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Abstract: The goal of this paper is to strengthen the supervision of fishing behavior in the East China
Sea and effectively ensure the sustainable development of fishery resources. Based on AIS data,
this paper analyzes three types of fishing boats (purse seine operation, gill net operation and trawl
operation) and uses the cubic spline interpolation algorithm to optimize the ship trajectory and
construct high-dimensional features. It proposes a new coding method for fishing boat trajectory
sequences. This method uses the Geohash algorithm to divide the East China Sea into grids and
generate corresponding numbers. Then, the ship trajectory is mapped to the grid, the fishing boat
trajectory points are associated with the divided grid, and the ship trajectory ID is extracted from
the corresponding grid. The extracted complete trajectory sequence passes through the CBOW
(continuous bag of words) model, and the correlation of trajectory points is fully learned. Finally, the
fishing boat trajectory is converted from coordinate sequence to trajectory vector, and the processed
trajectory sequence is trained by the LightGBM algorithm. In order to obtain the optimal classification
effect, the optimal superparameter combination is selected. We put forward a LightGBM algorithm
based on the Bayesian optimization algorithm, and obtained the classification results of three kinds
of fishing boats. The final result was evaluated using the F1_score. Experimental results show that
the F1_score trained with the proposed trajectory vectorization method is the highest, with a training
accuracy of 0.925. Compared to XgBoost and CatBoost, the F1_score increased by 1.8% and 1.2%,
respectively. The results show that this algorithm demonstrates strong applicability and effectiveness
in fishery area evaluations and is significant for strengthening fishery resource management.

Keywords: AIS; interpolation algorithm; ensemble learning; Bayesian optimization algorithm

1. Introduction

With the increasing number of fishing boats and the continuous improvement of
fishing technology, the fishing intensity in coastal waters is increasing, and the problems of
marine ecological environment destruction and fishery resources shortage are prominent [1].
With this background, understanding the distribution and fishing intensity of different
types of fishing boats in coastal waters is helpful in indirectly revealing changes in coastal
fishery resources, identifying illegal fishing activities, and providing necessary decision
support for marine spatial planning and marine ecological protection. China has introduced
a series of fishery supervision measures and made significant efforts to restore coastal
fishery resources and regulate fishing activities.

There are various ways to restore coastal fishery resources [2], such as setting a fishing
moratorium [3], regularly throwing fry into the sea, and limiting the minimum size of
trawler nets.
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In order to regulate fishing activities, the following must occur: monitoring the be-
havior of fishing boats through satellite remote sensing technology [4], vessel monitoring
system (VMS) [5] and automatic identification system (AIS) [6].

Some satellite remote sensing systems have the potential to detect ships and offer
value in fishery monitoring. Meteorological satellite data has been utilized to detect marine
vessel activities. Currently, research technology can accurately detect target ships at sea
through satellite remote sensing. However, identifying the types of ships from numerous
targets remains challenging. Satellite synthetic aperture radar (SAR) systems [7] can also
detect ships at sea and possess the advantage of all-weather operation. Nonetheless, SAR
images have limitations dependent on the SAR type, radiance, spectral resolution (typically
very low), and the material and geometry of the detected object. Generally, optical images
have higher spatial resolution compared to most SAR images [8]. High-resolution optical
sensors can detect and characterize ships in low-cloud daytime conditions [9]. However,
their primary disadvantages are their inability to be utilized at night or in adverse weather
conditions. Furthermore, satellite remote sensing images can only capture the instantaneous
state of fishing boats, and the revisit period is long, making it challenging to continuously
monitor the navigation and fishing activities of fishing boats over an extended period. This
limitation fails to meet the real-time requirements for fishing boat supervision.

Shipping big data such, as VMS data and AIS data, are widely used to monitor and
identify fishing boats in real time. However, VMS data has some limitations, including
low time resolution and limited access. In recent years, the popularization and application
of AIS has brought new opportunities for the study of marine fishing activities. The
advantages of timeliness, high accuracy and convenient collection can effectively make up
for the deficiency of VMS data and better serve the characteristic mining of regional fishery
activities.

In December 2000, the Navigation Sub-committee of the International Maritime Or-
ganization officially issued a proposal that ships must be equipped with AIS equipment,
which clearly required that ships built after 2002 and ships operating since 2008 must be
equipped with an AIS system [10]. According to the Technical Rules for Statutory Survey of
Domestic Seagoing Ships (2020), ships should be equipped with an automatic identification
system (AIS) according to the following requirements:

1. All passenger ships and cargo ships of 500 gross tonnage and above should be
equipped with an A-class AIS equipment.

2. Domestic cargo ships with a gross tonnage of less than 500 tons shall be equipped
with A-class or B-class AIS equipment as required.

At present, many coastal areas have established automatic identification system (AIS)
base stations and coastal radar stations, generating a significant amount of ship information
daily. This information includes both static details such as ship type, tonnage, and port
of departure, as well as dynamic information like position, direction, and speed. Under
normal circumstances, the real-time status of ships at sea can be easily determined using
the aforementioned information. This provides an excellent data source for monitoring and
managing marine fishing activities and assessing ecological pressure. It plays a crucial role
in assisting managers and researchers in swiftly predicting and analyzing the distribution
of fishery resources and locating central fishing grounds.

However, illegal, unreported, and unregulated fishing poses a threat to food safety
and marine biodiversity [11]. It is estimated that these illegal fishing activities capture
between 11 million and 26 million tons of fish annually, accounting for approximately
15% of global fish consumption [12,13]. To combat such illegal activities, the maritime
warning system must be capable of real-time locating and identifying fishing boats within a
specific area. This enables a better understanding of various fishing grounds and provides a
foundation for implementing fishing regulations and cracking down on illegal, unreported,
and unregulated fishing activities.

