (23)
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The algorithm for predicting a ship’s ETA at each timestep using a representative path
as a model based on interpolation and segmentation, with AIS data for each ship as input,
can be described in following Algorithm 2.
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Algorithm 2: ETA prediction using interpolation and segmentation
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(𝑏−1)+𝑥
− 𝑝𝑃

𝑄
(𝑏−1)+(𝑥−1)

|)

2

)

𝑃
𝑄

𝑏

𝑥=2
/ 𝑆𝑡 

# 𝑝𝑃

𝑄
⋅𝑏

 is the last point of 𝑆𝑒𝑔𝑏 

9 Initialize 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 

10 for h in range(b+1, Q) 

11 𝑆𝑝𝑒𝑒𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝑒𝑔ℎ ∑ 𝑆𝑝𝑒𝑒𝑑) 

12 

𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑜𝑡𝑎𝑙

= ∑ (√(|𝑝𝑃
𝑄

(ℎ−1)+𝑥
− 𝑝𝑃

𝑄
(ℎ−1)+(𝑥−1)

|)

2𝑃
𝑄

⋅ℎ

𝑥=2
)/𝑠𝑝𝑒𝑒𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒 

13  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 + (𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑜𝑡𝑎𝑙/ 𝑆𝑝𝑒𝑒𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒) 

14 End for 

15 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑡𝑜𝑡𝑎𝑙 = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑛𝑖𝑡𝑎𝑙 + 𝐷𝑢𝑎𝑡𝑖𝑜𝑛𝑏 + 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 

16 𝐸𝑇𝐴𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑡𝑖𝑚𝑒𝑡 + 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑡𝑜𝑡𝑎𝑙 

17 Save 𝐸𝑇𝐴𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 in the dataframe 

18 End for 

19 Repeat until 𝐷𝑡 == 𝐷𝐸 

The point 𝑃𝑎 in the representative path was closest to the location coordinate 𝐶𝑡 of 
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𝑄
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𝑄
(𝑏)

, dividing it by the average speed inside the segment, and adding up these durations

to obtain the cumulative duration 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔. 

Finally, the algorithm computed the total duration 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑡𝑜𝑡𝑎𝑙 by summing up all 
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timestep t. The algorithm terminated when 𝐷𝑡 became 𝐷𝐸. 

The point Pa in the representative path was closest to the location coordinate Ct of Dt.
We then identified the segment Segb to which Pa belonged. The algorithm calculated the
duration Durationinitial by dividing the distance from Pa to Ct by the speed St of Dt.

Next, the algorithm computed the duration Durationb for segment Segb by calculating
the cumulative distance from point Pa in Segb to the last point inside Segb, PP

Q ·b
, and

dividing it by the average speed from speed values in Segj. It then proceeded to compute
the duration for each subsequent segment up to the last segment SegQ, by calculating
the distance between the internal first point PP

Q (b−1)+1 and the internal last point PP
Q (b),

dividing it by the average speed inside the segment, and adding up these durations to
obtain the cumulative duration Durationremaining.

Finally, the algorithm computed the total duration Durationtotal by summing up all
the obtained durations, and added it to the timestamp timet of Dt to obtain the ETA at
timestep t. The algorithm terminated when Dt became DE.
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2.7. Searching for Optimal Parameters

In order to optimize the ETA prediction algorithm for each ship, the number of
interpolations and the number of segments must be carefully selected. To accomplish
this, experimentation was conducted to observe the ETA prediction error, measured as the
mean absolute error (MAE), for different combinations of these parameters. The optimal
parameters that resulted in the lowest ETA error were then selected for each ship, based
on vessel-specific navigation characteristics. The ETA error was calculated by dividing
the voyage data by previous ports of call, while varying the number of interpolations and
segments. A total of 10 interpolation number parameters ranging from 2000 to 11,000 and
10 segment number parameters ranging from 20 to 110 were utilized in the experimentation
process. To ensure that the optimization process was conducted on a vessel-specific basis,
test cases with the same previous port of call for each vessel were grouped together. At
least 100 tests were conducted for at least one route, and the results were stored on a local
PC for further analysis. Ultimately, the optimal parameters for each vessel were determined
based on their ETA prediction performance, with the goal of minimizing the ETA error.

