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Abstract: During the rough marine environment, heave compensation is used to offset the heave
motion of the vessel when a marine crane lifts and lands the load. Thus, load motion and vessel
motion are realized decoupled. In previous studies, the interference items such as hydraulic cylinder
friction, underwater drag force and nonlinear friction in the active heave compensation system of
a marine hydraulic crane are compensated as a concentrated interference force to be estimated. In
this paper, we disassembled the interference items; the disturbance observer and adaptive rate are
designed to estimate unmodeled disturbance force and system uncertain parameters, respectively;
and we designed an active heave compensator with the adaptive nonlinear cascade controller which
has the disturbance observer (DOB-ANCC). For the heave compensation of load displacement, this
paper derived the control law of the nonlinear system model based on the backstepping method.
The outer loop control is displacement control and the inner loop control is pressure control. The
simulation verifies the effectiveness of the control strategy proposed in this paper and the availability
of heave displacement compensation for a marine crane hoisting load. The compensation efficiency
of the designed controller (DOB-ANCC) for the heave motion of the load can reach more than 95%,
and the maximum displacement tracking error of the controller can reach ± 0.035 m.

Keywords: nonlinear cascade control; parameter adaptive law; disturbance force observer; hydraulic
servo system; active heave compensator

1. Introduction

When operating in the formidable marine environment with wind, waves and so on,
vessels generally have six degrees of freedom motion, such as roll, pitch, yaw, surge, sway
and heave. Particularly, the heave motion has the most adverse impact on the offshore crane
operating system, which will lead to the instability of the offshore operating device and
seriously affect the work efficiency and operational security. In the future, offshore oil and
gas fields will be developed in a large area, and processing and transportation equipment
will be carried out at sea [1]. Therefore, in the harsh sea conditions, to ensure that the
marine crane can be stable, a lifting load needs to rely on the support of the compensation
system which can improve the high sea state adaptability of equipment. When marine
crane lifting load operation needs to be completed in severe sea conditions, in order to
achieve efficient development efficiency, offshore operations require high operational and
high-precision equipment system support. Therefore, the design and application of AHC
system controller is particularly important [2].

Southerland [3] first proposed active and passive heave compensation system solu-
tions. The passive heave compensation system is designed to keep the line tension of the
lifting load constant [4]. The active heave compensation system uses a simple mechanical
feedback system to reduce the impact of vessel motion. At the beginning, a passive heave
compensation system was widely used, but with the progress of the control system, a more
accurate and advanced control algorithm being verified and applied, and the progress of
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the hydraulic system as faster and more efficient, active heave compensation or a hybrid
active–passive heave compensation system is more respected and has gained the attention
of researchers. A complete linear drill string model was proposed by Korde [5]. The control
system for the active heave compensation device on the drilling vessel is based on linear
control. The theoretical results show that the designed control system can completely
decouple the load motion and the vessel motion, but its decoupling premise is based on ide-
alized calculation. Based on the linear drill string model established by Korde, Hattleskog
and Dunnigan, [6] built a linear transfer function model applied to the active–passive
hybrid system and adopted feedback displacement control and a PD feedback loop for
actuator position feedback. However, nonlinear systems are converted into ideal linear
system models, and the friction effects are mostly considered as linear models or ignored in
practical applications. In the heave compensation system of the hydraulic system, friction
will have an adverse effect on the system, such as the stick–slip of the cylinder, which is not
easily overcome by the load, and it will also cause bad vibration of the compensator, so
there are still some control problems in the heave compensation system based on many
practical applications. In the AHC system as a typical electro-hydraulic servo system, the
external disturbance and parameter uncertainty are unavoidable. Load disturbance force
and unmodeled nonlinear friction force for modeling will also significantly reduce the
system position tracking performance [7].

Focusing on the disturbance problem of the above system, Do et al. designed a
nonlinear control system based on Lyapunov’s law and a disturbance observer for the
electro-hydraulic system driven by a two-link actuator [8]. Shaara and Egeland proposed a
parallel force/position controller control system for offshore operations [9]. Neupert et al.
designed a disturbance decoupling controller to track the desired trajectory to manipulate
the crane winch [10]. In addition, in order to improve the position tracking performance
of the electro-hydraulic servo system, researchers have designed more diverse control
methods. Sliding mode control is used to solve the instability of a electro-hydraulic
system [11], and adaptive control [12], pole placement and other control techniques are
used to solve the local linearization problem of a nonlinear dynamic system. Yao et al.
proposed nonlinear adaptive robust control for trajectory tracking of hydraulic actuators
with nonlinear and uncertain parameters [13]. Since the disturbance is unmeasurable
in practical applications, it is necessary to design a disturbance observer to estimate the
disturbance force in the system. Han developed an extended state jammer (ESO), which
can estimate generalized disturbances online without requiring a specific model [14].