However, there is no standardized and mandatory reporting system for fishing boat
activities or catches. Some jurisdictions require recording the date range, location, and
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catch weight. Nevertheless, these records are typically not submitted until the ship returns
to its landing site, and there is no central system for sharing this data. Therefore, correctly
classifying and identifying unknown fishing vessels based on AIS data has become an
important task.

Researchers both domestically and abroad have mostly used Bayesian Hidden Markov
Models (HMMs) [14] and machine learning algorithms [15] for analyzing fishing behavior
and fishery area assessment. Erico N. et al. used global fishing vessel trajectory data
from 2011 to 2015 and vessel speed as the input variable to generate an HMM with an
83% recognition rate [16]. However, this model’s algorithm efficiency is low and cannot
achieve real-time analysis of AIS data. For research, Zheng Qiaoling et al. used 15 gillnet
fishing vessels, 39 trawling fishing vessels and 24 Chinese-style large mesh fishing vessels in
offshore China. A Backpropagation neural network model was used with the corresponding
fishing vessel speed and heading data in the Vessel Monitoring System (VMS) as input
to achieve accuracy rates of 96.6% and 91% based on the speed and heading models,
respectively, but this model recognizes a small amount of data, and the recognition rate
for gillnet fishing vessels is only 70% [17]. Tang Xianfeng et al. [18] extracted voyage
information of fishing vessels from BeiDou Satellite Data. They batched the trajectory
graph of each voyage using longitude and latitude data and trained a deep convolutional
neural network model (CNN) with transfer learning and fine-tuning methods. Their ten-
layer CNN model achieved a precision rate of 94.3% for identifying trawl and towed fishing
boat operation types. However, this model’s hidden layer has numerous layers, resulting
in low efficiency and poor real-time analysis.

Yuan Feng et al. [19] used a neural network model with VMS data from shrimp fishing
boats within the range of 25°–35° N, 120°–130° E as parameters to identify towing fishing
vessels. They achieved a model training accuracy of 79%. Nevertheless, this model only
identifies fishing vessels of a single type and cannot provide a macro perspective for
multiple fishing vessels.

Yang Shenglong et al. [20] conducted a study on trawling fishing vessels in Xiangshan
Port. They mined 1508 fishing vessel position, heading, and speed data with BeiDou
terminals to determine the fishing vessel’s speed threshold in the fishing state and heading
variation. They used window filtering correction to obtain the fishing strength in each
fishing area grid. However, this method does not account for the impact of latitude and
longitude on fishing area grids. Near an island reef, when fishing vessels pass by, the
speed and heading change may resemble their fishing state, but the fishing effort is zero.
Therefore, accurately determining whether the fishing vessel operates within the fishing
area is necessary.

Tang Fenghua et al. [21] determined the fishing status of trawl fishing vessels based
on the threshold difference between navigation speed and heading. They used cumulative
fishing time as the fishing intensity in a particular area for a while. Tracing the location
of the fishing vessel, fishing ground, and fishing port allows obtaining the source and
cumulative fishing time of aquatic products. The traceability of aquatic products can be
achieved with information such as fishing grounds and fishing areas. However, this method
also counts the time when the fishing vessel is not engaged in fishing operations, and the
defined fishing intensity range for the fishing ground is too large, leading to decreased data
accuracy and an overestimation of the catch.

Yang et al. [22] used VMS data from 8 single otter trawl vessels in the Zhoushan fishing
ground from September to December 2012. They simulated trawl trajectories at different
intervals using the cubic Hermite spline interpolation method to determine vessel activity
(fishing and non-fishing).

Chen Renli et al. [23] used AIS data from offshore fishing vessels and the Gaussian
mixture model (GMM) to identify fishing behavior and determine the speed threshold
during fishing activities. They proposed a combined mapping method using kernel density
estimation (KDE) and hotspot analysis (HSA) for fishing ground mapping. This combined
method has proven effective and efficient for fishing ground mapping. However, the
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drawn fishing ground area is rather general, and it is uncertain what kind of fishing boat is
operating in that fishing ground.

In view of the aforementioned issues, this paper utilizes a data-driven approach based
on machine learning to address the challenges. It optimizes fishing boat trajectories using
the cubic spline interpolation algorithm and constructs high-dimensional features. Recog-
nizing the limitations of traditional latitude and longitude features in fully characterizing
fishing boat trajectories, an encoding method for fishing boat trajectory sequences is pro-
posed to capture dynamic information and the relationships between trajectory points.
Additionally, the Bayesian optimization (Boa) method is employed to optimize the parame-
ters of the LightGBM (Light Gradient Boosting Machine) fishing boat classification model,
enhancing model accuracy, reducing complexity, and improving parameter optimization
efficiency. The specific steps are as follows:

1. To address missing values in ship trajectories, this paper applies the cubic spline
interpolation algorithm to restore missing key data points, ensuring data integrity and
accuracy of fishing vessel classification results.

2. Traditional statistical features are insufficient in fully characterizing fishing boat
characteristics. Therefore, this paper constructs high-dimensional features based on the
navigation patterns of the three types of fishing boats. These features are utilized in model
training to enhance classification accuracy.

3. Recognizing the limited representation ability of conventional latitude and longitude
statistics for fishing boat trajectories, a trajectory sequence coding method is devised. This
method divides the fishing boat working area into grids using the Geohash algorithm [24]
and represents the fishing boat trajectory using grid numbers. This approach reduces data
complexity. The CBOW (continuous bag of words) algorithm [25] is employed to vectorize
the trajectory sequence encoded by characters, and the vectorized data serves as input for
the LightGBM algorithm, further enhancing algorithm execution efficiency.

4. To achieve optimal classification results for fishing boats, a LightGBM algorithm
based on Bayesian optimization is proposed. This method selects appropriate values from
numerous hyperparameters to optimize the model training process.