Error Metrics

Mean Absolute Error (MAE) in Equation (24) is a metric that evaluates the accuracy of
a predictive model by measuring the average difference between the ATA values and the
predicted ETA values. MAE was calculated by taking the absolute value of the difference
between the two values and averaging them across the data frame [33]. The resulting MAE
value was expressed in timedelta datatype.

MAE =
∑n

i

√
(ETAi − ATA)2

n
(24)

In Algorithm 3, the process to search optimal parameters is described. To search for
the optimal parameters, the values of P and Q were varied for each ship, and the results
of Algorithm 2 were saved in an empty dataframe form. Subsequently, the parameters
Poptimal,vi ,wj

and Qoptimal,vi ,wj
with the lowest MAE were selected from the saved results for

each ship.

Algorithm 3: Searching optimal parameters
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for each ship. 
Algorithm 3: Searching optimal parameters

Input 
1. Representative Paths of vessel 𝑣𝑖 from port 𝑤𝑗: RP𝑃,𝑄,𝑣𝑖,𝑤𝑗

2. AIS data of vessel 𝑣𝑖 from port 𝑤𝑗: 𝑉𝑣𝑖,𝑤𝑗,𝑇

Output 𝑃𝑜𝑝𝑡𝑖𝑚𝑎𝑙,𝑣𝑖,𝑤𝑗
 and 𝑄𝑜𝑝𝑡𝑖𝑚𝑎𝑙,𝑣𝑖,𝑤𝑗

1 𝑃𝑟𝑎𝑛𝑔𝑒 = 𝑟𝑎𝑛𝑔𝑒(2000, 12,000, 1000) 

2 𝑄𝑟𝑎𝑛𝑔𝑒 = 𝑟𝑎𝑛𝑔𝑒(20, 120, 10) 

3 Define the number of voyages of vessel 𝑣𝑖 as K 

4 𝐾𝑟𝑎𝑛𝑔𝑒 = 𝑟𝑎𝑛𝑔𝑒(𝐾) 

5 Initialize 𝐷𝑎𝑡𝑎𝑓𝑟𝑎𝑚𝑒𝑣𝑖,𝑤𝑗

6 for 𝑃𝑣 in 𝑃𝑟𝑎𝑛𝑔𝑒 

7 for 𝑄𝑣 in 𝑄𝑟𝑎𝑛𝑔𝑒 

8 for 𝐾𝑣 in 𝐾𝑟𝑎𝑛𝑔𝑒 

9 𝐷𝑎𝑡𝑎𝑓𝑟𝑎𝑚𝑒𝑃𝑣,𝑄𝑣,𝐾𝑣,𝑣𝑖,𝑤𝑗
 ← Algorithm 2 (RP𝑃𝑣,𝑄v,𝑣𝑖,𝑤𝑗

, 𝑉𝑣𝑖,𝑤𝑗,𝑇)

10 𝐷𝑎𝑡𝑎𝑓𝑟𝑎𝑚𝑒𝑃𝑣,𝑄𝑣,𝐾𝑣,𝑣𝑖,𝑤𝑗
  append to 𝐷𝑎𝑡𝑎𝑓𝑟𝑎𝑚𝑒𝑣𝑖,𝑤𝑗

11  End for 

12 End for 

13 End for 

14 P𝑜𝑝𝑡𝑖𝑚𝑎𝑙,𝑣𝑖,𝑤𝑗
, Q𝑜𝑝𝑡𝑖𝑚𝑎𝑙,𝑣𝑖,𝑤𝑗

 ← 𝑎𝑟𝑔𝑚𝑖𝑛(𝑀𝐴𝐸 (𝐷𝑎𝑡𝑎𝑓𝑟𝑎𝑚𝑒𝑣𝑖,𝑤𝑗
[𝐸𝑇𝐴𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑]))
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2.8. Model Performance Evaluation
2.8.1. Evaluation Data

Evaluation data refers to new data that were not used during the model training. In
this study, as mentioned in Section 2.3.2. Data gathering description, the data collected
after the model training were used for evaluation.