Waves in extreme weather affect the load of the crane by various nonlinear factors,
including nonlinear drag force, viscous damping force and inertia force caused by the
vessel heave motion, friction between the mechanical structures and nonlinear disturbance
generated by the hydraulic circuit itself [15]. In this paper, cascade control of an active
heave compensation nonlinear system for a marine hydraulic crane is carried out. The dis-
placement of an hydraulic cylinder is compensated by reverse control to realize the effective
compensation of the load with vessel heave motion. For uncertain parameters such as drag
force and viscous damping force, this paper uses an adaptive control method to estimate
them. For the nonlinear friction generated by the hydraulic circuit and the mechanical
structure, a disturbance observer is proposed in this paper to estimate the unmodeled
friction. Furthermore, we built the active heave compensation nonlinear controller based
on an asymmetric hydraulic cylinder-driven electro-hydraulic servo system. Nonlinear
control can ensure the accuracy of the system model [16]. The main control strategy of the
controller is to derive the control law according to the mathematical model of the crane
system based on the backstepping method. The adaptive nonlinear cascade controller
(DOB-ANCC) with a disturbance observer is designed according to Lyapunov‘s law to
ensure the stability of the closed-loop system. In the designed cascade control structure,
complete control is divided into inner and outer loop control parts: outer loop control is
the displacement controller and inner loop control is the pressure controller.
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2. Dynamic Model of AHC System
2.1. AHC System Description

Marine cranes will be affected by wind, waves and current when working at sea,
resulting in complex spatial motion. The load movement of crane hoisting will be affected
by the vessel’s heave movement, which will seriously affect the operation efficiency of
the hoisting load and also cause safety accidents [17]. The active heave compensation
system designed in this paper takes the four-level sea state as the working sea state, and
the rated load is 50 t. In this paper, the ITTC two-parameter spectrum is used to describe
the spectral density of waves. It is known that the significant wave height H = 2.5 m, the
average period T = 8.8 s, as shown in Figure 1. It can be seen from the diagram that in the
four-level sea condition, the energy generated by the wave motion is mainly concentrated
in the frequency range of 0.50 to 0.58 rad/s, and the wave energy is the highest when
the frequency is about 0.56 rad/s. In order to simulate the waves in the harsh four-level
sea conditions, this paper chooses a sinusoidal signal with an amplitude of ±3 m and a
frequency of 0.1 Hz as the heave displacement of the vessel. The image of the vessel’s
heave motion is shown in Figure 2.
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Figure 2. Vessel heave motion image.

The installation arrangement of the active heave compensation system device of
the marine crane on the vessel is shown in Figure 3, and the active heave compensation
equipment and load are lifted by the crane. The sensor detects the heave of the wave, and
after the controller calculates, it controls the extension and retraction of the cylinder to
compensate for the influence of wave heave on the lifting load, which can greatly improve
the safety of offshore operations and the lifting capacity of the crane. The control goal of the
active heave compensation system is to use the displacement of the hydraulic compensation
cylinder xp to reversely track and compensate the heave motion of the vessel xh, so as to
keep the altitude of the load xl relative to the geocentric coordinate system unchanged. In
the following, the initial altitude of the load is relative to the geocentric coordinate.

xl = xl0 + xh − xp (1)
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2.2. Mathematical Model of AHC System