The organization of this paper is as follows:
Section 1 introduces the significance and research status of the classification of fishing

boats.
Section 2 introduces the overall architecture of the system.
Section 3 is the behavior analysis and trajectory optimization of fishing Vessels, ac-

cording to the law of ship motion. This paper uses the cubic spline interpolation algorithm
to fill in the missing data and increase the integrity of the data;

Section 4 introduces the optimization of algorithm, it is mainly carried out from three
aspects: firstly, extracting the high-dimensional features of fishing boats and improving
the feature set; secondly, in order to efficiently process the massive AIS data, this paper
proposes a composite coding method, which grids the fishing grounds in the East China
Sea and vectorizes the fishing boats’ trajectory as the training data set; finally, in order to
obtain the best classification effect, we propose a LightGBM algorithm based on Bayesian
optimization, which Maximizes the classification performance of the model.

Section 5 introduces the experimental data and classification results.
Section 6 is the relevant conclusion of the study and the prospects for future study.

2. Overall Architecture

In Figure 1, the flowchart shows the fishing vessel operation classification process,
divided into two parts: data processing and algorithm optimization.

Data Processing: Firstly, extract AIS data from the database. Due to the influence of
weather and other factors on communication between AIS devices and shore stations, there
are abnormal points in the data. Therefore, data filtering is necessary. The filtered data are
then optimized using the cubic spline interpolation algorithm three times to complete the
ship’s sailing trajectory by filling in missing points.
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Algorithm Optimization: In this paper, we establish conventional statistical character-
istics such as the mean, variance, median, as well as high-dimensional information quantity
features of speed, longitude, latitude, and heading. We construct features from different
perspectives to enrich the feature set. Additionally, we propose an encoding method suit-
able for ship trajectories, which vectorizes fishing boat trajectories. This method takes
into account the correlation between each trajectory point of the ship, thus enhancing
classification accuracy.

Figure 1. Flowchart of fishing vessel operation classification based on ensemble learning.

3. Behavior Analysis and Trajectory Optimization of Fishing Vessels
Definition of Fishing Activity by Gear Type

As shown in Figure 2, gillnet fishing vessels [26,27] use gillnets as fishing gear to fish
in the ocean. Its navigation trajectory characteristics are as follows:

Relatively stable: Gillnet fishing vessels [28] usually fish within a certain area, with a
cruising speed of 0–2 knots during operation. The navigation trajectory is relatively stable,
unlike trawl or seine fishing vessels, which frequently change direction and speed.

Straight-line navigation: Gillnet fishing vessels usually navigate in a straight line to
maintain the tension and stability of the gillnet and facilitate fishing.

Brief pause: Gillnet fishing vessels need to briefly pause during fishing to wait for
the fish to enter the gillnet. Therefore, there may be brief pause points in the navigation
trajectory [29].

Multi-point navigation: Within a fishing ground, gillnet fishing vessels typically fish in
different locations so that the navigation trajectory may show characteristics of multi-point
navigation [30].

As shown in Figure 3, trawling involves dragging one or more nets behind a fishing
vessel on the seafloor (bottom trawl) or in the water (pelagic or midwater trawl). When
trawling, the fishing vessel usually slows down and maintains a constant speed to keep the
tension of the trawl net as even as possible. The duration of trawling primarily depends on
the density of prey, ranging from a few minutes to several hours. Here, trawling activity is
defined from the moment the net is cast until it is retrieved. The characteristics of trawl
fishing vessels are usually slow and stable, with a cruising speed of 2.5–5.5 knots during
operations. The distribution of AIS speed data determines these speed thresholds and
corresponds to similar values obtained in the literature [31,32].

Characteristics of trawling vessel trajectories [33]:
Regular cruising of vessels: In the East China Sea, trawl fishing vessels usually cruise

regularly to search and catch fishery resources. The trajectories of these regular cruises
often exhibit certain patterns and periodicity.

Slow speed: Trawling vessels typically use a slow trawling method during operations,
resulting in a relatively slow vessel movement speed.
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As shown in Figure 4, a purse seine is a long net hung vertically on floats by fishing
vessels or independent small boats on the water’s surface [34,35]. To avoid fish escaping,
purse seining needs to be quickly set at an average high speed of about 10 knots. Once the
net completely encircles the fish, the bottom of the net is pulled up, and the net is towed
away, with a cruising speed of 2–8 knots during operations. Fish drift with the net and
are picked up and transferred to the vessel. The duration of this process depends on the
quantity caught, ranging from one hour to several hours.

Characteristics of purse seine fishing vessel trajectories:
High vessel aggregation: Purse seine fishing vessels in the sea often gather around

specific fishing grounds with abundant fishery resources, which are typically favored due
to favorable marine environmental conditions, water depth, and seafloor terrain, resulting
in a high concentration of vessels in those areas.

Traditional cruising of vessels: Purse seine fishing vessels typically follow regular
cruising patterns in the sea as they search for and catch fishery resources. These regular
cruises often exhibit specific patterns and periodicity.

Limited operational range of vessels: Compared to trawl fishing vessels, purse seine
fishing vessels have a relatively restricted operational range, usually confined to the purse
seine area.

Longer vessel parking time: Purse seine fishing vessels often need to remain in specific
fishing grounds with abundant fishery resources for a certain period, waiting for fish to
enter the purse seine. Therefore, during the parking period, the vessel’s trajectory tends to
be relatively stable.

Flexible operational time periods of vessels: The operational time of purse seine fishing
vessels is typically not fixed, as they need to adapt their operations based on the movement
of fish schools, allowing for flexibility in their operational periods.

Figure 2. The trajectory of gillnet fishing vessels in the East China Sea.
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Figure 3. The trajectory of trawl fishing vessels in the East China Sea.

Figure 4. The trajectory of purse seine fishing vessels in the East China Sea.

