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Abstract: The use of deep learning-based techniques has improved the performance of synthetic
aperture radar (SAR) image-based applications, such as ship detection. However, all existing methods
have limited object detection performance under the conditions of varying ship sizes and complex
background noise, to the best of our knowledge. In this paper, to solve both the multi-scale problem
and the noisy background issues, we propose a multi-layer attention approach based on the thorough
analysis of both location and semantic information. The solution works by exploring the richness
of spatial information of the low-level feature maps generated by a backbone and the richness of
semantic information of the high-level feature maps created by the same method. Additionally, we
integrate an attention mechanism into the network to exclusively extract useful features from the input
maps. Tests involving multiple SAR datasets show that our proposed solution enables significant
improvements to the accuracy of ship detection regardless of vessel size and background complexity.
Particularly for the widely-adopted High-Resolution SAR Images Dataset (HRSID), the new method
provides a 1.3% improvement in the average precision for detection. The proposed new method can
be potentially used in other feature-extraction-based classification, detection, and segmentation.

Keywords: multi-layer attention module (MAM); ship detection; synthetic aperture radar (SAR);
multi-scale feature maps

1. Introduction

Synthetic aperture radar (SAR) is widely employed in marine exploration (itself
an important field for multiple areas, ranging from biological to chemical research [1])
for being able to overcome interference caused by adverse weather or insufficient light
during observations [2,3]. Not only has SAR become more widely used, but the volume
of data produced through SAR usage has also increased steadily due to the proliferation
of high-resolution satellite imaging. Among the interesting applications, SAR-based ship
detection has garnered special attention in international research in the field of maritime
exploration due to its applications in trajectory prediction, congestion avoidance, and
activity monitoring [4,5].

The conventional methods of ship detection in SAR images have a low level of gen-
eralization, which is an issue as SAR is used in very different scenarios, such as varying
sunlight and changing weather conditions, and for different types of ship [6,7]. Another
problem, illustrated in Figure 1a, is that the images obtained are often full of unnecessary
and interfering information that pertains to the environment, such as the bank edges and
piers, but does not include the ship, which is the object that needs to be detected. Finally, as
shown in Figure 1b, ships come in very different sizes, so an efficient detection solution
needs to be able to handle objects of various scales and still properly detect them, which
is an issue since flexibility and adequate response is essential [8]. There are many works
in the literature on SAR-based ship detection, as will be elaborated in Section 2, but none
handles all the problems listed here.
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(a)

Figure 1. Images generated through SAR containing ships [9]. In (a), inshore ships with interference

such as the shipyards and piers in the background are shown. In (b), multi-scale ship objects in SAR
images are shown. Green rectangles are the ships to be detected.

In this paper, we will propose a solution that addresses all of these issues. Our proposal
is based on the construction of a precise feature map that identifies key regions in the figure
where the ship probably is. This is performed by careful analysis of the semantic and
location information of the image through a multi-layer attention module (MAM) in our
novel multi-layer attention network (MANet). The processing of both semantic and spatial
data is performed on feature maps generated on the original image from ResNet50, a
widely adopted standard neural network, which trains deep neural networks and extracts
features at different resolutions. This richness in information not only allows our proposal
to exclude noise of unimportant parts of the image more efficiently but also allows us to
lower the chance of ship misidentification due to the scale of the vessel. The resulting
enhanced feature map produced by our MANet can then be used as an input for the
Feature Pyramid Network (FPN) [10], a standard deep learning solution for multi-scale
object detection, for improved performance at ship detection from SAR images.

The main contributions of this paper are as follows. (i) We propose a cross-level fusion
of multi-layer feature maps that can integrate semantic and location data, thus providing
a better solution to the multi-scale problem. (ii) We design an attention mechanism that
ensures that the feature maps of each layer are efficiently built so that the interference of
inshore objects is reduced and more focus is given to the ship object. (iii) We carefully eval-
uate the performance of our proposed approach and show that our method is significantly
better in detection precision than conventional solutions.

The remainder of this paper is organized into the following sections. Section 2 dis-
cusses in depth the state-of-the-art methods regarding ship detection. Section 3 explains
what our proposed approach is. Section 4 contains the performance evaluation on our
proposed solution through images obtained by SAR. Section 5 concludes the paper.