2.8.2. Evaluation Method

The optimal parameters determined in Section 2.7 were applied to estimate the ETA
for each ship and port of call using Algorithm 2 with the evaluation data. The algorithm
results were evaluated by comparing the MAEs with those of TOS ETA and AIS_ETA,
which were the research objectives.

3. Results
3.1. Results of Modeling and Evaluation

The algorithm’s performance was evaluated by comparing the predicted ETA with
other ETAs, which terminal operators tap into when planning berth schedule, obtained
from the AIS and Terminal Operating System (TOS). The mean absolute error (MAE) was
used as the evaluation metric to access the accuracy of the algorithm’s predictions.

The MAE comparison between Modeling and Evaluation is shown in the following
Table 9. During the modeling period, which spanned 4 months, the algorithm achieved an
MAE of approximately 3 h and 14 min for predicted ETAs. This indicates that, on average
over a whole voyage period, the algorithm’s predicted ETA deviated from ATA by 3 h and
14 min. In comparison, the MAE for AIS ETAs was 16 h and 37 min, and for TOS ETA, it
was 5 h and 15 min. These results highlight the algorithm’s superior performance in ETA
prediction compared with the AIS and receiving records of ETAs in TOS.

The average error of predicted ETA in the evaluation period was 7 h and 26 min. When
comparing the MAEs between the modeling and evaluation periods, it was found that the
MAEs of the predicted ETAs were higher during the evaluation period than during the
modeling period. This suggests that the algorithm faced more challenges in accurately
predicting ETAs compared with the modeling phase.

Table 9. Overall MAE by modeling and evaluation.

Period Predicted ETA MAE AIS ETA MAE TOS ETA MAE

Modeling 4 months 0 days 03:14:48 0 days 16:37:11 0 days 05:15:57
Evaluation 2 months 0 days 07:26:47 0 days 20:35:03 0 days 21:44:20

By the same token, the MAEs for both AIS ETA and TOS ETA were higher during
the evaluation phase compared with the modeling period. The MAE value of AIS ETA
during the period was over 20 h and that of TOS ETA was over 21 h. Although the result of
predicted ETA during the evaluation period was worse than that during the modeling one,
it still surpassed both AIS ETA and TOS ETA.

3.2. Optimal Parameter Result

Table 10 provides an overview of the optimal parameters obtained for various voyages.
By tailoring the parameters to the specific characteristics of each voyage, the algorithm
achieved improved ETA prediction results. The optimal parameters vary depending on the
individual vessel’s route and conditions, allowing for more accurate predictions of ETA
from previous ports of call. This customization ensures that the algorithm adapts to the
unique characteristics and requirements of each voyage, enhancing its overall performance
in estimating arrival times.
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Table 10. Optimal parameter result.

Previous
Port

Vessel
Code

Voyage
Number

Optimal
Interpolation

Optimal
Segment MAE

1 Yokohama V004 V004_2022_5 11,000 100 0 days
00:39:12.

2 Tianjin V018 V018_2022_7 9000 90 0 days
01:43:19

3 Tianjin V019 V019_2022_6 2000 100 0 days
00:48:53

. . . . . . . . . . . . . . . . . . . . .

110 Qingdao V010 V010_2022_6 11,000 110 0 days
02:51:28

114 Singapore V060 V060_2022_6 11,000 90 0 days
03:25:00

115 Zhoushan V052 V052_2022_1 11,000 110 0 days
02:49:29

3.3. ETA Prediction Plots
3.3.1. Modeling

Figure 10 presents the error comparison plot for voyage 2022_6 of Vessel V015 during
the modeling phase. The plot depicts the change in error over time, with the x-axis
representing the timestamp. The blue line represents the algorithm’s predicted ETA error,
while the red line represents the ETA of AIS, and the black line represents the ETA of
TOS. This visualization allows for a clear comparison of the algorithm’s performance with
the AIS and TOS in terms of ETA prediction accuracy. The figure shows a stark contrast
between the predicted ETA error and the other two errors.