Due to the influence of factors such as weather on the signal transmission of AIS de-
vices on ships, the trajectories generated by data with abnormal values removed often have
many missing points. However, complete trajectories are an essential factor in determining
the type of ship operation. Therefore, we must use more advanced interpolation methods to
obtain smoother and more accurate fishing boat trajectories. Furthermore, the information
obtained through these methods can be used for more detailed research to understand the
spatial distribution of fishing efforts and their impact on benthic organisms [36]. Therefore,
this paper uses the cubic spline interpolation algorithm to optimize ship trajectories.

In some developed countries, there have been studies on ship trajectory interpola-
tion [37]. These interpolation methods can be roughly divided into two categories: linear
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and nonlinear interpolation methods [38], such as spline interpolation. Linear interpola-
tion can connect continuous data points and handle discontinuous data points. It is the
simplest and fastest interpolation method. When the time interval is short, a straight line
can be considered as the trajectory of a fishing boat. However, when the time interval is
long, the difference between the actual trajectory and the replaced straight-line trajectory
will be large, affecting the further analysis of fishing effort. Linear interpolation cannot
simultaneously consider speed and heading, which can result in a significant deviation
between the simulated and true paths. Spline interpolation is commonly used to mitigate
the problem of linear interpolation, which considers the complexity of data structures and
is an efficient algorithm. It also considers heading and speed and maximizes the use of data.
There are many types of spline interpolation methods, each with its own advantages and
disadvantages. Many spline functions require four data points to interpolate the trajectory
between two continuous points [39]. Compared with linear interpolation, which only
contains two points, spline interpolation often performs better in terms of interpolation
accuracy.

Description of the cubic spline interpolation algorithm:
Step 1: Given n + 1 data points on the interval [a,b], divide [a,b] into n sub-intervals:

that is, [x0, x1], [x1, x2], . . . , [xn−1, xn].
Step 2: Calculate the step size, hi = xi + 1− xi.
Step 3: Solve equations to obtain mi.
Step 4: Calculate the parameters of each sub-interval:
ai, bi, ai = yi, bi = (yi + 1− yi)/2− (himi)/2−hi(mi + 1−mi)/6, ci =mi/2,

di = (mi + 1−mi)/6hi.
Step 5: Generate the spline function. Si(xi) = ai + bi(x− xi)+ ci(x− xi)

2 + di(x− xi)
3.

The optimization results are shown in Section 5.1.

4. Algorithm Optimization
4.1. Build High-Dimensional Features

Currently, existing methods for recognizing fishing vessel behavior typically analyze
single-speed data, leading to low accuracy and ineffective identification of fishing behavior.
This is particularly evident during turns, where reduced speed can cause misjudgments of
the operational trajectory and lower the accuracy of determining fishing areas. Moreover,
relying solely on low-information features such as heading angle, longitude and latitude,
and distance for identifying fishing vessel behavior can result in misjudgments under
different navigation states.

To address these limitations, feature engineering is conducted by analyzing the origi-
nal AIS data, as the number of available features is limited. Feature engineering involves
discovering potential and valuable variables through the analysis of raw data. Common
feature engineering methods include discrete data coding, custom methods, function trans-
formation methods, and statistical value construction methods [40]. The statistical value
construction method involves obtaining new features by calculating statistical quantities of
the existing features. The function transformation method involves obtaining new features
by squaring, square-rooting, exponentiating, logarithmic, differential transformations, etc.
Discrete data coding involves one-hot encoding or binary encoding of discrete data.

In this article, we establish standard statistical features, such as the mean, variance,
and median of speed, latitude and longitude, and heading, as well as high-dimensional
informative features such as percentiles, skewness, and kurtosis, to comprehensively
describe fishing vessel behavior from various angles by enriching the feature set [41].

The Figure 5 shows that high-dimensional statistical features (such as x_bin, x_y, std)
are extracted for longitude, latitude, and speed. The longitude and latitude ranges where
fishing vessels are divided into multiple intervals, and the trajectory data features for each
interval are combined to form compound features. These compound features balance the
differences between attribute values. After introducing them to the training model, the
model can better learn the fishing vessel behavior, resulting in a significant improvement in
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accuracy. Finally, the fishing vessel trajectory is vectorized. Most traditional classification
algorithms use one-hot encoding for coding, but this method does not fully consider the
connection between trajectory points, leading to inaccurate classification results. Therefore,
this article proposes a coding method suitable for ship trajectories by referring to the
encoding method, which vectorizes fishing vessel trajectories. This method considers the
correlation between each trajectory point of the vessel, which is conducive to improving
classification accuracy.

Figure 5. The proportion of feature importance of the algorithms. x represents longitude, y represents
latitude, v represents speed, k represents the ratio of latitude to longitude, b represents the difference
between latitude and longitude multiplied by the average value of k. Other values include k_mean:
the mean value of k, min: minimum value, max: maximum value, mean: mean value, 1/4: 1/4
percentile, 3/4: 3/4 percentile, std: standard deviation, cov: covariance, kurt: kurtosis, skew:
skewness.

4.2. Regional Gridding of Fishing Ground and Vectorization of Fishing Boat Trajectory

Facing the massive amount of fishing boat trajectory data, the conventional statistical
information based on latitude and longitude has limited ability to accurately characterize
the fishing boat trajectory. To address this limitation and capture the dynamic information
of the trajectory along with the relationships between the points the fishing boat traverses,
we have developed a trajectory sequence coding method based on the specific sea areas
through which the fishing boat navigates.

Firstly, we unpack the map of the sea area that the fishing boat passes through into
rectangular grids by using the Geohash algorithm [42,43], and the size of the divided
rectangular grids is determined by the character coding length of Geohash. Based on the
size of the fishing boat, we choose the character length of 7 to determine the grid area
size, and the area size determined by the Geohash algorithm is 153 m × 153 m. The coded
fishing ground area is composed of a series of numbered grids, and the trajectory points
where fishing boats are composed of these numbers.