2. Related Works

Ship detection in SAR images can be divided into traditional SAR image processing
and SAR image processing based on deep learning.

2.1. Traditional SAR Ship Detection

The traditional solutions for ship detection are based on a statistical clutter modeling
called constant false alarm rate (CFAR) [6,7,11-15]. The foundation of such methods is
the exploring of the statistical distribution of different marine clutters and using adaptive
thresholding techniques. For example, Ai et al. [11] utilized the strong correlation in
gray intensity and 2D joint log-normal distribution of pixels in their surrounding area
to identify ships. Wang et al. [6] used a quick block detector to remove sea clutter and
then identified ships based on kernel density estimate and aspect ratio of the remaining
pixels. Leng et al. [7] focused on minimizing the impact of ambiguities and sea clutter in
SAR images. Wang et al. [13] introduced an intensity space domain-based detector that
takes advantage of the intensity and correlation between pixels. Pappas et al. [14] used
super-pixels to define the guard bands and backdrops used in CFAR. Similarly, Li et al. [15]
differentiated objects from clutter through weighted information entropy, and used a two-
stage CFAR detection system that offered global and local detection. However, in the
above CFAR-based solutions, key parameters related to multiple scenario conditions have
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to be manually pre-determined, significantly decreasing the capacity of generalization in
traditional solutions and worsening the overall performance for unexpected situations.
They are also particularly sensitive to objects in the background. This deteriorates the
performance of the detector when the backdrop objects have complex features.

2.2. Deep Learning-Based SAR Ship Detection

With the popularization of deep learning [16-19], the application of convolutional
neural network (CNN) in SAR-based ship detection is becoming a research hotspot [20].
For example, Li et al. [20] evaluated hard negative mining, transfer learning, feature fusion,
and other implementation techniques, alongside a novel dataset and CNNs to achieve
faster detection [16]. Moreover, Zhou et al. [21] evaluated the lightweight algorithm of
You Only Look Once (YOLO) v4 [19] applied to ship detection to reduce the number of
needed features by depth-wise separable convolution and MobileNet v2 as the network
architecture. Chang et al. [22] simplified the classic YOLOv2 architecture for CNN to
reduce calculation time when detection ships in SAR images. Zhang et al. [23,24] proposed
a variant of YOLO-FA to incorporate the frequency-domain information. Sun et al. [25]
used fully convolutional one-stage object identification as the foundation of their detector
to improve the network’s position regression branch features, and bounding box regression
detection. Similarly, Mao et al. [26] proposed an anchor-free SAR-based ship detection
system for bounding box regression, and a different network for score map regression.
Zhou et al. [27] added to this by simplifying the CNN operation through a two-way dense
connection module. Bai et al. [28] adapted the anchor-free detector and established a
boundary frame detection strategy to detect objects. However, these works fail to address
the substantial interference caused by near-shore background and the vast diversity of
scale (see Figure 1 for an example). Because of that, the accuracy of detecting multi-scale
ships using SAR still needs improvement, even when using deep learning.

Existing research shows that feature pyramid networks (FPN) [10] are one of the
solutions that can address multi-scale object detection and significantly improve small
object identification. Additionally, an attention mechanism object detection can detect
and focus on specific areas of interest in a big image [29,30], which is a possibility with
useful application in SAR-based ship detection [31-33]. Cui et al. [31] introduced a dense
attention pyramid network that used a convolutional block attention module (CBAM)
densely connected to each concatenated feature map from top to bottom. Zhao et al. [32]
also used CBAM with an attention-receptive pyramid scheme. Yang et al. [33] used a
coordinate attention module and a receptive field expanded module that works better with
varying sizes of vessels. Bai et al. [34] proposed a feature enhanced pyramid and shallow
feature reconstruction network to improve the detection for small and medium-sized ships.
However, these studies did not fully integrate the feature maps of low and high levels,
resulting in limited identification performance.