Errors of AIS’ ETA stay at over an average of 1200 min during the whole voyage. That
means that the ETAs in the AIS were rarely updated. Meanwhile, the ETA of the Terminal
Operating System was updated twice during the voyage. Yet, the latest update resulted
in a higher error compared with the previous one. Conversely, the proposed method
consistently demonstrated a stable result between an average error of 20 min. Terminals
may find it challenging to manage the expected time of arrival of this vessel if they follow
the received ETAs of the Terminal Operating System or AIS itself. The detailed data can be
found in Appendix A.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 22 of 29 
 

 

Table 10. Optimal parameter result. 

 Previous Port Vessel Code Voyage Number 
Optimal 

Interpolation 

Optimal 

Segment 
MAE 

1 Yokohama V004 V004_2022_5 11,000 100 0 days 00:39:12. 

2 Tianjin V018 V018_2022_7 9,000 90 0 days 01:43:19 

3 Tianjin V019 V019_2022_6 2,000 100 0 days 00:48:53 

… … … … … … … 

110 Qingdao V010 V010_2022_6 11,000 110 0 days 02:51:28 

114 Singapore V060 V060_2022_6 11,000 90 0 days 03:25:00 

115 Zhoushan V052 V052_2022_1 11,000 110 0 days 02:49:29 

3.3. ETA Prediction Plots 

3.3.1. Modeling 

Figure 10 presents the error comparison plot for voyage 2022_6 of Vessel V015 during 

the modeling phase. The plot depicts the change in error over time, with the x-axis repre-

senting the timestamp. The blue line represents the algorithm’s predicted ETA error, while 

the red line represents the ETA of AIS, and the black line represents the ETA of TOS. This 

visualization allows for a clear comparison of the algorithm’s performance with the AIS 

and TOS in terms of ETA prediction accuracy. The figure shows a stark contrast between 

the predicted ETA error and the other two errors. 

 

Figure 10. Modeling MAE comparison plot for voyage 2022_6 of Vessel V015. 

Errors of AIS’ ETA stay at over an average of 1200 min during the whole voyage. That 

means that the ETAs in the AIS were rarely updated. Meanwhile, the ETA of the Terminal 

Operating System was updated twice during the voyage. Yet, the latest update resulted in 

a higher error compared with the previous one. Conversely, the proposed method con-

sistently demonstrated a stable result between an average error of 20 min. Terminals may 

find it challenging to manage the expected time of arrival of this vessel if they follow the 

received ETAs of the Terminal Operating System or AIS itself. The detailed data can be 

found in Appendix A. 

Additionally, it was observed that the ETAs obtained from the AIS and TOS were 

infrequently updated throughout the voyage. In contrast, the proposed method was able 

to generate ETAs whenever there was an update in the AIS position. This highlights the 

advantage of the proposed method in providing more timely and updated ETAs com-

pared with those of the AIS and TOS. 
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Additionally, it was observed that the ETAs obtained from the AIS and TOS were
infrequently updated throughout the voyage. In contrast, the proposed method was able
to generate ETAs whenever there was an update in the AIS position. This highlights the
advantage of the proposed method in providing more timely and updated ETAs compared
with those of the AIS and TOS.
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3.3.2. Performance Evaluation

Figure 11 illustrates the mean absolute error comparison plot for voyage 2023_1 of
Vessel V010 during the evaluation phase. The plot shows the change in errors over time,
with the blue line representing the algorithm’s predicted ETA error, the red line representing
the ETA errors of the AIS, and the black line representing the ETA errors of TOS. Overall,
the algorithm’s performance in both the modeling and evaluation phases demonstrated
promising results, with lower errors and improved accuracy compared with the AIS and
TOS metrics. Errors in the ETAs from the AIS showed a decreasing trend throughout
the voyage, but even with the latest ETA update, the error still exceeded 500 min. In
contrast, the errors in the ETAs from the Terminal Operating System were relatively lower,
averaging around 400 min, and approximately a day before the ship arrived, the error
reduced to approximately 50 min. The proposed method generally outperformed TOS_ETA
in predicting ETAs. As in the modeling period, the evaluation period for the proposed
method exhibited a similar trend of oscillation, but with higher volatility. The detailed data
can also be found in Appendix A.
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4. Discussion

This study makes three contributions: terminal-focused ETA predictions, a novel
method for detecting vessel departure and arrival, and consideration of implicit naviga-
tional features. Terminal-oriented ETA predictions have practical implications for berth
allocation and terminal operation tasks. The complexity of prediction tasks was reduced by
dividing voyages into shorter legs. Additionally, this research implemented representative
paths of vessels using historical AIS data and spline interpolation and segmentation.