The AHC system can offset the uncertain parameters and friction of the compensator,
which is usually more effective than PHC. The active heave compensation system designed
in this paper is shown in Figure 4. A single piston hydraulic cylinder is mainly used as
the active compensation cylinder, proportional servo valve and displacement sensor to
compensate the load displacement. The high-frequency servo valve connects the two cham-
bers of the piston hydraulic cylinder to form an active heave compensation hydraulic
servo system. The compensation principle of the active heave compensation system is
that the displacement sensor detects the heave displacement of the mother vessel, uses
this signal to control the current of the servo valve, controls the oil flow in the hydraulic
cylinder chamber to reversely control the telescopic displacement of the piston rod, and
compensates the lifting load with the change of the vessel’s heave displacement to realize
the heave compensation of the whole system. In the following, the nonlinear mathematical
model of the active heave compensation hydraulic servo system will be established.
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When the crane is working at sea, the movement of the waves will cause various
nonlinear factors to interfere with the lifting load of the crane, including the drag force,
viscous damping force, buoyancy, inertial force, nonlinear parameters and disturbances
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generated by the hydraulic system itself. The disturbance term of the load is added to the
force balance equation of the active heave compensation system as follows:

ml
..
xp = Pi Ai − Po Ao − Fl

Fl = Fd + bh
.
xp + ∆

(2)

The equivalent mass of the load is ml , xp is the displacement of the hydraulic compen-
sation cylinder, and Pi, Ai, Po, Ao represents the pressure and piston area of the non-rod
cavity and the rod cavity, respectively. Where Fl is the total disturbance force of the load, Fd
is the nonlinear drag force generated due to the relative motion of the load and the fluid.
bh is the damping and viscous friction coefficient of the hydraulic cylinder, and ∆ is the
other unmodeled disturbance force on the load, which is mainly the nonlinear friction
disturbance force in the hydraulic system. This paper does not ignore the nonlinear friction
disturbance force ∆. In the following work, a disturbance observer will be designed to
estimate it to achieve the control goal of the controller.

The drag force Fd on the relative motion of the load in water can be expressed as:

Fd = −1
2
·ρw·Al ·Cd·

.
xl ·
∣∣ .
xl
∣∣− dr·

.
xl (3)

In the formula, ρw is the density of seawater, Al is the cross-sectional area of the load
along the heave direction, Cd is the drag coefficient of the load in the water and dr is
the load viscosity coefficient. For the actual application scenario, in order to facilitate
the modeling and analysis of the hydraulic cylinder continuity equation, the following
reasonable assumptions are made:

1. The hydraulic pipeline is short, and the friction loss and dynamic of the pipeline
are neglected;

2. The pressure of each working chamber of the hydraulic cylinder is equal;
3. The temperature and bulk modulus of elasticity of hydraulic oil are constants;
4. The hydraulic cylinder ignores the external leakage, and the internal leakage is laminar

flow [18].

The dynamic equation of the active compensation hydraulic cylinder is as follows:

Qi = Ai
.
xp + Cip(Pi − Po) +

Vi
βe

.
Pi

Qo = Ao
.
xp + Cip(Po − Pi)− Vo

βe

.
Po

(4)

Qi is the flow of hydraulic oil into the non-rod chamber of the hydraulic cylinder, Qo
is the flow rate of the rod cavity of the hydraulic cylinder. βe is the effective bulk elastic
modulus of hydraulic oil, and Cip is the internal leakage coefficient of the hydraulic cylinder.
Vi and Vo are the working volume of the non-rod cavity and rod cavity, respectively, and
their relationship with the initial volume Vi1Vo2 is:

Vi = Vi1 + Aixp
Vo = Vo2 − Aoxp

(5)

The servo proportional valve is connected to the active compensation hydraulic cylin-
der which is controlled by hydraulic oil. The O-type median function servo valve is used.
According to the valve port flow equation of the servo valve, the relationship between the
flow of the hydraulic cylinder and the displacement xv of the servo valve spool can be
obtained. For the servo proportional valve, the slide valve structure is adopted, and the
assumption is made to facilitate mathematical modeling:

1. The slide valve is an ideal four-side slide valve with zero opening, four throttle ports
matching and symmetry;

2. The flow at the throttling window is turbulent;
3. Flow variation in response to valve spool displacement and valve pressure drop can

occur instantaneously.
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Qi =

{
kdxv

√
|Ps − Pi|sgn(Ps − Pi)(xv ≥ 0)

kdxv
√
|Pi|sgn(Pi)(xv < 0)

Qo =

{
kdxv

√
|Ps − Po|sgn(Ps − Po)(xv < 0)

kdxv
√
|Po|sgn(Po)(xv ≥ 0)