Nonetheless, none of the mentioned solutions integrate multi-layer features, which
is essential for the success of deep learning-based object recognition. For example, for
identifying ships, high-level feature maps are better due to their wider receptive field, more
semantic information, and less spatial information. However, low-level feature maps are
more suited for recognizing smaller ships due to their narrower receptive fields, greater
emphasis on spatial information, and less reliance on semantic information. Multi-scale ship
detection relies heavily on this kind of seamless combination of semantic and geographical
data. Such a technique allows the accuracy to be improved by extracting relevant data
from bigger feature maps. Attention-based approaches can even be used to draw focus to
relevant details and ignore backdrop noise to further increase ship detection accuracy. Our
proposed MAM is based on these ideas, integrating semantic and spatial information to
highlight the salient features of the desired object and using an attention-based technique
alongside a multi-layer feature map to highlight features of the object. These characteristics
make the feature map output by our proposal more useful for the underlying network.
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3. Methods

In this section, we will explain the details of our proposed MANet-based architecture
for ship detection in SAR images.

3.1. Overall Design

Figure 2 shows how the CNN-based solution for SAR-based ship detection works and
where we propose to integrate our novel MANet, composed of a Faster R-CNN [16] and
a new multi-layer attention module (MAM), into such a system. In Figure 3, we show, in
detail, how our proposed MAM is designed. We divide it into two sub-modules, multi-layer
channel attention module (MCAM) and multi-layer spatial attention module (MSAM).

Bounding Box
Multi-layer FEnhanc]:\j[d Feature Region
Attention Feature Map Pyramid » Proposal
e Module (MAM) Network Network
SAR Images
|:| The original module for Faster R-CNN Our method

Figure 2. The multi-layer attention network’s overall structure. Note that R-CNN is the region
convolutional neural network [16].
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Figure 3. Overview of the multi-layer attention module (MAM). In (a), the MAM module’s general
structure is outlined. In (b,c), the flow charts of the multi-layer channel attention module (MCAM)
and the multi-layer spatial attention module (MSAM), respectively, are shown. C represents the
feature map, P is the input to the FPN, B is the channel attention, E and G are the outputs of the
sigmoid functions, H is the spatial attention map, and the subscripts 1~4 represent different channels.

Our MAM works as follows. First, the MCAM performs channel attention processing
on each layer’s feature maps generated by the backbone network, i.e., ResNet50 in Figure 3,
so that the significant features on the channel axis are identified. Each channel’s focus is
then combined and applied to the initial feature map to enable the adaptive acquisition
of a feature map with significant scale information. Then, the MSAM will perform spatial
attention processing on the outputs of each layer of the MCAM. These will be fused to obtain
weights for each position. The final optimum feature map is obtained by broadcasting
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these weights to MCAM’s feature maps for each layer’s output. Through this process, the
prominent aspects of the multi-scale feature map can be employed by the MAM when
searching for ships. While FPN is capable of fusing feature maps from top to bottom, our
proposed MAM uses an attention-based approach to reduce the amount of interference
from the environment, filter out undesirable noise, highlight the needed information,
and produce more relevant feature maps through a complete integration of semantic and
geographic information contained in the data of each layer. The use of deep learning is
paramount in identifying the relevant patterns in the data [35].

3.2. MAM

As mentioned earlier, the MAM is divided into two sub-modules, MCAM and
MSAM, that are, themselves, responsible for the functions of multi-layer channel attention
(MCA) enhancement and multi-layer spatial attention enhancement, respectively. The
ResNet50 structure is chosen as the feature extraction network because it produces four
layers of feature maps at varying resolutions. The set of generated features is denoted
by {C;, Cp, C3, C4}. Accordingly, the MCAM is composed of the processing unit set
{MCAl, MCA;, MCAj3;, MCA,}. Each processing unit implements a channel attention
enhancement focused on its corresponding feature map, and the resulting enhanced feature
maps are defined as {X;, X5, X3, X4}. Similarly, the MSAM consists of the processing
unit set {MSA, MSA,, MSA3;, MSA,}, which implements spatial attention enhancement
for {X;, Xa, X3, X4}, respectively. The final output feature graph, which will be the input
of the FPN network, is denoted as {P;, P,, P3, P4}. Therefore, the whole MAM process
can be summarized as follows:

Xi=MCA;(C;) i=1,234 ¢))

P=MSA;(X;) i=1,23 4 @)

3.3. MCAM

The MCAM is made of four MCA processing units denominated as {MCA ;, MCA,,
MCAj;, MCA,}, as is illustrated in Figure 3a. Because the process is identical for each unit,
the following explanations will consider a single MCA only. The specific operation steps
of MCA are divided into the generation of the single-layer channel attention (SCAM), the
generation of the map weights, and the generation of the feature map. The three steps are
thoroughly explained as follows.