4.1. Analysis of the Results

The performance of the predictive algorithm was assessed by calculating the MAE for
a total of 115 modeled voyages. The MAE results obtained during the evaluation period
were observed to be worse than the results obtained during the modeling period. Several
factors contributed to this discrepancy between the modeling and evaluation results.

Firstly, there was a significant difference in the number of voyages between the two
periods. The modeling period spanned 4 months with 115 voyages, while the evaluation
period covered 2 months but only included 33 voyages. This disparity arose from the
limited number of vessels returning to the terminal within the evaluation period. Despite
the assumption that most ships would regularly call at Busan New Port, only 19% of the
vessels returned within two months after entering the terminal.
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Moreover, the evaluation phase exhibited greater variability compared with the mod-
eling period. Onboard, bridge officers and the captain play a crucial role in calculating
ETAs, taking into account various factors such as route selection and speed adjustments.
These calculated ETAs are then communicated to the terminal operator via electronic mail
or phone call, and recorded as TOS_ETA in the TOS. Similarly, officers onboard manually
update the calculated ETAs in the AIS. However, during the evaluation period, errors in
both AIS_ETA and TOS_ETA were still larger compared with the modeling period. The
MAE of AIS_ETA increased by approximately 24%, while the MAE of TOS_ETA more
than tripled. This increase in error rate can be attributed to the higher level of voyage
variability observed during the evaluation period. Although the precise cause of this
increase in variability is not immediately apparent, it is reasonable to assume that changes
in these factors contributed to the higher error rates observed in ETA predictions during
the evaluation period.

Lastly, the optimal parameters for some vessels were less robustly obtained. The
modeling phase allowed for the identification and optimization of parameters, such as
the number of interpolations and segmentations, to achieve accurate ETA predictions.
However, as mentioned earlier, the actual number of times a vessel visited the terminal
was only about 19% of the total. Therefore, for some of the vessels used in the model, a
single voyage was modeled as a representative path, rather than a representative path
with multiple numbers of voyages. This limitation may have affected the algorithm’s
absolute performance.

Table 11 provides a comparison of the effects of the number of modeled voyages
on performance results. Vessel V063 had 11 visits during the modeling period. In the
evaluation period, the algorithm accurately predicted V063′s voyages, with an MAE of 3 h
and 11 min, outperforming both TOS_ETA and AIS_ETA. In contrast, Vessel V051 and V026,
which had only one and two visits during the modeling period, respectively, displayed
higher MAE values than that of V063. This indicates that modeling a higher number of
voyages leads to lower MAE values in ETA predictions.

Despite the observed increase in MAE values during the evaluation period, it is
important to highlight that the overall accuracy of the algorithm’s predictions remained
satisfactory. The algorithm still outperformed existing AIS and TOS systems in terms of
ETA estimation accuracy. These results indicate the algorithm’s potential to provide reliable
and precise ETA predictions for maritime voyages.

Table 11. Comparison of the effectiveness of modeling voyage number on performance results.

Vessel Name Modeling Voyage
Number

Evaluation Result

MAEpred Total MAETOS Total MAEAIS Total

1 V063 11 0 days
03:11:59

0 days
09:59:13

0 days
10:51:18

2 V051 1 0 days
10:40:37

0 days
23:24:39

0 days
10:11:52

3 V026 2 0 days
08:57:23

1 days
09:52:00

0 days
12:19:02

4.2. Relationship between Interpolation and Segment and ETA Estimation Accuracy

The relationship between the number of interpolations and segmentations was ex-
amined in this study. The authors introduced two categories: detailed and fluctuated
voyage, based on the number of interpolations and segments. The detailed category re-
ferred to cases where a larger number of interpolations and segments were used, leading
to more accurate ETA estimations. Conversely, the fluctuated voyage encompassed cases
where fewer interpolations and segmentations were employed, resulting in improved ETA
estimation accuracy.
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Increasing the number of interpolations and segmentations allowed for a more detailed
and precise representation of the voyage. Fine interpolation of the historical path accounted
for the nearly constant velocity within each modeled segment, contributing to more accurate
representative paths for ETA prediction. This approach proved effective for voyages
with relatively stable conditions and predictable factors. To demonstrate the robustness
of the results of detailed voyages, we conducted a sensitivity analysis using different
input parameters, and the results and further discussions are provided in Appendix B for
readability purposes.