(6)

where kd = Cd·w·(2/ρ)1/2, ρ is the density of hydraulic oil. The flow coefficient Cd of
the valve port and the area gradient w of the orifice are difficult to measure, so kd can
be obtained from the technical data of the valve. Ps is system oil supply pressure. xv is
servo valve spool displacement, the negative value indicates that the spool displacement
is opposite to the positive direction of the regulation. Ignoring the second-order dynamic
characteristics of the servo valve, the simplified relationship between the valve spool
displacement xv and the control current command of the servo valve u can be obtained as
follows, where kx is the proportional gain of the valve spool:

xv = kxu (7)

The amplifier of the servo valve provides a specific current to the proportional electro-
magnet to control the displacement of the servo valve spool and controls the hydraulic oil
flow at the inlet and outlet of the active hydraulic cylinder, thereby controlling the extension
and retraction of the cylinder. Thus, the influence of the heave motion of the vessel with
the wave on the lifting load of the crane is compensated. The working schematic diagram
of the active heave compensation hydraulic servo system of the marine crane is as Figure 5:
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For the actual active compensation, the compensation element is shown in Figure 6.
In the active heave compensation system, the spool displacement of the servo valve is
controlled by the industrial computer, and the hydraulic power is provided to the servo
valve. The servo valve controls the motion of the active compensation hydraulic cylinder.
The displacement sensor detects the displacement of the hydraulic cylinder and transmits
the displacement signal of the hydraulic cylinder back to the industrial computer through
the converter, forming a closed-loop control.
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The valve port flow equation Formula (6) of the servo valve is brought into the
dynamic equation Formula (5) of the hydraulic cylinder, and the dynamic equation of Pi, Po
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and the compensation displacement xp of the hydraulic cylinder is solved. Combined
with Formula (1), the mathematical model of the whole active compensation hydraulic
servo system can be defined. The state variable of the system is defined as [x1, x2, x3, x4] =[
xp,

.
xp, Pi, Po

]
; then, the state space equation of the system is:

.
x1 = x2.
x2 = 1

ml

[
Aix3 − Aox4 − b1x2 − b2 f 2

1 (x2,
.
xH)− ∆

]
.
x3 = h1(x1)

[
kdxv f2(x3, u)− Aix2 − Cip(x3 − x4)

]
.
x4 = h2(x1)[−kdxv f3(x3, u) + Aox2]

(8)

where the damping and viscous friction coefficients of the hydraulic cylinder are b1 = bh,
and the nonlinear drag coefficient of the load is b2 = 1

2 ·ρw·Al ·Cd, ∆ is the nonlinear friction
disturbance force in the hydraulic system and

h1(x1) = βe/(Vi1 + A1x1), h2(x1) = βe/(Vo2 + A2x1)
f1(x2,

.
xh) = k(

.
xh − x2)

f2(x3, u) =
{

kdxv
√
|Ps − Pi|sgn(Ps − Pi)(xv ≥ 0)

kdxv
√
|Pi|sgn(Pi)(xv < 0)

f3(x4, u) =
{

kdxv
√
|Ps − Po|sgn(Ps − Po)(xv < 0)

kdxv
√
|Po|sgn(Po)(xv ≥ 0)

(9)

The control objective of the system is to design a bounded control law such that
x1 can accurately track the expected value xd when there are uncertain parameters and
interference terms in the system, so that the load displacement remains unchanged relative
to the altitude of the geocentric coordinate system. The following assumptions are made
for the actual active heave compensation system:

Assumption 1. The displacement of hydraulic cylinder xp, velocity
.
xp, acceleration

..
xp and Pi, Po

are all bounded, i.e., 0 < Pi < Ps, 0 < Po < Ps.

Assumption 2. The unmodeled nonlinear friction force ∆ is continuous and bounded and satisfies
the following conditions: {

∆min ≤ ∆ ≤ ∆max∣∣∣ .
∆
∣∣∣ ≤ λ

(10)

where ∆max and ∆min are the maximum and minimum values of the disturbance force limit,
respectively. λ is the maximum value of the change rate of the disturbance force. The system is
simplified to a strict feedback form, and a new virtual state variable is defined, x3 = x3 − αx4,
where α = Ao/Ai represents the piston area ratio. Therefore, the dynamic equation of the rewritten
marine hydraulic AHC system is:

.
x1 = x2.
x2 = 1

ml
[Aix3 − b1x2 − b2g1 − ∆]

.
x3 = −g3x2 + g4u− h1(x1)Cip(ββe − x3)
g1 = f1(x2,

.
xh)

g3 = h1(x1)Ai + αh2(x1)Ao
g4 = kdkx[h1(x1) f2(x3, u) + αh2(x1) f3(x4, u)]