The basic principle of Geohash is as follows: for example, the latitude and longitude
are [31.19993, 121.0007 ], the latitude interval of the earth is [−90, 90]. Divide this interval



J. Mar. Sci. Eng. 2023, 11, 1093 10 of 25

into two parts, namely [−90, 0], [0, 90]. [31.1932993] is located in the (0, 90) interval, that
is, the right interval, marked as 1. Then, continue to divide the (0, 90) interval into [0, 45],
[45, 90] and 31.1932993 in the [0, 45] interval, that is, the left interval, and mark it as 0. Then,
keep dividing. The binary generated by the latitude is [101011000101110]. Similarly, the
binary generated by the longitude is [1101011001101]. According to the rule of “even digits
for longitude, odd digits for latitude”, the binary strings of longitude and latitude are recom-
bined to generate a new one: [1110011000110011101111, 11100110011110000110011110110].
This is converted into a decimal [28, 25, 28, 3, 7, 22], and the final result is obtained by the
Table 1, the result is wtw37q.

Finally, the binary number is converted into characters, and all points of the fishing
boat trajectory are coded by this method, so that the fishing boat trajectory points are
associated with the divided rectangular grid points, and the complete fishing boat trajectory
is coded by characters.

For the sake of understanding, we use a digital grid to represent the trajectory sequence
of fishing boats.

Then, we use the CBOW algorithm to vectorize the trajectory sequence and add it to
the subsequent training [44], and show the relationship between the trajectory points in the
form of a heat map.

Table 1. Base32 code table.

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12
Base32 0 1 2 3 4 5 6 7 8 9 b c d
Decimal 13 14 15 16 17 18 19 20 21 22 23 24 25
Base32 e f g h j k m n p q r s t
Decimal 26 27 28 29 30 31
Base32 u v w x y z

As shown in Figure 6, the specific steps are as follows:
First, map each trajectory to a grid, where the ID of the grid corresponding to each

trajectory point represents a word in the vocabulary, and each trajectory corresponds to a
document. Secondly, extract vessel trajectory IDs on the corresponding grid. The extracted
grid ID sequence is trained by the CBOW model [45] to fully learn the relevance of trajectory
points and output as a single trajectory point. The input layer of the CBOW model is the
context {x1, x2, . . . , xc} encoded by one-hot, and the calculation process is as follows: The
first step is to calculate the hidden layer h:

h =
1
c

w

(
c

∑
i=1

xi

)
(1)

The second step is to calculate the input of each node in the output layer:

uj = V′Twj ∗ h (2)

V′Twj is the jth column of the output matrix.
yc,j is represented as:

yc,j = p(wy,j|w1, . . . , wc) =
exp(uj)

v
∑

j′−1
exp(u′j)

(3)
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Figure 6. The proportion of feature importance of the algorithms.

As shown in Figure 6, the top right corner of the graph is the correlation heat map of
each grid point, represented by the correlation vectors of each grid point. The darker the
color, the higher the correlation, and the lighter the color, the lower the correlation. Thus,
the fishing boat trajectory is converted from a coordinate sequence to a trajectory vector.

4.3. LightGBM Algorithm

Gradient Boosting Decision Tree [46] (Gradient Boosting Decision Tree, GBDT [47,48])
is an integrated algorithm based on the decision tree combined with the idea of gradient
boosting, which is easy to visualize and has strong generalization ability. LightGBM was
proposed by Microsoft in 2017. The objective of this proposal is to address the issues associ-
ated with training GBDT [49], such as high computational complexity, time consumption,
and space utilization. These challenges arise from the requirement of traversing all data
and features for each node split, hindering parallelization and overall efficiency.

The fishing boat data set is defined as D = {(Xi, Yi)}n
i=1, where n is the sample size, Yi

is the ship type label, and Xi is the classification label. The specific steps are as follows:
1. Initialize the classification state Fk,0(Xi) of Xi on the kth class, and the number of

classification types is k = 1, 2, 3.
Fk,0(Xi) = 0 (4)

2. Iterative calculation, the number of iterations is m = 1, 2, . . . , M.
3. Calculate the probability that X corresponds to each class.

pk,m−1(Xi) =
epk,m−1(Xi)

K
∑

k=1
epk,m−1(Xi)

(5)
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4. Calculate the negative gradient value Y of Xi, the true probability of X is P.

ỹi,k = yi,k − pk,m−1(Xi) (6)

5. Calculate the leaf node value γj,k,m after node splitting, the sample set on the leaf
node is Rj,k,m, and the number of leaf nodes is j = 1, 2, . . . , J.

γj,k,m =
K− 1

K

∑Ni∈Rj,k,m
γ̃i,k

∑Xi∈Rj,k,m

∣∣γ̃i,k(1−
∣∣γ̃i,k

∣∣)∣∣ (7)

6. Update the model with a learning rate of η.

Fk,m(Xi) = Fk,m−1(Xi) + η
J

∑
j=1

γj,k,m I (8)

7. Finally, obtain the model.

Fk(X) = η
M

∑
m=1

J

∑
j=1

γj,k,m I (9)

The improvement of LightGBM [50] on GBDT is as follows: use the growth strategy
based on the Leaf-wise algorithm to build trees, reduce unnecessary calculations, and
improve the accuracy of fishing boat classification; use the Histogram algorithm to traverse
samples and store eigenvalues to reduce time and space. In addition, LightGBM uses
gradient-based unilateral sampling and mutually exclusive feature bundling technology
to reduce redundancy and improve efficiency in the two dimensions of sample size and
features. In addition, if the learning rate is too large, the algorithm will fail to converge, and
if it is too small, the iteration speed of the model will be too slow. Therefore, it is necessary
to set an appropriate learning rate; if LightGBM uses the Leaf-wise strategy to grow the tree,
the tree will grow too deep, resulting in overfitting. Therefore, it is necessary to control the
number of leaf nodes, the depth of the tree and the minimum number of data on the leaves.
In order to obtain better model training results, we propose a LightGBM algorithm based
on Bayesian optimization. From many hyperparameters, select the optimal parameter
combination in order to optimize the effect of model training.