On the other hand, fluctuated voyages presented challenges due to significant vari-
ations in speed caused by external factors. These factors included rapid changes in port
schedules, adverse weather conditions, and mechanical issues affecting the vessel’s per-
formance. Modeling these fluctuated routes with a high number of interpolations and
segments increased the variability in the representative path, leading to increased errors
in ETA calculations. To address this issue, the number of interpolations and segmen-
tations were reduced to widen the speed modeling range, resulting in improved ETA
estimation accuracy.

Voyages were categorized as fluctuated when speed data reached 10 knots below
and the decreased speed stayed for at least 30 min during the voyage. This analysis
revealed that fluctuated voyages accounted for approximately 28% of the total modeled
voyages, and it was also found that reducing the number of interpolations and segments
improved the algorithm’s performance for these specific cases. Future research efforts will
focus on modeling fluctuated voyages in greater detail to further enhance the accuracy of
ETA predictions.

5. Conclusions
5.1. Summary

Accurate ETA estimation is vital for effective terminal and maritime operations, en-
abling efficient planning and decision-making. This study presents a predictive algorithm
for ETA estimation based on historical voyage data. The algorithm utilizes a combination
of interpolation, segmentation, and optimal parameter selection techniques to predict
vessel arrival times. By dividing the historical voyage data into representative paths and
applying spline interpolation, the algorithm generates accurate and detailed routes for
ETA prediction. The segmentation of representative paths further enhances computation
efficiency. The evaluation of the algorithm’s performance demonstrates its effectiveness
during the modeling period, with an average MAE of approximately 3 h and 14 min. These
results surpass the accuracy of existing ETA records, such as TOS_ETA and AIS_ETA. By
the same token, during the evaluation period, the algorithm still outperforms the accuracy
of other ETAs, indicating the algorithm’s superiority in ETA estimation.

5.2. Future Works

Although the proposed algorithm exhibits promising performance, further research
is necessary to enhance its accuracy and applicability. Future studies should focus on
collecting additional data to improve the model’s robustness and account for fluctuations
that occur during voyages. Specifically, investigating modeling techniques that can effec-
tively mitigate the effects of fluctuations, such as changes in weather conditions, terminal
congestion, waiting vessels, and cargo volumes, will be crucial in minimizing ETA pre-
diction errors. Furthermore, collaboration with industry stakeholders, including terminal
operators, vessel operators, and navigational experts, can provide valuable insights and
domain-specific knowledge to further enhance the algorithm’s performance. By inte-
grating practical expertise and continuous feedback from the maritime community, the
algorithm can be refined to meet the specific needs and challenges of ETA estimation in
real-world scenarios.
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Additionally, the heading criteria were determined by calculating the average angle
boundary of historical trajectories when vessels departed from their previous port of
call. However, obstacles such as islands and straits may exist along their departing route,
making it challenging to accurately determine departure solely by following the averaged
heading angle boundary. To cope with this, we plan to incorporate geometry data within
the port area. By doing so, we aim to enable more detailed and informed determination
of the departure, considering the specific geographical features and potential obstacles
encountered along the departing route.
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Abbreviations

(S)AIS (Satellite) Automatic Identification System
TOS Terminal Operating System
Port-MIS Port Management Information System
MAE Mean Absolute Error
ETA Estimated Time of Arrival
ETD Estimated Time of Departure
RTA Required Time of Arrival
PBP Pilot Boarding Place
ATA Actual Time of Arrival
ATD Actual Time of Departure
TOS_ETA Estimated Time of Arrival in Terminal Operating System
AIS_ETA Estimated Time of Arrival in Automatic Identification System
RP Representative Path
API Application Programming Interface
CSV Comma-Separated Values

Appendix A. ETA Prediction Results

Table A1. Modeling ETA prediction result for voyage 2022_6 of Vessel V015.