(11)

When the AHC system of the vessel crane is lifting the load underwater, the lifting
load is affected by the heave motion of the wave. In the motion equation of the active heave
compensation system, the damping and viscous friction coefficient b1 of the hydraulic
cylinder will be affected by oil pressure and temperature, so it has time-variance and
uncertainty. The nonlinear drag coefficient b2 of the load is also uncertain. In addition, ∆ is
the nonlinear friction disturbance force in the hydraulic system, which will also have an
interference effect on the system. Therefore, these uncertainties need to be estimated in the
design of the system controller.
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3. DOB-ANCC Controller Design

The system control is divided into an outer loop displacement controller and an inner
loop pressure controller. Based on the backstepping method, the inner and outer loop con-
trol of the system is deduced and the control law u of the compensation system is designed
to control the displacement output xp of the hydraulic cylinder, so as to realize the com-
pensation of the load heave motion in accordance with the nonlinear mathematical model
derived above for the active heave compensation system. This paper designs the parameter
adaptive rate to estimate the uncertain parameters b1b2 in the system, for the influence of
nonlinear friction disturbance force ∆, which is estimated by the designed disturbance ob-
server. In this paper, an adaptive nonlinear cascade controller with a disturbance observer
(DOB-ANCC) is designed. The control block diagram is as Figure 7:
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3.1. Adaptive Law Design for Uncertain Parameters

In the crane compensation hydraulic servo system, a change of oil pressure and
temperature will lead to a change of the hydraulic cylinder damping coefficient b1, which
is uncertain. The drag force of the system will also be affected by the movement of the
load in the water, so the drag force parameters b2 are also time-varying. In this paper,
the parameter adaptive control method is used to design the adaptive rate of uncertain
parameters b1b2 and estimate them. The purpose of the adaptive rate design is to identify
these two unknown parameters in the controller online. The selected control type is the
reference adaptive control based on the mathematical model. The design of the adaptive
law of the parameters is based on the Lyapunov stability. According to the Lyapunov
stability direct method, the adaptive control law of the uncertain parameters is obtained,
so the obtained adaptive control law can guarantee the stability of the AHC system. The
Lyapunov direct method does not judge the stability of the system by the solution of the
system state equation but uses the Lyapunov function to judge the stability, and analyzes
the stability from the perspective of generalized energy. The Lyapunov stability direct
method is defined as follows:

For the system
.
x = f [x, t], the equilibrium state is xe = 0, and f (xe) = 0. If there is a

scalar function V(x) such that it has a continuous first-order partial derivative for all x and
V(x) is positive definite, then the equilibrium state is asymptotically stable when

.
V(x) is

negative definite or semi-negative definite and not always zero for any state.
The uncertain parameters of the system exist in the second state equation of Formula (11).

The expected value x2 is designed for the state variable α1, and the state equation of the
state variable error x̃2 is obtained as follows:

.
x2 = 1

ml
(Aix3 − b1x2 − b2g1 − ∆),

.
x̃2 = x2 − α1

.
x̃2 = 1

ml
(Aix3 − b1x2 − b2g1 − ∆)− .

α1
(12)
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According to Formula (12), in order to ensure the stability of the whole system, the
controller x3 is designed and brought into Formula (12):

x3 = 1
Ai

[
b̂1x2 + b2g1 + ∆ + ml

( .
α1 − Kx̃2

)]
.
x̃2 = 1

ml
b̃1x2 − Kx̃2

(13)

where b̂1 is the estimated value, b̃1 = b̂1 − b1, K is a positive stability term. The Lyapunov
function is defined as follows:

V
(

x2, b̂1

)
= 1

2 x̃2
2 +

1
2η1

b̃2
1

= x̃2·
.
x̃2 +

1
η1

b̃1·
.
b̂1

= x̃2

(
1

ml
b̃1x2 − Kx̃2

)
+ 1

η1
b̃1·

.
b̂1

= −Kx̃2 + b̃1

(
1

ml
x2·x̃2 +

1
η1
·

.
b̂1

) (14)

In order to make the system stable, therefore,
.