4.4. Bayesian Optimization Algorithm

Bayesian optimization [51] is suitable for solving black-box problems where the deriva-
tive of the objective function is unknown and the cost of evaluating the objective function
is high. The specific process of Bayesian optimization is as follows:

First, random sampling is performed in the parameter space, and then a preliminary
objective function distribution is established using a probabilistic proxy model, and the next
point to be evaluated is determined by maximizing the collection function, and the newly
obtained point evaluates the objective function. After adding the value to the existing set
of evaluation points, the probabilistic proxy model is updated, and the cycle is repeated
until the end of the iteration. Therefore, probabilistic surrogate models and acquisition
functions are two important components of Bayesian optimization. When applying the
LightGBM model to classify fishing vessel types, it is necessary to determine the optimal
parameter combination. In order to realize the fast and efficient parameter optimization
process and avoid falling into the local optimal solution, this paper introduces the Bayesian
global optimization algorithm to optimize the model parameters.

4.5. Probabilistic Proxy Model

Probabilistic proxy models [52] are divided into parametric models and non-parametric
models. Compared with parametric models with a fixed number of parameters, non-
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parametric models are more flexible and highly scalable, among which, Gaussian Processes
(GP) are widely used. The Gaussian process is a random combination of parameters to be
adjusted in the LightGBM model, which can be expressed as:

f (x) ∼ GP(µ(x), k(x, x′)) (10)

In the formula: f (x) is the objective function, µ(x) is the mean function,
µ(x) = E( f (x)), k(x, x′) is the covariance function.

Assuming that the known parameter combination is Dt = {(xi, fi)}t
i=1, where

ft = f (xt), the next sampling point is xt+1, and assuming that the mean value of the
prior distribution is 0, the joint distribution of f and ft+1 can be expressed as:(

f
ft+1

)
∼ N

(
0
[

K Kt+1
KT

t+1 Kt+1,t+1

] )
(11)

In the formula, K is a matrix composed of k(x, x), kt+1 is a matrix composed of
k(x, xt+1), and Kt+1,t+1 is a matrix composed of k(xt+1, xt+1). Then, the posterior distribu-
tion P( ft+1|Dt, xt+1) of ft+1 can be expressed as:

P( ft+1|Dt, xt+1) = N(µ(xt+1), σt
2(xt+1)) (12)

where the mean of the posterior distribution of ft+1 is µt(xt+1) = Kt+1
TK−1 f and the

variance is σ2
t(xt+1) = Kt+1,t+1 − Kt+1TK−1Kt+1.

4.6. Acquisition Function

After establishing the posterior distribution of the Gaussian process, the next sam-
pling point Xt+1 is determined by the acquisition function [53]. There are three common
acquisition functions, PI, EI (expected improvement), and UCB (upper confidence bound).
Among them, the PI (Probability of Improvement) function is easy to use. The sampling
points based on the PI strategy are selected in this paper as follows:

xt+1 = arg max Φ
(

µt(x) = ft(x+)− ε

σt(x)

)
(13)

In the formula, Φ() is the standard normal cumulative distribution function, ft(x+) is
the maximum value of the current objective function, and ε is the trade-off coefficient for
balanced exploration and development.

As shown in Figure 7, the process of the fishing boat classification model based on
Bayesian optimization is as follows:

1. Normalize and standardize the sample data, and divide the data set into a training
set and a test set according to the ratio of 4:1.

2. After initializing the model, the Gaussian process regression is used to calculate the
maximum value of the AC function. If the target value is met, it is output; if not, return to
the Gaussian process to continue calculation.

3. Use the Bayesian optimization algorithm to optimize the learning rate, tree depth,
and number of classifiers of the model to obtain the optimal hyperparameters, and set the
parameters of the LightGBM algorithm.

4. Determine whether the hyperparameters have reached the target maximum accu-
racy. If so, set the parameters of the model as the optimal hyperparameters. Otherwise,
return to steps (2), (3) and repeat.

5. Test the classification effect of the model through the test set, determine the classifi-
cation accuracy of the model, and evaluate the model.
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As shown in Table 2, we conducted 30 iterative experiments on the model according
to the above process, and the target is the test score of each combination. We found that the
result of the 14th iteration is the best; therefore, the selected parameter combination is as
follows: bagging_fraction:0.8297, lambda_l1:0.5224, learning_rate:0.4271, max_depth:20,
num_leaves:26.

Table 2. Hyperparameter Training Results.

Iteration Target Bagging_Fraction Lambda_l1 Learning_Rate Max_Depth Num_Leaves

1 0.9508 0.2748 1.739 0.411 47.5 39.38
2 0.9569 0.4646 1.747 0.3693 30.93 45.1
3 0.9361 0.3118 1.287 0.7563 29.6 90.55
4 0.9594 0.8648 1.57 0.7333 13.37 16.99
5 0.9545 0.7073 0.1431 0.7922 14.75 26
6 0.9569 0.9284 1.442 0.6866 14.14 17.46
7 0.9165 0.2 2.619 1 5.779 14.34
8 0.9569 0.8178 2.142 0.7896 15.19 21.55
9 0.9214 0.261 3 1 17.84 14.83