3.3.1. Generation of Single-Layer Channel Attention

To capture rich semantic and location information, all four feature maps of the back-
bone network module, {C,, Cp, C3, C4}, are used as input of the MCA processing unit.
First, each feature map {C;, i =1, 2, 3, 4} goes through the SCAM (see Figure 4 for an
illustration). For convenience of description, the subscript of C; is removed to obtain
Ce RCXhXW, where ¢, h, and w represent the number of channels, height, and width of the
feature map, respectively. The detailed procedures that make up SCAM’s operation are
presenting in the following.

Average Pooling Gs Bayg
avg
< 4 SN -
Multi-layer Element- | f
GSa Perceptron wise Sum SCAM Feature Map
= | — ®)
. Binax
Feature Map (C) Max Pooling

Figure 4. The single-layer channel attention module (SCAM). GSavg and GSmax are the average and
maximum of the global spatial pooling, respectively. Bavg and Bmax are the average and maximum of
the channel attention measures, respectively.
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Global spatial average pooling (GSAP). The operation of GSAP for feature map
C € R™M*W js represented as follows

1
GShg=r—— Y Cuux 3)
g mn,
hxw 5% h
n=1223,.w

where C,, , x denotes the feature map of the m-th row and n-th column on the k-th channel,
and GSk,, represents the feature map of the k-th channel after GSAP. In other words, the set

avg
of all GS’;lVg make up the bigger feature map GSavg = {GS’;Vg|k =1,23,...,c } e Rex1x1
after GSAP is concluded.
Global spatial max pooling (GSMP). The operation of GSMP for feature map
C € R™M*W js represented as follows
GanaX: max(Cynx) m=123,...,h
n=1273,...,w,

4)

where max indicates an operator that obtains the maximum value in the channel, and
GSk _ denotes the feature map of the k-th channel after GSMP. In other words, the set of
all GSK . make up the bigger feature map GSmax = {GS’I‘MXU{ =123,..., c} € Rex X1
after GSMP is concluded.

Then, the channel attention measures Bayg and Bmax are generated by using a multi-
layer perceptron (MLP) that receives, respectively, GSayg and GSmax as input. Then, an
element-wise summation is performed to obtain the single-layer channel attention B, i.e.,
channel attention B is computed as:

B = Bavg + Bmax

= MLP(GSavg) +MLP(GSmax)- ©®)
To minimize the number of parameters in the MLP model, the hidden activation size
is changed to R 1 *1 where r represents the reduction ratio.

Using this method, By € R*IX1 By e R2X1X1 By e RS*1X1 and By € R4*1*1 are
obtained through SCAM, where ¢; (i = 1,2, 3, 4) is the channel index, and, without loss of
generality, the condition ¢; < ¢y < c3< ¢4 is assumed.

3.3.2. Generation of MCA

Considering that the dimensionality of the attention maps B; (i = 1,2,3,4) are not
necessarily the same, it is necessary to first convert them into the same dimension. Taking
the MCA; processing module as an example, By, B3, and B, should be converted to the
exact dimensions as B,. The conversion process is indicated as follows:

Di=FC(B;) i=1,34,

D,= By, (6)

where FC represents the convolution operation.

After the conversion, the outputs will satisfy D; € R®2**1 D3 ¢ R2*1x1 and
Dy € R2*1*1 By doing this, all four layers of the channel attention map can be added
through an element-wise summation. The sigmoid procedure is then used to determine the
MCA map’s weight. This process is represented by

Er= 0(D1+Dy+D3+Dy), )

where ¢ denotes the sigmoid function.
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Similarly, E; € R*11, E3 € R®*11 and E; € R%*1*! can be obtained following
the same process.