V
(

x2, b̂1

)
≤ 0. The adaptive control law

of uncertain parameters b1 is designed as follows. The adaptive control rate for system

uncertain parameter
.
b̂1

.
b̂2 design will be directly applied to the following controller design:

.
b̂1 = −η1

1
ml
·x2·x̃2 (15)

For the same derivation design of parameters b2, it can be obtained:

.
b̂2 = −η2·

1
ml
·g1·x̃2 (16)

3.2. Disturbance Force Observer Design

Focusing on the unmodeled nonlinear friction disturbance force ∆ in the system, a
disturbance observer is designed to estimate it. In order to facilitate the design of distur-
bance observer and intuitive numerical analysis verification, at the same time, this designed
observer can be directly referred to when the controller is derived below. Thus, a simple
system state equation with disturbance force is constructed, as shown in Formula (17):

.
x = f (x) + u + ∆(t, x) (17)

where f (x) represents the vector of the state variable x, in the following, there will be
specific functional relationship references, u is the control input vector, ∆(t, x) represents
the system interference force vector. In the above, it is assumed that the friction disturbance
force ∆ is bounded. In order to design the control law u to stabilize the system to the origin,
it is necessary to design the disturbance observer ∆̂(t, x) to accurately estimate the uncertain
disturbance ∆(t, x). The control law can be intuitively designed as u = −kx− f (x)− ∆̂(t, x)
to ensure system stability, where k is the positive real number or positive definite matrix.

The principle of the disturbance observer is to ensure that the disturbance error
∆e(t, x) converges exponentially to the ball centered at the origin, and the radius of the ball
is arbitrarily small by adjusting the function ρ(x). An observer is designed to estimate the
nonlinear unmodeled friction ∆ in this paper. The design form of the observer is as follows:{

∆̂(t, x) = ξ + ρ(x)
.
ξ = −K(x)ξ − K(x)( f (x) + u + ρ(x))

(18)

In the above formula, K(x) is positive definite for any x, and its relationship with
ρ(x) is K(x) = ∂ρ(x)/∂x. The purpose of the disturbance observer is to ensure that the
disturbance error of the disturbance observer converges exponentially to a ball centered at
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the origin. By adjusting the value of the function to make the radius of the ball arbitrarily
small, the system is stabilized.

To verify the tracking performance of the designed disturbance observer, the numerical
simulation method is used to test the estimation effect of the observer. Suppose the
interference term is ∆(t, x) = ∑5

i=1 (sin(it) + sin(x) sin(it)), and consider selecting a scalar
system f (x) = arctan(x + x2), and a corresponding choice, the function ρ(x) = 15(x + x3

3 ),
K(x) = 20(1+ x2). In order to ensure the stability of the system, the control rate is designed
as u = −kx− f (x)− ∆̂(t, x), k = 5.

The simulation results are as follows. In Figure 8, the imaginary line represents the
estimated value of the interference force ∆̂, and the real line represents the actual value of
the interference force ∆. It can be seen from the figure that the estimated value obtained by
using the disturbance observer has a good tracking performance for the actual disturbance
force, so the disturbance observer achieves a good estimation of the disturbance term in
the system.
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For the variables x in the system, as shown in Figure 9, the red line with a large
amplitude represents the system without the disturbance term, and the blue line floating at
the zero point represents the system using the observer to estimate the disturbance term. It
can be clearly seen from the figure that the system with disturbance observer converges to
a ball with a smaller radius than the system without disturbance. It can be explained that
even if the system has disturbance terms, the designed observer makes the whole system
more stable. Therefore, it can be shown that the disturbance observer designed in this
paper has a certain effect on the stability of the system.
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3.3. DOB-ANCC Nonlinear Cascade Control Based on Backstepping Method

Based on the adaptive rate b̂1b̂2 of the design of the uncertain parameter hydraulic
cylinder damping coefficient b1 and the drag force parameter b2 of the load in the system,
as well as the observer ∆̂ designed for the unmodeled nonlinear friction interference force
in the system, they are directly applied to the backstepping derivation design of the control
law. The design of the active heave compensation controller for the marine crane adopts
the nonlinear cascade control algorithm. The displacement compensation control is used as
the outer loop of the controller, and the pressure control is used as the inner loop of the
controller. The backstepping theory is used to design the input u of the system controller.
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3.3.1. Step 1

The first step of the cascade controller is to design the desired pressure for the outer
loop displacement control. In this step, x2 is the control law and α1 is the virtual control
variable of x2. The control goal of this step is to stabilize the displacement error x̃1 by
designing virtual control variables, where xd is the expected displacement value and k11 is
the positive compensation term. Define the displacement compensation error as follows:

x̃1 = x1 − xd
x̃2 = x2 − α1.
x̃1 = x̃2 + α1 −

.
xd

α1 = −k11 x̃1.
x̃1 = −k11 x̃1 + x̃2

(19)