10 0.9349 0.2251 0.24 0.5378 12.25 21.02
11 0.9569 1 1.946 0.909 16.27 24.2
12 0.9557 0.8462 1.527 0.6978 17.27 21.04
13 0.9643 1 0.1117 0.3489 18.75 23.91
14 0.9655 0.8297 0.5224 0.4271 19.85 25.48
15 0.9532 0.8031 1.342 0.9805 22.41 23.98
16 0.9557 0.3588 1.665 0.1169 18.76 28.09
17 0.9581 0.4522 0.3603 0.1994 23.62 30.4
18 0.9618 1 0.1 1 20.35 27.71
19 0.963 0.907 0.8223 0.2752 22.02 34.44
20 0.9643 1 0.1 1 26.47 33.91
21 0.9594 0.5902 1.167 0.2274 25.67 38.11
22 0.9545 1 3 1 25.82 33.22
23 0.9581 0.6216 0.12 0.1 29.74 34.11
24 0.9508 1 0.1 1 30.91 36.57
25 0.9214 0.2 0.1 1 20.71 36.57
26 0.9569 0.6714 1.374 0.4674 22.87 30.67
27 0.9643 1 0.1 0.1 28.17 30.16
28 0.9569 0.387 0.1 0.1131 28.97 29.45
29 0.9594 1 0.1 1 31.98 30.85
30 0.9618 0.9854 2.839 0.9269 28.43 27.03



J. Mar. Sci. Eng. 2023, 11, 1093 15 of 25

Figure 7. Flow chart of Bayesian optimization fishing vessel classification model.

5. Experiment and Result
5.1. Experimental Environment and Data

In Figure 8, the image is provided by Global Fishing Watch (access date is 1 October
2022) (https://globalfishingwatch.org/). This paper uses the trajectory data of fishing
boats in Zhoushan Fishery of the East China Sea in October 2021, with a spatial range of
20°–35° N and 120°–130° E. The sea area is relatively shallow, and rich in nutrients and bait.
Zhoushan Fishery is the largest fishery in China, with abundant fishery resources and a
long history of marine fishing. Coastal fishing ports and docks are densely distributed,
with tens of thousands of motorized fishing boats. During the fishing season, the intensity
of fishing activities is high, and the fishing activities are concentrated. Frequent encounters
with commercial ships occur, and the maritime traffic conditions are complex, making it
an ideal place to conduct AIS data application research. The dataset used in this paper is
provided by the Transportation Bureau of Daishan County, Zhejiang Province. There are
2109 fishing boats in the dataset, with over 200 million records in total, of which 2034 fishing
boats are of a determined type, and 75 fishing boats have no operation mode specified.The
data format of the fishing vessel is shown in Table 3. The experiment environment is shown
in Table 4. The optimization results are shown in Figures 9 and 10.

https://globalfishingwatch.org/
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Table 3. Partial Fishing Vessel Data Sheet.

MMSI Vessel
Length

Vessel
Width Lat (°) Lon (°) SOG (kn) COG (°)

412425783 24 m 6 m 30.17465 N 122.03770 E 5 166.9
422426552 40 m 7 m 30.13483 N 122.12875 E 4.6 278.0
412425118 37 m 7 m 30.14063 N 122.13303 E 6.1 96.0
412425828 28 m 6 m 30.13437 N 122.16628 E 3.9 158.0
412425526 41 m 7 m 30.26035 N 122.16628 E 8.6 169.0
412426203 25 m 5 m 30.15163 N 122.177795 E 9.5 52.0

Table 4. Experimental Environment.

CPU Intel(R)Core(TM) i7-11800H. 2.3 GHz
Memory 32 G Graphics Card
NVIDIA GeForce GTX 3070. 8 G

Operating System Windows11
Programming Language Python

Figure 8. Original trajectory heat map. The figure shows the visualization of the partial data used
in this paper; red represents the heat map of the ship’s trajectory, and the more vivid the color, the
busier the route.
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Figure 9. Optimized through three rounds of cubic spline interpolation. The green line represents
the original trajectory with many gaps. The yellow area indicates the optimized region where the
trajectory will be improved. The red line on the graph represents the optimized trajectory.

Figure 10. Optimized through three rounds of cubic spline interpolation. The green line represents
the original trajectory with many gaps. The yellow area indicates the optimized region where the
trajectory will be improved. The red line on the graph represents the optimized trajectory.

5.2. Experimental Result

According to the “Management of Summer Fishing Rest Period in Putuo District in
2021” issued by the People’s Government of Putuo District, Zhoushan City:

The fishing rest period for single-boat trawl nets (pole trawl shrimp nets), cage traps,
gill nets, and light fishing (lay) nets is from 12:00 on 1 May to 12:00 on 1 August. The fishing
rest period for small-scale anchored net fishing vessels is from 12:00 on 1 May to 12:00 on 16
August. The fishing rest period for single-anchor gill nets (sail-type gill nets), trawls, and
other unlisted marine fishing operations is from 12:00 on 1 May to 12:00 on 16 September.
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With the decline of resources in the East China Sea region and the increasing awareness
of resource protection, problems such as poor selectivity of trawl and gill nets, serious
damage to young fish of economic species, and excessive fishing intensity beyond the
carrying capacity of nearshore waters have become prominent. Therefore, according to the
“Regulations on the Management of Fishing Licenses” issued by the Ministry of Agriculture
and Rural Affairs, fishing vessel management will be stricter starting in 2019, and large and
medium-sized fishing vessels are not allowed to operate within the banned fishing zone
line inside the wheel bottom trawl, and small-scale fishing boats are not allowed to operate
outside the banned fishing zone line. At the same time, in order to control the intensity
of marine fishing, the approval and manufacture of trawls, single-anchor gill nets, and
single-boat large deep-water sac nets for fishing operations have been strictly prohibited
since 2019.

The classification result is shown in the Figure 11, with 66 purse seiners, 5 trawlers,
and 4 gill netters. Figures 12–14 are the operating trajectories of gillnets, trawls, and seiners,
respectively. This figure is drawn using the open source framework kepler.gl. From the
figure, we can roughly determine the respective operating areas of the three fishing vessels.
It provides some assistance for fisheries resource management. It should be noted that the
data collected in this article are for some fishing vessels in Daishan County in October 2021.
Therefore, the number of fishing vessels of different types may vary greatly, which does
not represent the actual number of fishing vessels in the local area. At the same time, due
to changes in fishery management policies and fishery resources, the number of fishing
vessels may also undergo significant changes.