3.3.3. Generation of the MCA Feature Map
Finally, the MCA feature map of each layer is obtained through Equation (8):

X=Cix (1+E) i=1,234 8)

3.4. MSAM

The MSAM, which is illustrated in Figure 3a, is made up of four MSA processing
units represented by {MSA ;, MSA,, MSA;, MSA,}. The multi-channel attention feature
{X;, X2, X3, X4} obtained according to Equation (8) is used as input for the MSA units.
As with the MCAM, the four MSA processing units have the same flow, thus our description
will focus on a single module. Additionally, similar to MCA, the specific operation steps of
the MSA are divided into the generation of the single-layer spatial attention, generation of
the multi-layer spatial attention, and generation of the multi-layer spatial attention feature
map.

3.4.1. Generation of Single-Layer Spatial Attention

First, each feature map {X;, i = 1,2,3,4} goes through the single-layer spatial atten-
tion module (shown in Figure 5). To simplify the description, the subscript of the output
characteristics of the MCA is removed to obtain X € RE*h*W,

GCyy GCrax

Feature Map (X) [Average Pooling, Max Pooling] SSAM Feature Map (H)

Figure 5. The single-layer spatial attention module (SSAM). GCayg and GCmax are the average and
maximum of the global channel pooling, respectively.

Global channel average pooling (GCAP). The operation GCAP is completed for each
feature map X € R™P*W, with process being computed as follows

1 &
Gcm,n,avg == E Z Xm,n, ks (9)
k=1

where X,, , r denotes the feature mapping value at the position of row m and column 7 on
channel k, and Gcm,n,uvg represents the feature map of the corresponding spatial position af-
ter GCAP. The set of all GCyy, 1,404 makes up the feature map GCayg= {GC mmave lm=1,2,3,

...,h, n=1,2,3,...,w} after the GCAP operation is completed, where GCayg € RIxhxw,

Global channel max pooling (GCMP). The operation of GCMP is completed for each
feature map X € R™MW with the operation being summarized by Equation (10).

GConn, max= Max(Xy k), (10)

where Max obtains the maximum value in row m and column 7 among all channels.
Moreover, GCyn, max indicates the feature map of the corresponding spatial position
after GCMP is completed. The set of all GCy;;max forms the feature map GCmax =
{Glen, maxlm=1,2,3,...,h, n=1,2,3,...,w} after GCMP is completed, where
GCmax c RthXW.
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GCavg and GCmax are then concatenated, and a convolution with a standard layer
is performed, culminating in the creation of the spatial attention map. The operation is
summarized as

H = FC(Concat(GCaog, GCypax) )- (11)

where Concat and FC stand for concatenation and convolution with a 7 x 7 filter size,
respectively. Next, we obtain single-layer spatial attention feature map H € RV*Ph*W.
Following the described process, a four-layer spatial attention map is obtained com-
posed of H; € RIxhixwi pp, e RIXhexwa poo e RIxhsxws ang H, € RPha*Ws where hy,
w1, hp, wy, h3, ws, hy, and wy are the height and width of the four-layer feature map and,
without loss of generality, we assume that hy > hy> h3> hy and wi> wy> w3> wy.

3.4.2. Generation of Multi-Layer Spatial Attention

Given that the dimensions of Hy, Hy, H3, and Hj are different, we need to modify
them so that they have same dimensionality. For example, considering the MSA, process-
ing module, Hy, Hp, and Hy should be converted into the same dimension as Hp. The
conversion process is calculated by Equation (12).

I;= Sample(H;) i=1,3/4,

12: HZ/ (12)

where Sample denotes an up-sampling/down-sampling transformation.

After transformation, I[; € RPM2XW2 [, e RI¥h2xw2 g [, € R1¥M2XW2 gre obtained,
and then concatenated, convolved, and activated by a sigmoid function. The whole process
is as follows

Gy= 0(FC (Concat (L1, I, I3, 14))) (13)

where G, € R1*¥h2xw2,
Similarly, G; € RI*hxwi Go e RI¥hsxWs and G, € R1¥MXW4 can be obtained, giving
us the global spatial attention feature map weights of each layer.