3.3.2. Step 2

Our goal in this step is to adjust x̃2 to the origin region to achieve stability, similar to
the first step x3 as the control law of the second step. The essence of introducing virtual
control variables into the design of the backstepping method is a static model compensation.
The control of the previous subsystem must rely on the virtual control of the subsequent
subsystem to achieve stability. Therefore, a virtual control variable α2 is designed for x3.
Based on the system state equation and the formula of the first step, it can be concluded that:

x̃3 = x3 − α2.
x̃2 = 1

ml
Ai(x̃3 + α2)− 1

mL

>
b1(x̃2 + α1)− ∆− ∂α1

∂x̃1
(−k11 x̃1 + x̃2)− b̂2g1

(20)

Ignoring x̃3, the following virtual control variable α2 is designed to stabilize the system,
where k21 is a positive compensation term:

α2 =
1

1
ml

Ai

[
−x̃1 − k21 x̃2 +

1
ml

b̂1 + b̂2g1 +
∂α1

∂x̃1
(−k11 x̃1 + x̃2) + ∆̂

]
(21)

The nonlinear friction disturbance term ∆ in the above formula is estimated by using
the disturbance observer designed above. If x̃3 is neglected, it can be seen that the form
of Formula (20) is the same as that of Formula (17). Therefore, according to the design of
the disturbance observer proposed in Formula (20) and Section 3.2, the estimated value of
the disturbance term ∆̂ can be designed, where k12 is the positive compensation term, and
choosing ρ(x) = k12x, the observer is designed as follows:

∆̂ = ξ1 + k12 x̃2.
ξ1 = −k12ξ1 − k12

[
1

ml
Ai(x3 + α2)−ml b̂1(x̃2 + α1)− ∂α1

∂x̃1
(−k11 x̃1 + x̃2)− b̂2g1

] (22)

Bring the designed virtual control variable Formula (21) into Formula (20) to obtain
the following formula, where ∆̃ = ∆− ∆̂:

.
x̃2 = −x̃1 − k21 x̃2 +

1
ml

Ai x̃3 + ∆̃ (23)

3.3.3. Step 3

This is the final step of the controller design. The virtual control variable α2 designed
in the previous step is used as the input of the inner loop pressure control. The goal of this
step is to solve and design the control law u of the actual command output of the AHC
system. The following equation is obtained by differentiating x̃3:

.
x̃3 =

.
x3 −

.
α2.

x̃3 = −g3x2 + g5u− h1(x1)Cip(ββe − x3)− ∂α2
∂ξ1
·

.
ξ1 −

∂α2
∂x̃1

(x̃2 − k11 x̃1)− ∂α2
∂x̃2

(−x̃1 − k12 x̃2 +
1

ml
Ai x̃3 + ∆̃)

(24)



J. Mar. Sci. Eng. 2023, 11, 1092 12 of 15

In consequence, the control rate u which represents the input current command of the
servo valve can be designed, and the expression is as follows:

u =
1
g5

[− 1
ml

Ai x̃2− k13 x̃3 + g3x2 + h1(x1)Cip(ββe− x3)+
∂α2

∂ξ1

.
ξ1 +

∂α2

∂x̃1
(x̃2− k11 x̃1)+

∂α2

∂x̃2
(−x̃1− k12 x̃2 +

1
ml

Ai x̃3)] (25)

where k13 is the positive compensation term. The whole control law of the AHC system is
designed to realize the control of the input current of the servo valve. Thus, the reverse
control of the displacement of the hydraulic cylinder is realized to compensate the load
with the displacement of the vessel.

4. Simulations

To verify the effectiveness of the controller designed in this paper and the compen-
sation effect of the load in the active heave compensation system of the marine crane, the
designed control algorithm and the compensation effect of the AHC system of the marine
crane on the load motion are simulated and analyzed, respectively, in this section. In order
to verify the compensation performance of the system, the simulation parameters required
for the active heave compensation system of the marine hydraulic crane are shown in
Table 1.

Table 1. Crane AHC system model simulation parameter list.