Figure 11. The result of Classification.



J. Mar. Sci. Eng. 2023, 11, 1093 19 of 25

Figure 12. Classified area for gillnet fishing vessels.

Figure 13. Classified area for trawler fishing vessels.
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Figure 14. Classified area for Purse seine fishing vessels.

5.3. Model Evaluation

The confusion matrix belongs to the category of model evaluation and essentially
represents the judgment of the model results; it counts the number of each situation. As
shown in Table 5, the confusion matrix mainly includes the four fundamental indicators
(primary indicators) described below: True Negative (TN) and True Positive (TP), False
Negative (FN), and False Positive (FP). Among them, FP is called the first type of error in
statistics (Type I Error), and FN is called the second type of error in statistics (Type II Error).
The four fundamental indicators are explained in the table below.

Table 5. Description of basic indicators.

Index Symbol Description

1 TP both are positive
2 TN both are negative

3 FP The model judged positive, but the actual
situation was negative

4 FN The model judged negative, but the actual
situation was positive

Precision refers to the proportion of true positive (TP) cases correctly identified out of
all positive cases identified. The formula for Precision is defined as follows:

P =
TP

TP + FP
(14)

Recall refers to the proportion of true positive (TP) cases correctly identified out of all
positive cases. The formula for Recall is defined as follows:

R =
TP

TP + FN
(15)

F1_score is the harmonic mean of precision and recall, ranging from 0 to 1. The formula is
defined as follows:

F1 = 2 ∗ P ∗ R
P + R

(16)

When sample class imbalance occurs, precision and recall may not be applicable. For
example, in medical science, if we consider individuals with cancer as positive cases and
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the rest as negative cases, the proportion of positive cases is very small. If our model
predicts all samples as positive cases, the recall will be 1, but precision will be low. In
such cases, these two evaluation metrics are not used, and F1_score, the harmonic mean of
precision and recall, is more reliable. Therefore, F1_score is widely used for evaluating the
performance of classification models.

As shown in Figure 15, the training iteration is 100. The black curve represents the
F1_score curve of the LightGBM algorithm, the red curve represents the F1_score curve of
the XgBoost algorithm, and the blue curve represents the F1_score curve of the CatBoost
algorithm. The black curve in the figure is the optimized F1_score curve of the algorithm
used in this paper, and the red and blue curves are the F1_score curves that have not been
optimized using the algorithm proposed in this paper. It can be seen from the figure that
the XgBoost algorithm has the smallest F1_score, with a value of around 0.907; the F1_score
of the CatBoost algorithm is around 0.913, and the F1_score of the LightGBM algorithm is
the highest, with a value of about 0.925.

As shown in the Figure 16, this is the mlog_loss curve of the LightGBM algorithm. The
training iteration is 100, and the mlog_loss curve for multi− class gradually converges with
the number of iterations, with a final mlog_loss of 0.22. This shows that the algorithm model
we proposed is convergent, not divergent, and the algorithm can meet the requirements for
classification of fishing boats.

Figure 17 shows the feature importance ratio of various features in three algorithms.
From the graph, we can see that the feature importance ratios of the lightGBM algorithm
are relatively balanced compared to the other algorithms, with most ratios being below 0.05.
However, in XgBoost and CatBoost algorithms, some features have a disproportionately
large weight. For example, the weights of features like ′dis′ and ′h_kurt′ exceed 0.1. When
the feature learning rate and other hyperparameters are the same, a high weight of a single
feature indicates that the algorithm strongly depends on that feature during training. This
often leads to some misclassifications and reduces the accuracy of the algorithm.

Figure 15. F1_score of three classification algorithms.
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Figure 16. Multiclass loss curve.

Figure 17. The proportion of feature importance of the three algorithms. x represents longitude, y
represents latitude, v represents speed, k represents the ratio of latitude to longitude, b represents the
difference between latitude and longitude multiplied by the average value of k. Other values include
k_mean: the mean value of k, min: minimum value, max: maximum value, mean: mean value, 1/4:
1/4 percentile, 3/4: 3/4 percentile, std: standard deviation, cov: covariance, kurt: kurtosis, skew:
skewness.
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6. Conclusions

In this paper, we propose a classification method for fishing boat operation types, aim-
ing to supervise fishing operation behavior in the East China Sea and promote sustainable
development of fishery resources. The method involves optimization and construction of
high-dimensional features. Additionally, a new encoding method for fishing boat trajectory
sequence is introduced. This method utilizes Geohash to divide the East China Sea into
grids and assign corresponding numbers to each grid. The ship trajectory is then mapped
to these grids, enabling the association and extraction of fishing boat trajectory points. The
complete trajectory sequence is obtained and passed through the CBOW model to capture
the correlation among trajectory points. Finally, the fishing boat trajectory is converted
from a coordinate sequence to a trajectory vector. The processed trajectory sequence is
trained using the LightGBM algorithm. To achieve optimal classification performance and
select the best combination of hyperparameters, we propose a LightGBM algorithm based
on Bayesian optimization. The classification results for the three operating fishing boats are
obtained. Experimental results demonstrate that the proposed method achieves the highest
F1_score during training, with a training accuracy of 0.925. Compared to XgBoost and
CatBoost, the F1_score has increased by 1.8% and 1.2%, respectively. The method proposed
in this paper effectively strengthens the supervision of fishing operations by fishing vessels
and contributes to the sustainable development of fishery resources. Therefore, Zhoushan
fishery can benefit from the methods proposed in this paper to enhance the supervision
of fishing operations and contribute to the sustainable development of fishery resources.
Future research will focus on further studying fishing behavior management of fishing
vessels.
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