3.4.3. Generation of the Multi-Layer Spatial Attention Feature Map
The final refined output can be obtained by Equation (14).

P=X;x (1+G;) i=1,234 (14)

4. Experiments

In this section, we will detail the experiments conducted to evaluate how well the
suggested approach detects the objects of interest. First, the dataset and parameters used in
the experiments are presented. Then, the influence of our proposed MANet is shown by
comparing its performance with other techniques in the existing datasets.

4.1. Datasets

Three standard SAR-based ship detection datasets were used for the experiments
in this paper. The SAR Ship Detection Dataset (SSDD) [9] generated by the RadarSat-2,
TerraSAR-X, and Sentinel-1 [36] satellites has 1160 pictures of ships in various situations,
which cover places including Yantai, China, and Visakhapatnam, India. Following the
original paper, the dataset was divided in a ratio of 8:2 between training and testing. The
SAR-Ship-Dataset [37] was created using 102 Chinese Gaofen-3 pictures and 108 Sentinel-
1 pictures. These images cover several near-shore areas in China, South Korea, Japan,
etc. A sliding window of 256 x 256 pixels with a sliding step of 128 pixels was used on
these pictures, resulting in 43,819 images that include 59,535 ships. Out of these images, a
ratio of 7:2:1 was used to randomly select samples for training, verification, and testing.
Finally, the high-resolution SAR images dataset (HRSID) [38] has 5604 cropped images and
16,951 ships placed at Houston, Sao Paulo, Aswan Dam, Shanghai, etc. These images come
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from 136 panoramic SAR pictures, with a 25% overlap rate. The original pictures have a
relatively high resolution of greater than 800 x 800 pixels. Overall, 65% of the images from
the HRSID were used for training, while 35% were used for testing.

4.2. Parameters and Metrics

The MMDetection framework [39] and machines powered by AMD Ryzen 7 3700X
processors and NVIDIA GeForce GTX 1080Ti GPU cards manufactured by AMD and
NVIDIA respectively were used for all tests. The machine was running Ubuntu 18.04.

The parameters in the experiment are set in Table 1. Such values were obtained
after careful tests to find the best hyperparameters for our desired application [40]. Other
hyperparameters are the same as the default values in MMDetection.

Table 1. Test settings.

. Initial Leaning Momentum . Number of
Batch Size Rate Decay Weight Decay Epochs
1 125 x 107* 1x107* 0.9 30

Four assessment indicators, precision, recall, F1 score, and AP (short for “average
precision”, a quality assessment index used in the literature), as given below [41], were
used to gauge how well our proposed strategy performed.

Precision —L
" TP +FP
TP
Recall =————
O TIP L EN

F1 score — 2 Precision x Recall

Precision + Recall

where false-positive (FP) represents the number of false detections if the object is not present,
false-negative (FN) represents the number of no-detections when the object exists, true-
negative (TN) is the number of the correct no-detections, and true-positive (TP) represents
the number of correct detections.

AP is defined as the integral of the precision as a function of the recall, as given by

1
AP :/ Precision(Recall)dRecall
0

The most often used indices for precision and recall are the ratios of properly predicted
ships in all forecasts, for precision, and in all ground truth ships, for recall. Precision and
recall are then combined to provide the full assessment measure known as the F1 score.
Furthermore, AP is another widely used metric that also considers precision and recall.
APs, AP75, and AP are the metrics calculated here, with calculations following the same
process seen in the literature [42]. Specifically, APs is the value of AP when the ratio of
the intersection area of the detection bounding box and the real bounding box to the union
area of the two boxes is greater than 50%. Similarly, AP75 is the value of AP when this ratio
is greater than 75%. AP is the AP when dealing with small-sized ship objects with the area
of the bounding box below 32 x 32 pixels.

4.3. Results and Analysis

Tables 2—4 show the performance of our proposed solution and other existing CNN
methods on the datasets SSDD [9], SAR-Ship-Dataset [36], and HRSID [38], respectively.
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Table 2. Comparison of different methods on SSDD.