Parameter Value Unit Parameter Value Unit

A1 1.113 × 10−2 m2 V01 1.15 × 10−2 m3

A2 5.6 × 10−3 m2 V02 0.57 × 10−3 m3

Cip 1.4 × 109 m3/(s·Pa) kd 1.25 × 10−3 m/v
βe 1.4 × 109 Pa β 4.956 × 10−1

The tracking effect of the controller designed in this paper is verified. The DOB-ANCC
controller used in the simulation is debugged and the parameters are set, as shown in
Table 2.

Table 2. Control algorithm parameter list.

Parameter Value

k11 2
k12 15
k13 4
K21 8
η1 4 × 109

η2 5 × 109

The effectiveness of the controller is verified by comparative simulation analysis. The
adaptive nonlinear cascade controller with disturbance observer DOB-ANCC proposed in
this paper is compared with the traditional PID controller for path tracking. The traditional
PID controller is a linear controller, in which the input of the control law of the system is the
deviation between the expected signal and the actual signal. The proportional coefficient of
the PID controller is 100, the integral term is 2.5 and the differential term coefficient is 15.
The traditional PID controller is designed as follows:

u = 100(xd − x1) + 2.5
∫ t

0
(xd − x1) + 15

.
xd (26)

Figure 10 compares the tracking performance of the linear control using the traditional
PID controller and the adaptive nonlinear cascade controller with the disturbance observer
(DOB-ANCC) controller designed in this paper for the expected value xd of the vessel
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heave motion tracking signal. Because the DOB-ANCC controller designed in this paper
estimates and compensates the uncertain parameters b1b2 and the disturbance term ∆ of
the system, it can be seen from the diagram that the DOB-ANCC controller shows better
displacement tracking performance than the PID controller under four-level sea conditions.
From Figure 11, the maximum tracking error of the traditional PID controller is about 0.2 m.
The tracking error of the controller (DOB-ANCC) proposed in this paper is within 0.035;
the system robustness is preferably higher. For the verification of the tracking performance
of the disturbance observer designed in this paper, it can be seen from Figure 12 that
the observer still shows good tracking performance for the disturbance term even in a
short time.
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In the simulation of the load displacement compensation of the active heave compen-
sation system, as shown in Figure 13, it can be seen that the designed control law reversely
compensates the displacement of the hydraulic cylinder. For the displacement compensa-
tion of the 50-t load under the four-level sea condition. The heave displacement of the load
is about 0.3 m; thus, the compensation efficiency is better, and the fluctuation of the vessel
is small. The compensation ability reaches more than 95%, which can ensure the stability
of the heave system. For the irregular motion of the actual wave, the randomly generated
wave signal is used as the input, and the heave displacement of the load is obtained as
shown in Figures 13 and 14. It can be seen from the figure that the compensation effect is
still above 90%.
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5. Discussion

The nonlinear model of the hydraulic crane active heave compensator is carried
out. The observer is designed to estimate the nonlinear friction force in the system, and
the adaptive control is used to estimate the uncertain parameters in the mathematical
model of the system. Although the linear model of the active compensator studied by the
predecessors can completely decouple the motion of the ship and the load, the nonlinear
model established in this paper by considering the drag force and nonlinear friction of the
load makes the system accurate, and the inner and outer loop cascade control designed in
this paper is robust to other research control schemes.

However, the study still has limitations. In practical applications, due to the incomplete
accuracy of sensors and drive devices, the compensation system has a time delay problem.
Moreover, the wave selected in this paper is an ideal sinusoidal wave, while the actual sea
condition is an irregular uncertain wave, which requires predictive control to be added
to the system to achieve perfect compensation as much as possible. Therefore, in the
following research, it is necessary to design predictive controller and control algorithm in
the control system.

6. Conclusions

In this paper, an active heave compensator control method for the marine crane is
proposed to compensate the underwater lifting load operation of the vessel with the wave
heave motion. By establishing a nonlinear mathematical model of the crane active heave
compensator and taking into account the disturbance force of the load in the water, this
paper designs an adaptive nonlinear cascade controller (DOB-ANCC) with a disturbance ob-
server. The design of the active heave compensator controller is based on the backstepping
method. The inner loop control adopts pressure control and the outer loop control adopts
displacement control. The simulation results show that the compensation efficiency of the
designed controller (DOB-ANCC) for the heave motion of the load can reach more than
95%, and the maximum displacement tracking error of the controller can reach ± 0.035 m.
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