Timestamp Vessel
Name

Previous
Port ATA Predicted

ETA AIS_ETA TOS_ETA Predicted_ETA
Error

AIS_ETA
Error

TOS_ETA
Error

1 2022-10-13
06:46:45

V015 Tianjin 2022-10-15
02:14:34

2022-10-15
01:54:51

2022-10-14
06:00:00

2022-10-15
03:00:00

0 days
00:19:43

0 days
20:14:34

0 days
00:45:25

2 2022-10-13
07:16:51

2022-10-15
02:24:57

2022-10-14
06:00:00

2022-10-15
03:00:00

0 days
00:10:22.

0 days
20:14:34

0 days
00:45:25

3 2022-10-13
07:47:25

2022-10-15
02:55:31

2022-10-14
06:00:00

2022-10-15
03:00:00

0 days
00:40:56

0 days
20:14:34

0 days
00:45:25

. . . . . . . . . . . . . . . . . . . . .

69 2022-10-15
01:14:27

2022-10-15
01:36:48

2022-10-14
06:00:00

2022-10-14
23:00:00

0 days
00:37:46

0 days
20:14:34

0 days
03:14:34

70 2022-10-15
01:44:30

2022-10-15
02:06:51

2022-10-14
05:45:00

2022-10-14
23:00:00

0 days
00:07:43

0 days
20:29:34

0 days
03:14:34

71 2022-10-15
02:14:34

2022-10-15
02:36:55

2022-10-14
05:45:00

2022-10-14
23:00:00

0 days
00:22:20

0 days
20:29:34

0 days
03:14:34
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Table A2. Evaluation ETA prediction result for voyage 2023_1 of Vessel V010.

Timestamp Vessel
Name

Previous
Port ATA Predicted

ETA AIS_ETA TOS_ETA Predicted_ETA
Error

AIS_ETA
Error

TOS_ETA
Error

1 2023-01-20
11:49:29

V010 Yokohama 2023-01-24
18:17:12

2023-01-24
10:43:58

2023-01-22
01:00:00

2023-01-25
01:00:00

0 days
07:33:14

2 days
17:17:12

0 days
06:42:47

2 2023-01-20
11:54:30

2023-01-24
10:48:58

2023-01-22
01:00:00

2023-01-25
01:00:00

0 days
07:28:13

2 days
17:17:12

0 days
06:42:47

3 2023-01-20
11:59:31

2023-01-24
10:53:59

2023-01-22
01:00:00

2023-01-25
01:00:00

0 days
07:23:13

2 days
17:17:12

0 days
06:42:47

. . . . . . . . . . . . . . . . . . . . .

313 2023-01-24
17:27:04

2023-01-24
17:27:04

2023-01-24
09:50:00

2023-01-24
19:00:00

0 days
00:50:08

0 days
08:27:12

0 days
00:42:47

314 2023-01-24
17:32:04

2023-01-24
17:32:04

2023-01-24
09:50:00

2023-01-24
19:00:00

0 days
00:45:07

0 days
08:27:12

0 days
00:42:47

315 2023-01-24
17:42:06

2023-01-24
17:42:06

2023-01-24
09:50:00

2023-01-24
19:00:00

0 days
00:35:06

0 days
08:27:12

0 days
00:42:47

Appendix B. Sensitivity Analysis for Detailed Voyages

To assess the robustness of our results, a sensitivity analysis was conducted to focus
on the relationship between the number of interpolations and segmentations. The results
in Figure A1 revealed valuable insights into the influence of different parameter values on
the robustness. Figure A1a,b presents the outcomes of this analysis by varying parameter
settings on the model’s accuracy. As shown in Figure A1, increasing the number of
interpolations and segmentations allowed for a more detailed and precise representation
of the voyage. Fine interpolation of the historical path accounted for the nearly constant
velocity within each modeled segment, resulting in more accurate representative paths
for ETA prediction. This approach proved effective for voyages with relatively stable
conditions and predictable factors.
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