Method Precision Recall F1 APs
RetinaNet [43] 0.910 0.915 0.912 0.896
Cascade R-CNN [44] 0.940 0.899 0.919 0.893
SSD512 [18] 0.929 0.896 0.912 0.937
CenterNet [45] 0.943 0.945 0.944 0.935
CenterNet++ [46] 0.932 0.945 0.938 0.927
Baseline [16] 0.946 0.935 0.940 0.950
Proposal 0.953 0.949 0.951 0.957

Table 3. Comparison of different methods on SAR-Ship-Dataset.

Method Precision Recall F1 APs5
RetinaNet [43] 0.881 0.938 0.909 0.938
Cascade R-CNN [44] 0.910 0.926 0.918 0.920
SSD512 [18] 0.901 0.905 0.903 0.942
CenterNet [45] 0.927 0.935 0.931 0.950
CenterNet++ [46] 0.925 0.934 0.929 0.949
Baseline [16] 0.941 0.949 0.945 0.948
Proposal 0.952 0.950 0.951 0.954

Table 4. Comparison of different methods on HRSID.

Method Precision Recall F1 APs
RetinaNet [43] 0.701 0.838 0.763 0.826
Cascade R-CNN [44] 0.899 0.794 0.843 0.793
SSD512 [18] 0.909 0.855 0.881 0.888
CenterNet [45] 0.818 0.874 0.845 0.863
CenterNet++ [46] 0.822 0.873 0.847 0.863
Baseline [16] 0.926 0.891 0.908 0.923
Proposal 0.931 0.902 0.916 0.936

SSDD. Our proposal can achieve the best results in all metrics, with a precision of
0.953, recall of 0.949, F1 of 0.951, and AP of 0.957. Compared to the single-stage approach
RetinaNet [43], our proposal shows an improvement of approximately 6.1%. Even when
compared with two-stage algorithms, such as Cascade R-CNN [44], the proposed method
is approximately 6.4% better.

SAR-Ship-DataSet. As was the case with SSDD, our proposal shows the best perfor-
mance, being, for example, approximately 3.4% better than Cascade R-CNN.

HRSID. Compared to the other datasets, HRSID has more complex backdrops and
many pictures with tiny boats. These characteristics significantly degrade the performance
of the other methods. However, the proposed solution is still showing the best performance,
with an improvement of up to 14.3% compared with RetinaNet and 1.3% compared with
Faster R-CNN, the second-best solution.

In summary, the mechanisms in our proposal to analyze semantic and spatial data
gives it an edge that increases its accuracy and precision. The index fluctuation is also
extremely small, highlighting the strong generalization of the proposal. The results in all
datasets confirm that our method is highly competitive and consistent. The results on
HRSID, in particular, show that the proposal is good at both multi-scale situations and the
suppression of undesired background data.

To further understand what is behind the efficacy of our proposal, ablation experiments
were performed where portions of our framework were removed to measure their impact.
First, we compared the performance of our full proposal (MANet) and versions of it
with just the MCAM and with just the MSAM. Baseline performance in the form of pure
Faster R-CNN is also provided for reference. Results are shown in Table 5. First, it is
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noteworthy that full MANet is better than its counterparts with just MCAM and with
just MSAM. For example, on SSDD, our full proposal sees improvements of greater than
approximately 0.7%. Comparing the baseline and MCAM, the AP5y improves from 0.950
to 0.953, showing that incorporating MCAM and producing more accurate feature maps
provides a small advantage. Comparing the baseline and MSAM, the AP5j increased to
0.956 and the AP; increased from 0.683 to 0.693. This indicates that the module can improve
the identification of the object location, reduce the influence of complex backgrounds on
the detection performance, and improve the detection performance of small ships.

Table 5. MCAM and MSAM ablation experiments on SSDD.

Method MCAM MSAM APs, APs APg
Baseline 0.950 0.823 0.683
MCAM i 0.953 0.830 0.684
MSAM v 0.956 0.848 0.693
Ours (MANet) v v 0.957 0.852 0.697

Note: MCAM represents multi-layer channel attention module. MSAM represents multi-layer spatial attention
module. MANet stands for multi-layer attention network.

Next, tests were performed on different architectures of the backbone network, with
results being shown with and without the use of the MAM. The performance is shown
in Figure 6 and proves that adding MAM increases the method’s overall recognition rate,
regardless of the underlying network.

0.957 0.958
0.950 0.952 0.9420-:949

mw/o MAM mw/ MAM

Figure 6. Comparison of different backbone methods.

Figure 7 provides a visual illustration of the detection effects between the baseline
(pure Faster R-CNN) and our proposed MANet. The real ship position (ground truth) is
given by Figure 7a, highlighted by the green boxes. The detection outcome of the baseline
is seen in Figure 7b. The ships highlighted in purple were successfully detected while the
ships highlighted in red were missed. In Figure 7c, the ships identified by our proposal,
MANet, are highlighted in yellow. This works as an example of how our proposal is
capable of detecting small vessels and ships among complex backgrounds even when the
conventional methods encounter difficulty and fail.
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Figure 7. Results of the suggested procedure compared to the baseline. The green, purple, yellow,
and red boxes indicate the ground truths, the test results of baseline, the test results of our method,
and the missed ship object, respectively. The proposed MANet generates the most accurate detection
results, missing no ship objects. (a) Ground truth. (b) Baseline. (c) MANet.

4.4. Limitations and Possible Improvements

As for the densely arranged and parallel-placed ships, we have found that the new
method has some limitation in identifying the vessels. The detection of densely side-by-side
ships in the nearshore scene is the focus of future research. It is also the focus of future
research to detect the difference between ships and objects, such as small islands. The result
is not included to save space. We conject the reason for this limitation is that the horizontal
and vertical bounding boxes we use may not be close enough to the ships’ edges, especially
when the ships do not appear horizontal or vertical in the image.

In addition, the vertical bounding box we use in this work would limit the detec-
tion performance, especially for the inshore scenario, which may contain buildings and
other types of ships. Using an oriented bounding box can be a possible improvement
of the proposed method. Along with the position information of the detected ships, the
oriented bounding box can also provide the aspect ratio of the ship and the heading angle
information, which greatly help the trajectory prediction and attitude determination.

Although our proposed method works well on the datasets, it is still an open problem
to improve the detection precision of the small ships. The small ships in the images have
fewer features than the large objects by nature. The multi-layer attention model we use in
the work to extract the features of the object to be detected is one of the possible methods
that can be adopted for small object detection. A modified multi-layer attention model or
more advanced models will possibly appear and become feasible to enhance the detection
performance for small ships in the future.

From the perspective of real-time application of the proposed method, we still have
room for improvement. As of now, our main focus is to improve the detection precision.
To realize real-time detection, we need to reduce the complexity of the network and/or
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implement the method on more powerful computational platforms. Considering the size,
weight, and power constraint systems, such as miniature drones, small satellites, and
unmanned aerial vehicles, developing low-complexity methods and small-scale models
seem to be a more feasible way to realize real-time object detection.

5. Conclusions

In this paper, we proposed a multi-layer attention network (MANet) method as a
solution to both the multi-scale and complex inshore background issues in SAR-based
ship detection. The proposed new approach can simultaneously explore the rich semantic
information of high-level features and the accurate location data of low-level features.
Different from the conventional methods, we integrate an attention mechanism into the
feature map of each layer to adaptively improve the weight of essential details depending
on the importance of different scales and positions for that particular image. Finally, we
conduct extensive performance evaluation based on multiple widely-accepted SAR datasets.
Result shows that the proposed multi-layer attention mechanism network significantly
increases the accuracy of ship detection compared to the existing conventional solutions.

In addition to ship detection from SAR images discussed in the paper, the proposed
method can be utilized in many other applications. Based on the structures and procedures
of the new method, we can extend its application to any network based on feature extraction
for classification, detection, and segmentation. In the future, we will investigate the
detection of densely side-by-side ships in the nearshore scene, explore these applications of
our new method and conduct more experiments with various datasets. Other focuses of
future research include detecting the difference between ships and objects, such as small
islands, and improving the computational efficiency.
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